4. Interval Computations
No 2(4), 1992

ks

Ny

fs, ON METRIZATION OF INTERVAL SETS I(R),I(R")
o

or Vladimir S. Zyuzin

19,

al Some distances in interval sets I(R), I(R"™) are defined. These sets are

shown to be complete metric spaces. Further, estimates for interval ma-

trix norms are given. The matrices are acting from one metric space into
er another.
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B unrtepsanbubix MHOKecTBax I(R),I(R™) BBOAATCS pa3nudiibte

nn paccroaHuna. Iloka3wiBaeTcs, UTo yKa3aHHble MHOXKECTBa C BBECH-
HBIMH PACCTOAHUAMM ABJIAIOTCA [MOJIHBIMU METPUUECKMMM MPOCTPAH-

cTBaMHM. 3aTeM JaloTCA OLlEHKM HOPM MHTEPBAaJbHBIX MATPUIL, Jeii-

)Zt)- CTBYIOIIMUX U3 OJHOI'O METPUUECKOr'o npocrTpaHcTBa B ApYyroe.
Irts
ud The use of the tools of functional analysis simplifies considerably solu-
iom tion of a number of interval problems. The.works [1]-[7] demonstrate this.
We shall confine ourselves to the following notation. R is the set of
. real numbers,
H )

o R" is the set of n-dimensional vectors,
I(R) is the set of all real interval numbers, that is

I(R) :=={z:=[2,7] |2<7T, z,T € R}
I(R™) is the set of all real interval vectors, that is
I(R") :={z:=(z1,...,7,) |z € I(R), i = 1,n}.
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In this paper, the most commonly used distances are defined for the
interval sets I(R) and I(R™). These sets are shown to be complete metric
spaces with any distances considered. Then we give estimates for the
norms of interval matrices acting from one metric space into another.

As is known, interval sets considered with traditional interval arith-
metic are not linear spaces, and there is no need to metrize the sets in
question (see, for example, [3]).

By metrization of a set, we mean the introduction of a distance such
that the set would be a metric space.

In [7], it is shown that introducing special arithmetic operations allows
us to transform I(R) and I(R") into Banach spaces.

1. Metrization of I(R)
We shall recall the definition of a metric space.

Definition. A set X is called a metric space if a nonnegative number
p(z,y), called a distance, is associated with every pair of its elements
z,y € X and satisfies the following conditions:

(1) p(z,y) =0 if and only if z = y (axiom of identity);
(2) pla,y) = ply ) (axiom of symmetry);
(3) for all z,y,z € X, the inequality p(z,y) < p(z,2) + p(z, y) holds
- (triangle axiom).
For X, we shall consider here I(R); that is X := I(R). Consider the
most commonly used distances for every pair z,y € I (R):

o1 (. y) == max{|z — y|, [T - 7}, (1)
po(ayy) = (@ — 9 + @ -9 2)
ps(z,y) = |z —y| + 17— 7, (3)
pa(z,y) = (Jz—yl+ 1T -7/ + ]z —yl+ 1z - 71)- (4)

Theorem 1. The set I(R) with any distance of the form pr(z,y), k :=
1,4, is a complete metric space.

We give the proof for the case k = 2. Clearly, the axioms of identity
and symmetry hold. We show that the triangle inequality axiom holds.
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Using the Cauchy inequality we obtain

pa(z,y) = (- + @ -7)?)""
—(@-z+z2-y*+@-z+z-7)""
<{(23_—§)2+(33—z) —|—2(($_2) +( 7)2)1/2(@_@2

+E-9) -+ -7

=((£—_2;)2+(:’f ) )1/2 (( —g)2+(2—y) )1/2
=p2(z,y) + p2(2,9)-

This implies that the set I(R) with the distance p2(x,y) is a metric
space.

Now, we show completeness of the metric space in question. Let the
fundamental sequence {xzP}* be given, where z? € I(R). That is, for
every € > 0 there is a natural number n(e) such that ps(z?,29) < ¢ for
all p and ¢ > n(e). This implies ((z? — z9)% + (7 — T)H)/? < ¢ for
p,q > n(e). Then |zP — 29| < € and [7F — T < € for p and ¢ > n(e).
We conclude that the sequences of numbers {zP}o2, and {z” } _, are
fundamental and have limits 2° < #°, respectively. We shall see that the
interval 29 := [2°,7%] is the limit of our sequence {xp};ozl, p2(zP,20) =

1/2 . .

((z? — 2°)° + (z® —?EO)Q) — 0 as p — oo, since z? — 2 — 0 and
-0

77 — T° — 0. This implies completeness of the metric space considered.
The other cases are demonstrated in a similar way. W
We give some properties of the metrics (1)—(4) in I(R) which we will
need later. '

Theorem 2. Let a,b,c and d € I(R). Then

pr(a +b,a+c) = pp(b,c), k=14, (5)
pr(a+b,c+d) < pila,c) + pe(b,d),  k=1.4, (6)
pe(ab, ac) = |alpe(b,c), k=1,3, (7)
pe(ab,ac) < lalos(b, ), k=T3. )

where |a| ;= max{|al, |a|}.
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Proof. The case k = 1 is proven. (See, for example, [6].) Here we shall
show the theorem for the case k = 2. The proof for the other cases is

similar.
(5): The definition of metric implies that

pa2(a+b,a+c)= ((Q+_C_—_@—Q)2+(5+5_5—5)2)1/2

= ((c- b)? + (¢ — 5)2)1/2 = pa(b, c).
(6): Using the Cauchy inequality we obtain

p2(a+b,c+d) ={((g—g)+(d"b))2+((E—E)+(E_'6))2}1/2
<((§‘.@.)2+(E—-6)2)1/2+ ((d_b)2+(a‘_—6)2)1/2
=pa(a, c) + pa(b, d).

(7):  paab,ac) = ((ac— ab)? + (o — _a_b)2)1/2

o] ((c= b)? + @ —B)?)""” = lalpa(b ).

(8): Since pa(ab,ac) = ((g_b—_a_c)2 + (&_5—66)2)1/2, we suppose that
ab > ac,ab > ac. (The other cases are considered in a similar way.)
Then constants &, 3 € a exist such that ac = ac, ab = (b. By the prop-
erty of inclusion monotonicity, it follows that .ab € ab, B¢ € ac. This
implies '

()

ab — ac,

IBb_I_B-E?

o
NN

ao—a

N IN

ab —ac

‘ 0
0
p2(ab, ac) = ((@ _ ae)? + (@b - R)2> 1/2
< ((a_b — ac)® + (Bb - 35)2)1/2
< (ol +1aP - o)

ol (b B=2) " =lalpas,c).
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2. Metrization of I(R")

We introduce t_l_le_most commonly used distances in I(R"), in which
z,y € I(R"), k=1,4.

pre(x,y) = e Pk, y;5)- (9)
1/2
ka(m7y) = Zpi(xbyj) . (10)
i=1

par(z,y) = Zpk(:vj,yj)- (11)

We can, for example, also introduce the following distances:

Pa+3.k(%,Y) = pa(,y)/(1 + par(z,9)), (12)

where ¢ = 1, 3.
In what follows, we shall consider only the distances (9)—(11).

Theorem 3. The set I(R™) with any distance of the form (9)-(11) is a
complete metric space.

Proof. Consider the case of I(R™) with the distance (10). Clearly,
par(z,y) = 0. If par(z,y) = 0, it follows that all pr(z;,y;) =0, j=1,n,
and z; = y;. This implies that z = y. Conversely, z = y implies that
pak(z,y) = 0. Therefore, the axiom of identity holds. Clearly, pi(z;,y;) =
pke(y;, ;) implies that the axiom of symmetry holds: por(z,y) = p2r(y, ).
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We show that the triangle inequality holds for any z,y,z € I(R").

' 1/2
por(z,y) = | Y pi(j,v5)
J=1

1/2
n

> (pel@s yi) + pelz5,v5))

i=1

IN

1/2 1/2
N DY ACTED + Y pi(z5,95)
j=1 =1
= pak(z, 2) + par(z,y).

Now we shall demonstrate completeness of the given metric space.
Let the fundamental sequence {z? };?—_1 be given, that is, for any € > 0
a natural number n(e) exists such that poi(z?,z%) < € for all p and
1/2
q > n(e). Therefore, (3°7_; pi(ah,27)) 2 < &. Clealy, pe(zf,zd) < e
for p,q > n(e). By Theorem 1, there is an element x?- € I(R™) such that
{a¥}o2| converges to 2 . This implies that 20 = (29,29,...2%) € I(R")

: .0
and limy,_,oo z? =2°. M

3. Estimates for the norms of interval matrices

In this Section we give estimates for the norms of interval matrices
acting from one metric space into another. We shall mean by interval
matrix a matrix A of dimension n x m of the form

A= ) (13)

am1 Am2 s Amn

where a;; € I(R),i = 1,m,j = 1,n. This will be denoted as A €
I(Rnxrn).

Following Collatz [8], page 92, we introduce a concept of the norm of
an operator without the requirement that the metric spaces be linear.
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Definition. Let X and Y be metric spaces, and let the operator A act
from D(A) C X into R(A) C Y. Then the least real number « in the

inequality
py(Awl7Aw2) < ap:c(xlaxZ), (14)

where x1,29 € D(A) will be called a norm of the operator A, and is
denoted ||A||x—y or, simply, ||A]|.

Remark. The set of operators from X into Y does not in general form a
normed space.
Denote the metric space I(R™) with the distance pgi(z,y) by I (R" )

We estimate a norm of the matrix acting from I(Rp,) into I(R}}),
where ¢, k,p,l =1,2,3.

3.1. The case A : I(R},) — I(RY}), k=1,2,3

pix(Az, Ay) = max pi((Az);, (Ay);)

max E a;;T; E aiily;
1sz<m JLis 793

(8)

< 2 Zlaul max pe(e;, ;)

& 1Iglzf§x Zlazglmk z,Y).

We obtain in this case

4] < 121?2 Jail- (15)

3.2. The case A: I(R},) — I(R3,), k=1,2,3

1/2
p2r(Az, Ay) = (Zpk (Az)i, (Ay); ))
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-

1=1 F=1
2 1/2
m
*~<\ Z Zpk(aumjaaijy]))
i=1
1/2

Ms

<

.
It
—

2
Z |asjlpr(2;5, y5) )

(The Cauchy inequality)

Ma

1z
Z Iaijlz) (Z (25, 5)
=1 1=1

1

1

(z

Il

Ms

. 1/2
Z |am| ) pZIc(xay)'

J=1

Il
-

We obtain that in this case

i=1 3=1

1/2
1Al < (ZZIW (16)
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3.3. The case A: I(R},) — I(R$}), k=1,2,3

P3k(A.'L', Ay) =

This implies

m
> pr((Az);, (Ay),)
=1
m n n
=D ok | D_aimi ) aiy
=1 j=1 Jj=1
(6) m n
< Zzpk(auxjaazgyj)
i=1 j=1
(8) m n
< Y lasjlow(zs, ;)
i=1 j=1

ma. |a”| Z Pe(T5,Y;)

1<J

N
.Ms

=1

Il
.MS

Zax Iaulpsk(év y)-

1=1

lA] < ;nax |as;]- (17)

< 1<7<n

’L_
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3.4. The case A : I(R},) — I(RY},),k=1,2,3

1/2
pax(Az, Ay (Z Pi( Aw),,(Ay)z)>

1/2
=\ > _rk Zauw;a @iy
i=1 i=1 i=1
o\ 1/2
in n
< > prlaijzj, aijy;)
=1 \g=1
o\ 1/2
(8) L
< (Z lazjlpk m_ﬂyj)
=1 =1
(The Cauchy inequality)
1/2

m

2
n
< lrgjagi ;] 221 pr(z;, yj))
J:

- 1/2
‘=( max I%I) par(z,).

igign

=1

This implies that

m 1/2
1Al < ( max Iazgl) (18)

1<Ign

Z_.

We give the estimates without proof for other cases. The proofs are
similar. Below, everywhere k =1, 2, 3.

3.5. The case A : I(R}Y,) — I(R7;,

o\ 1/2

1Al < Z jas;] - (19)

?'—"

wh
Vel
Ba
Or



(18)

yofs are

(19)
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3.6. The case A : I(R},) — I(R%})

A< S0 s (20)

i=1 7=1
3.7. The case A : I(Ry,) — I(R})

1/2
n

1Al < max > lagl? (21)

3.8. The case A : I(R%, ) — I(RY;

1/2
m

1Al < Jagi* | - (22)

=1 \j=1

3.9. The case A : I(R},) — I(R]},

Al € m m 23
” ” lgzaén 1<.7a<X |0:le ( )
We recall that |a; ;| := maX{IQLij') |@ij}-

Clearly, the estimates (15)—(23) will hold for real matrices, which are
a special case of interval matrices.

Remark. The estimates for the norms of interval matrices can be useful
for solving some problems. For example, when solving systems of first
order algebraic equations of the form

x = Az + b,
where b € I(R"™) is the given interval vector, x is the required interval
vector, and the interval matrix A : I(R},) — I(R},), p,k = 1,2,3; the
Banach theorem on contraction mapping applies (see, for example, [9]).

One can use the estimates (15)—(17) in this case.

3axas 1648
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