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ELLIPSOIDAL ESTIMATES
FOR A SOLUTION OF A SYSTEM
OF DIFFERENTIAL EQUATIONS

A F.Filippov

The total error arising in the numerical solution of a system of differen-
tial equations is estimated by the ellipsoid method.

IJINIMIICOMNITAJILHBIE OIIEHKUA
PEINEHUA CUCTEMBEI .
NP PEPEHIIVAJIbBHBIX YPABHEHUU

A.® . Pusunmoos

Ob6masn ommubka, BO3HMKAIOWAA MPU UUCJIEHHOM peLIeHUN CUCTe-
MBI U PepeHuralIbHBIX YPABHEHU, OLleHMBAaeTCA METO0M B JIJIUIICO-
UIOB.

In the solution of a system of differential equations by difference meth-
ods, the interval technique [1] used to obtain strict upper and lower esti-
mates for each component of a solution often leads to exponential growth
of the error estimate, even though the error itself does not grow. It oc-
curs, for example, in the case of the system 2’ =y, y' = —z; see [1], [2].
A method allowing reduction of the exponential growth to polynomial
growth is given in [3]. In [4], a class of systems with right-hand sides
nondecreasing in the nondiagonal arguments is described, in which the
phenomenon of excessive exponential growth of the error estimate does

not occur.
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Exponential growth can occur in the componentwise estimate of the
size of the accessibility set for controlled systems. In the latter case,
the ellipsoid ‘method [5] was proposed to overcome this difficulty. Fur-
thermore, this method is used to find strict estimates for a solution of
a system of differential equations, and, therefore, to find a strict error
estimate obtained together with approximate computation of a solution.
A version of the ellipsoid method is considered in [6].

In the proposed method, the point representative of a solution of the
system at arbitrary time is contained in a moving ellipsoid. The evo-
lution equation of this ellipsoid is derived taking into account both the
discretization error of the method and the roundoff error both for the so-
lution of the given system and for the solution of the evolution equation
of the ellipsoid.

There are other methods for obtaining strict estimates for a solution
apart from difference methods; see, for example [2]. We do not consider
them in this paper.

1. Notation and auxiliary results

Below, all matrices determining quadratic forms and ellipsoids are as-
sumed to be real and symmetric. A matrix A of dimension n x n deter-
mines a quadratic form z- Az (z € R", the dot denotes the scalar product
of vectors). The notation A > 0 (or A > 0) denotes z- Az > 0 for all = #
0 (z - Az > 0 respectively); I is an identity matrix.

Let a € R", and let @ be a matrix with @ > 0. As in [5], §5, a set
of points £ € R™ suchthat x = a + Qy, y € R® and Quy -y < 1, is
called an ellipsoid, and is denoted E(a, Q). If @ > 0, the above set is
determined by the inequality (z —a)-Q 1(z —a) < 1. If rankQ =r < n,
the ellipsoid E(a, Q) is degenerate, that is, the ellipsoid lies in an r-
dimensional hyperplane. Examples: the point a (as @ = 0); the segment
(as r = 1); the planar disk in R3.

Lemma. IfA > 0 and B > 0 are real symmetric matrices, then E(0, A) C
E(0,A+ B). .

Proof. First consider the case A > 0. Then A + B > 0, and we must
demonstrate that the set of points z € R™ such that z- A7z < 1 is
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contained in the set z- (4 + B)~ 12 < 1. To do this, we demonstrate that
z-(A+B) 'z 2 A7 (x € R™).
Denoting (A + B)~!'z = y we obtain the equivalent inequlities:

v-[A7'2—(A+B)7'2] >0, (A+B)y-[A"(A+B)y—y] >0,
(A+B)y-A"'By >0, Ay -A"'By+ By-A 1By > 0.

The first term of the sum is equal to y- AA™By = y- By > 0, since the
matrix A is symmetric and B 2> 0; the second term is equal to Az-z > 0,
where z = A7 By. In the case A > 0 the lemma is proven.

Let A >0, A, = A+k ',k =1,2,.... Then A; > 0 and by what
has been proved, E(0, A;) C E(0, A + B). We have Ay — A as k — oo,

and the statement of the lemma is valid (F(0, A) depends continuously
on A; see [5, p.73]).

The sum § of two ellipsoids E(ay, ) and F(aq, @Q2) is the set of all
points of the form = = 2; + 3, where 21 € E(a1,Q1), z2 € E(az2,Q>).
According to [5], §6, S C E(a,®), where

a=a1+a;, Q=@ r+1)Q1+(p+1)Qs, (1)

the number p > 0 being arbitrary ([5], p.107). Formula (6.39) from [5]
determines the optimal value of p such that the corresponding ellipsoid
E(a, Q) has minimum volume.

In the case where the size of the ellipsoid E(a;,Q1) is considerably
less than the other, the optimal value of p is close to

p=\/n1Tr(Q7'Qy), (2)
See [5], p.106; here T'r is the trace of a matrix.

2. Presentation of the method

Let 2(t;) be approximate values of the solution of the following problem
at the points of the net t; =ty +1h, i =1,2,...:

' = f(t,z), =2(tg)=2° (z€R")" (3)
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(The case where the approximate solution z(t) is found on the interval
ty < t < t*, is considered in Section 3.) A difference A; = z(t;) —
z;_1(t;), where x;_1(t) is an exact solution of equation (3) with the ini-
tial condition x;—1(t;—1) = 2(t;-1), is called a local error. This local
error is formed of a local error of the approximate method used and
of a roundoftf error. Let an estimate for A; be known, for example,
| A; |€ bior A; € E(d;, M), © = 1,2,.... We must estimate the dif-
ference z(t;) — z(t;) = w(t;), where z(t) is the exact solution of problem
(3). We have
w(tz) - a:(ti) — xi—l(ti) — A;.

For the function y(t) = x(t) — z;—1(t) we have

y'(8) = f (6 zia(t) +y(t) — f (1 2ia(8) = Cy(E) +¥(1),  (4)

where C(t) is the matrix (8fk/'axj)k,j=1,_,_,n, the values of derivatives
are taken for x = x;_1(¢), and 9(t) is a remainder term of the Taylor
formula. Let the estimate of ¥(t) € E (u(t), B(t)) be known. We obtain
the estimate w(t;) € E(a;, Q;) for the difference w(t;) = z(t;) — z(t;) of
the exact and approximate solutions. Let z(ty) = zo, and for the exact
solution, let be known that either z(¢y) € E(z¢,Qo), or, more strictly,
z(tg) = zo (the latter case reduces to the preceding for Qo = 0).

We show how to pass the estimate w(t;—1) € F(a;-1,Qi—1) to a similar
estimate for w(?;). Equation (4) is of the form (8.8) of [5]. Therefore,

y(t) € E(a(t), Q1)  (tim1 ST <), (5)
where the vector a(t) and the matrix Q(t) satisfy the equationst

o =C(t)a+u(t), alti—1)=a;-1, (6)
Q' =CQ+QCT +9Q+¢7'B(t), Qtim1) = Qi (7)

Here 7 is the matrix transposition sign and g = q(t) > 0 is any function.
Its optimal value (in the sense of [5], p. 127) is ¢ = /n—1Tr(Q~1B).

The system (7) has the high dimension n(n + 1)/2, since the matrix Q

fThe matrix is known only at the points of the net t;_;1. That enough to solve the
equations (6) and (7) by the approximate methods presented in the Section 4.
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is symmetric. Thus, it is worthwhile to solve this system by one of less
cumbersome one-step methods; see Section 4. To avoid computing the
matrix Q™! at each step, we can consider the function ¢ in (2.6) to be
constant on the intervals t; < t < t;4, to several tens of steps of length,
since Q does not change greatly over this distance. The discontinuity of
the right-hand side of equation (2.6) caused by this for ¢ = #;,%its,. ..,
does not change the estimate of the local error of the one-step methods.

Equations (6) and (7) are differential equations for the evolution of
the ellipsoid (5) that give an estimate for the difference w = z — z of the
exact and approximate solutions of problem (3). From (5), it follows that

z(t) € E(2(t) + a(t),Q(t)) -

Since we are led to solve equations (6) and (7) approximately, we must
ensure that the ellipsoid constructed from the approximate a(t) and Q(t)
contains the ellipsoid (5) constructed from the exact a(t) and Q(2).

Assume that we have found the approximate values a* = a*(%;) and
Q* = Q*(t;) of the solutions a(t) and Q(t) for the equations (6) and (7)
at the point ¢ = ¢;. Then

a(t;) =a* —mi, Qt:)=Q" — Ki, (9)

where the vector n; and the symmetric matrix K; are the local errors
that take into account the method’s truncation errors for the solution of
equations (6) and (7) at one step and roundoff errors. Let the following
estimates be known:

ni € B(a,L), ||K|l<por |Kiz|<plz], z€R"

«, L, and p can depend on i. In particular, if the absolute value of each
entry of the matrix K; does not exceed pg, we can take p = npy. Since
w(t;) = y(ti) — A, then, denoting y(t:) + 7: = y*, we use (5) and (9) to
obtain '
w(t:) =y* —m—Di, Yy € E(a*,Q(t:)) -

Here we pass from Q(¢;) to the known matrix Q*. Since

Q" + oI = Q(t:) + (K + pD), K+ pI 20,
the lemma implies E (a*,Q(t;)) C E(a*, Q" + pI),

y* € E(a",Q,), @o=Q" +pl. (10)
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Here we must always round up after an addition.

Let us estimate the order of magnitude of the values n;, A;, and a(t)
with respect to h. The approximate method of order k for equation
(3) gives the local error A; = O(hF*1), while the cumulative error is
n;: = O(h¥*2). Therefore, the estimate for n; is small in comparison with
the estimate for A;. According to (1) and (2),

i + A; € E(a, L) + E(di, M;) C E(e + di, N), (11)

N=+p)Mi+ (@7 + DL +npul, pr = \/”‘1Tr(M[1L).
(12)

According to (10) w(t;) € E(a*,Q,)+ E(—a—d;, N). Since ; + A; =
O(h**1), y* = O(h*), (1) and (2) give us

w(t;) € E(a;, Qi), ai=a*—a—d;, (13)

Qi = (1+p2)Q, + (p; " + 1)N +npusl, po = \/TflTT(Q;lN)- (14
14

To compensate for roundoff errors, the terms np, I and nuyl are in-
troduced just as p was in (10). We assume that the roundoff error in
computing a; = a* — « — d;, is a vector whose length does not exceed £,
and roundoff errors in the additions and and multiplications in (12) and
(13) give errors in each entry of the matrices N and Q; that do not exceed
p1 and g, respectively. Here, errors in computing p; and p, in (12) and
(14) must not be taken into account (any p; and ps are suitable), and
the values of p;* and p; ' must be taken with excess whose amount can
be neglected. Then, adding the terms nu; I and nusl can only augment
the ellipsoids in (11) and (13), in spite of the roundoff errors.

The roundoff error in the difference a; = a* — o — d; is equivalent to
the variation of o + d; by the amount of the error, and is compensated
by adding the ellipsoid (11) to the ball E(O, £21). This leads to replacing
the matrix N in (14) by the matrix

Ni=(1+psé)N + (p5 "6+ 2 +nppg)l, ps+ Vo ITrN-L.  (15)

The term of the sum nu3l compensates roundoff errors in the addition
and multiplication in (15) if they do not exceed us for any entry of the
matrix N;. -
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Therefore, to pass from a;_1,@Q;_1 to a;,(;, one must find approxi-
mate values a*, Q* for t = t; of the solutions of equations (6) and (7).
Furthermore, given estimates for the local errors and roundoff errors,
one finds @, from (10), then one finds N and N; from (12) and (15).
Then, using formulas (13) and (14) with N replaced by Vi, one obtains
a; and Q,

The preceding implies that for any exact solution z(t) of the equation
z' = f(t, z) satisfying the condition z(t;) € E (2(t;) + a;, Q;), there is an
i = 19 = 0 such that this condition will hold for all i > ig, as long as this
solution exists and the estimates used for the local errors hold.

3. Modification of the method

A. Let the approximate solution z(t) of equation (3) be found not
only at the points t;, but on the interval [to,t*], and let it satisfy the
equation

= f(t,z) +o(t), z(te) = o, (16)

and assume function ¢(t) is small. Then the function w = z(t) — 2(1),
where z(t) is a solution for problem (3), satisfies the equation

w' = C(t)w iy d](t) - <10(t)7 w(tﬂ) € E(OaQO)a (17)

where C(t) is now a matrix of derivatives 8fi/0x;, taken for x = 2(t),
and (%) is the remainder term of the Taylor formula

f(t,z+w) = f(t,z) + C(H)w + ¥(t).
Given the estimate of ¥(t) — ¢(t) € E (u(t), B(t)), equation (17) is of the
form (8.8) of [5]. Thus for ¢ > ¢, we have
w(t) € E(a(t),Q(t)), o =C()a+u(t), a(te)=0,
Q'=CQ+QC" +9Q+q 7 B(1), Q(to) = Qo (18)
where the function q is determined as in (7). Errors in the solution of

this system are taken into account in the same manner as in Section 2,
only A;, d;, M; are missing.

Remark. The case of Section 2 where the approximate solution is found
only at the points ¢; can be reduced to the case considered above. To do
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this, we must interpolate the function z(¢;) on each of intervals [t;_y,t;]
and estimate the residual ¢(t) in (16) for the function 2(t) so constructed.
More easily, take

2(t) = 2 (t) + (t — tic1)Ai/h (timn <t 1),
where ;1 (t) and A; are the same as in the beginning of Section 2. Then

p(t) = 2'(t) = £ (,2(1)) = KT Ai + f (4, 2-1 (1)) — f (8, 2(2));

the latter difference can be estimated from the estimates for 8f;/dz;.
For example, if the norm of the matrix |(0fk/0x;)k j=1....n|| < m1 then

eI <ATHAN A+ (¢~ tii)mi)  (fiea ST < ).

Similarly, the case of Section 3A reduces to the case of Section 2, since
the difference A;(t) = z(t) — z;_1(t), can be estimate using Gronwall’s
lemma, provided the estimate |¢(t)| < o is known. This gives the esti-
mate

|A:] = |Ai(:)] < pohe™™,
where m; is defined above.

B. Assume that in Section 2 we have obtained symmetric esti-
mates for A; and v(t) (or for ¥(t) — ¢(t) in Section 3A), that is, d; =
0, u(t) =0.

Then (6) or (18) implies that a(t) = 0, the quantities a*, n;, o, L, a;,
and & are equal to zero, we have no need of formulas (11), (12), and

(15), It also implies that, in (14), N = M; in the case of Section 2 and
N =0, ; =@, in the case of Section 3A.

4. Simplest estimates of errors

If we have the estimate |A;| < &; for the local error A; (Section 2),
then d; = 0, M; = (SZQI

In the equality (4), ¢(¢) is the remainder term of the Taylor formula.
Fach of its components 1;(¢) is estimated by the quadratic form

-

1 n
|9 ()] < 5 Z Mk |yeyul, < Mk (19)

k=1

0% f;
(9.Tkaaj'l
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Therefore, [1(t)] < m;|y[/2, and

m} = || (mje)ki=1,..al> = D min. (20)
kl=1
Inequalities (19) for j, k, I = 1,...,n must hold in a convex domain (in

z) containing the fragment ¢;,_; < t < t; of the solutions z(t) and z;_1(%).
Since these solutions are not known in advance, the domain is taken with
excess, and after obtaining the final estimate of a solution one must check
that z(t), z(t;—1), and the solution z;_;(¢) near z(¢;_1) are contained in
this domain. (If not, one must augment the domain and repeat the
computation and checking.)

The estimates [¢;(¢)| imply u(t) =0,
(1) € B(0,B(1), B(t) = Zly(®)]" ding(mi,...,m}),

where diag(by,...,b,) is a diagonal matrix with entries by,...,b, on the
main diagonal. According to Section 3B, we have a(t) =0, N = N, =
M;, and by (5), |y(¥)]? < ||Q(®)]]. Indeed, E(0, Q) is an ellipsoid with the

major semiaxis equal t0 v/Apax, where Apax is the maximum eigenvalue -

of the matrix @ (see [5], p. 72), and Apnax < ||@||. For nonnegative definite
symmetric matrices @ = (¢ij)i,j=1,...n, the following estimates hold: '

IQI STr@ = dis, Amax <maxy_laijl.
=1 J=1

Then, we can take in equation (7)

B(t) = %(TTQ)Q diag(m?, ..., m2). (21)

To achieve an acceptable accu'racy in the solution of equation (7), it is
customary to take a reasonably small step 5.

The Euler method gives the approximate value

Q*(t:) = Qi1 + hQ'(ti-1),

—~ M A

N\
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where Q'(¢;~1) is determined from (7). The method’s error in one step
does not exceed h?s3/2 if ||Q”(t)|| < s2. For a solution of equation (7),

Q"=CQ +QCT+4Q +C'Q+Q(CTY +¢7'B' (tiy <t < t;).

Here Q' is estimated using (7), and it is assumed that the function q is
constant for ¢, < t < ¢t;. ~

A more exact method is the second order Taylor formula

Q*(t:) = Qi—1 + hQ'(ti—1) + A*Q" (ti-1) /2. (22)

The method’s error is no more than h%s3/6, if |Q"(¢)|| < s3; Q™ is
obtained by the differentiation of the formula for Q”.

We must take into account the roundoff errors for both methods. We
often find more exact estimates if we do the estimates separately for each
entry of the matrix Q).

5. Estimate of total error

In Section 2, we obtained the following estimate for the difference
w = 7 — z of the exact and approximate solutions: w(t;) € B(a;, Q).

Therefore, |w(#:) — ai] < VIIQill. lw(®) < las| + Q4]

We estimate w by other means, without using a; and Q;, on the basis
of an estimate of the local error A;. The remark in Section 3A shows that
an approximate solution of z(¢) extended from the points ¢; to intervals
(ti—1,:), satisfies equation (16), where

[P < PTHAN(L+ mah) ~ h7HA (R —0).

Therefore, the difference between solutions of equations (3) and (16)
should be estimated. The principal part of this difference satisfies the
variation equation

w' = C(tHhw — ¢(t), w(ty) =0 (23)

(or w(tg) = 2° — zg, see the beginning of Section 2), where the matrix
C(t) is the same as in (17). A solution w(t) of equation (23) can be
estimated by known methods, for example,

([w|2), =2w-w =2w- C(t)w — 2w - p(t),
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and if w - C(t) < k|w|* (w € R™) and lo(t)] < h716, then
fw(t)] < htok™t (H0mt0) — 1) + fw(to)et ) (> to).
The estimate can be made more precise if one takes k = k(t), 6§ =6(t)
and the estimates |w(t)| on the basis of the linear differential inequality

obtained, or if one chooses the function v(t, w) of Lyapunov function type
and estimates Ly (t,w(t)), and then v (t,w(t)).

6. Example

One must estimate the error in a solution of the system
r=xz—vy y'=2x——y3; z(0) = 0,25, y(0) =0
by the Adams method.
The solution passes inside the domain D, bounded by the limiting

cycle and presumably is contained in the hexagon D(|z| < 1, |y| < 1.25, |

|z —y| < 1). This was found by a preliminary computation. To compute
the solution more precisely, the order 5 Adams interpolation method
with step h = 1/256 was used. The local error of the method is po,where
lpo| < 0.000054y and v = 9-24 (The estimates of derivatives |2(®)] <
3100, |y‘®| < 48000 in D were used.) With a computer with 24 bit
mantissas in floating point numbers, and recording the solution z,y in
two cells for each value (the other numbers were recorded in one cell
cach), the roundoff error at each step is less than 0.0778 7, and the total
local error is less A = 0.086+ for  and y separately.

Simultaneously with computing the solution, the error was estimated
by the ellipsoid method using formulas (7) and (22).

The following table gives a guaranteed bound for the error obtained
by this method, that is, the value b, of the major semiaxis of the ellipse
that contains the solution.

t= 2 4 6 8 10 12 14 16
10%h, = 8.6 20.1 91 98.1 80.5 232 91 437

The major axis reduces near the points of the limit cycle that are nearest
to the singular points z = y = 4+/2 of the system (6.1). It can be
verified that an approximate solution for 0 < t < 16 along with the
ellipse enclosing it is contained in D. This justifies the estimates made.

NS
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