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PROOF OF FINITE-DIMENSIONAL INEQUALITIES BY
MEANS OF INTERVAL ANALYSIS

P.S.Pankov

In contrast to other methods (algebraic transformations to reduce the
given inequality to the known ones, differential calculus to obtain extrema,
and Tarski’s theory to analyze the inequality by polynomials with rational
coefficients) the proposed method is based on the semisolvability of the
problem of proving strict inequality on a compact set and of using validating
computations. Some methods to reduce inequalities of other types to this

kind and references to solved concrete problems are also given.

JOKA3ATEJILCTBO KOHEUHOMEPHBIX
HEPABEHCTB C IIOMOIILIO
NHTEPBAJILHOT'O AHAJIN3A

II1.C.I1arxkoB

IToMumo npyrux mMeTonoB (anrebpanueckue npeobpas3oBaHUA NJiA
CBEJICHMA NaHHOT'0 HepaBEHCTBA K N3BECTHLIM, A depeHuMaIbHOE MC-
YHUCJIEHNEe IJIA MONCKAa BSKCTPEMYMOB, Teopusa Tapckoro s MHOIoO-
YJIEHOB C PAalUMOHAJILHBIMU KO3 PUUMeHTaMK) NpeaJIoyKEeHHBI MeToq
OCHOBaH Ha VICNOJIb30BAHUM NOJIYPA3PEUIMMOCTHM 3a4aUM JOKa3aTe lb-
CTBa CTPOroro HepaBeHCTBA Ha KOMMNAKTEe U JOKa3aTeJIbHBIX BBIUU-
cinennii. Takyke NaHBI HEKOTOPBIE NIPUEMBI A CBeleHUA HepaBEeHCTB
APYrUX TUIIOB K TAKOMY TUIY M CCBHUJIIKU Ha PpelleHHble KOHKPEeTHbIe
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A literature survey (see, in particular, [1]) shows that, until interval
analysis was developed (see [2]), two basic approaches to proving finite-
dimensional inequalities had been used: algebraic transformations for
reduction to one or several already known inequalities, and differential
calculus (theory of extrema of smooth functions).

However, algorithmic solvability conditions (it is possible to construct
an algorithm that always stops with a result) were obtained only for
polynomials and roots of polynomials with integer coefficients (algebraic
numbers).

In [3], algorithmic semisolvability conditions (if a problem has a so-
lution, the algorithm stops) for strict inequalities on compact sets were
formulated and certain ways of reducing non-strict inequalities to strict
ones were given.

In this paper, we present constructivization and general methods of
search for proofs of strict and non-strict inequalities; we also describe the
- constructed algorithm and some of the results obtained.

In Section 1, we present some well-known as well as some new results
of constructive mathematical analysis. In addition, we give some infor-
mation on algebraic number theory required in the subsequent sections.

Section 2 contains strict statements of algorithmic solvability and semi-
solvability for problems of proving inequalities for constants (null-dimen-
.sional functions) and non-constant functions.

In Section 3, algorithms for obtaining explicit proofs for finite-dimen-
sional domains are described.

In Section 4, we present general methods of human-machine search for
proofs of inequalities.

1. Some information on constructive mathematics

It is well known that not every definition of a real number f can lead
to an algorithm for calculating f. A necessary component of such an
algorithm is an algorithm determining a sequence of rational numbers
{f.} that converges to f. ‘

If the assumption that {f,} is not a Cauchy sequence implies a con-
tradiction, the limit f of the sequence is called pseudocomputable [4].
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Since the proof ad absurdum does not always yield an algorithm with
a specified convergence rate, the definition of a computable number was
introduced (a number f such that | f — frn |< 27™). See, for instance, [5].

It is well-known that there exist numbers admitting only one-sided al-
gorithmic estimates. In this context, a definition of upper (lower) pseudo-
computable numbers was introduced in [4]; namely, {fn} is non-increasing

(non-decreasing).
In [6], L.Brower classified computable numbers in terms of algorithmic

comparability with rational numbers. In particular, numbers of highest
IV order are those for which the problem of comparison with any rational

number is algorithmically solvable.

Now we give some information on algebraic number theory (see, for
example, [7]). The least degree of an equation with integer coefficients
which is satisfied by a given x # 0 1s called the degree D(z) of z, while
the maximum of the absolute values of the coefficients (after canceling
by the greatest common divisor) is called the height H(z). Let Q(z) =
D(z)H(z). One can then get the following estimates:

1/Q(z) <| z |< Q) (1)

(We do not need sharp estimates or estimates that are close to sharp.)

1f » is obtained from algebraic numbers and y by one of the four
arithmetic operations (assuming y # 0 when one divides by y), then z is
also an algebraic number, and we have

D(z) < D(z)D(y),
H(z +v) < (D)(Q() + Q)P
H(z + /y) < (D(2)Q@)Qw) ",
D(3/z) < nD(x), H(¥/z) < H(z).

(2)

Now we proceed with constructively representable predicates and func-
tions. For brevity, we shall mark points, intervals and interval vectors
with rational coordinates, that is, quantities that are immediately con-
structively representable, with the letter I,

The following definition was introduced in [8] (with a short descrip-
tion). A predicate P(x) defined for points of n-dimensional space is called
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constructively stable if it is possible to construct an algorithm A, which
stops with a result for K-points z precisely when P(z) is true, and which
also gives the radius A4,(z) of a neighbourhood in which the predicate
remains true. Moreover, P(z) implies that the set of radii {A,(z)} is
bounded from below by a positive number in some neighbourhood of z.

It has been shown (see [4]) that the problem of proving truth of a con-
structively stable predicate on a closed bounded set in R™ is semisolvable.

We call a function F'(z) completely computable if F(z) is a computable
number for any K-point z and F'(z) is a constructively uniformly contin-
uous function. It has been proven that for such functions the predicate
“F(z) > 0” is constructively stable.

2. Algorithmic semisolvability and solvability

Theorem 1. The problems of proving the inequalities f > 0 and f < 0
for a computable number f and the problem of proving the inequality g <
0 for a one-sided (for exaniple, from below) pseudocomputable number g
are semisolvable.

Let us consider an example. In [9], to prove consistency of the obtained
conditions by constructing a concrete equation, we had to prove that

b= [, exp(c +ilncg)do # 0.

The calculations for the real and imaginary parts of b gave b € [0.62, 0. 69]
+:[0.30, 0.37], whence b # 0.

It is known that the general problem of determining the sign of a
computable number is algorithmically unsolvable. However, this problem
is solvable for constants determined by elementary operations. Existence
of algorithms implementing arithmetic operations with algebraic numbers
(constructing the corresponding polynomials) immediately follows.

Theorem 2. If f i3 a number obtained from integers by a finite num-
ber of arithmetic operations and root extractions, then the problem of
determining sgnf is algorithmically solvable. (See the survey in [10].)

Let us describe an alternative algorithm. Estimate Q(f) using (2) and
compute any interval representation fo for f with width W(fy) < 1/Q(f).
Then by (1) we have sgnf =sgnf.

3 - 3akas 1648
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The results of Section 1 imply the following theorem:

Theorem 3. Assume that we have a K -interval vector X and algorithms
that yield:
a) a K-interval extension Fy(z) of a function F:X — R for any
non-degenerate K -interval vector z;
b) a K-number § > 0 for any K-number € > 0 so that W(z) < 6
implies W (Fy(z)) < e. Then the problem of proving the equality

F(z)>0 (z€X)

is semisolvable.

The problem of proving a non-strict inequality as well as the problem
of proving an inequality in an unbounded domain for a completely com-
putable function are in general algorithmically unsolvable. A.Tarski has
proved a result that includes the following special case:

Theorem 4. The problems of proving the inequalities F(z) > 0 and
F(zx) > 0 for a polynomial F' with integer coeflicients are algorithmically

solvable.

More effective algorithms (see the survey in [11]) were constructed
later. As in the proof of Theorem 2, we shall describe the algorithm (for
n = 1; in this case D(F') should be even) using the interval analysis as

much as possible.

Using some minimization algorithm, we may find f = inf F" as a com-
putable number. On the other hand, f = min{F(z) | F'(z) =0} and is
an algebraic number, and the problem is reduced to the determination of
sgnf.

Though Theorems 2 and 4 provide solvable algorithms, it 1s more prac-
tical to use the algorithms of Theorems 1 and 3 together with the tricks

described in Section 4.

3. Explicit proofs

All informative (non-service) messages of a computer can be divided
into two classes: those for which it is necessary to mention that the
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message was obtained through a certain algorithm and those for which it
is not necessary.

This classification divides computer proofs into “program” proofs (that
report whether the proof was successful or not) and “explicit” proofs
(in which the computer prints a text that enables a person to verify
correctness directly, though it would be difficult or even impossible to
obtain such a text without a computer). When we get explicit proofs,
the problem of minimizing their complexity for direct verification arises.
(But the computer may perform many more operations than a “program”
proof requires.)

When we look for a proof within the framework of Theorem 3, we have
to find a cover {Z; | j =1,..., M} of the domain X such that F,(Z;) > 0
for all j = 1,..., M. Since minimization of M in the multidimensional
case is too difficult, in [12] an algorithm that realizes such an optimization
in the two-dimensional case was constructed, provided tlic elements of the

- cover lie in parallel strips.

When more general inequalities than those described in Theorem 3
are being proved, conditions presented by logical functions of predicates
of the form “Fi(x) > 0”,where F}, is a function (analytically) obtained
from F', may arise (see Section 4). So we introduce an indicator function
Jp(Z) such that its (integer) value shows the verification complexity of
proof of the inequality in Z for a person. (This function must satisfy the
natural condition: (G” C G') = (Jp(G") < Jr(G")).

The optimization problem for an explicit proof in a domain X (not
necessarily rectangular) then reads as follows:

z Jr(Z;) — min (UZ; D X).

We introduce the following notation: if ZN X = @, then Jp(Z) = 0
(this is used when we enclose X in a rectangular domain (the interval
vector T'). If the interval extensions computed contain 0 (direct proof
is not successful), then we set Jp(Z) = w, where w. is a large number
(greater than the maximal permissible verification complexity of a proof).

If the bounds of the Z;’s are given with too many significant digits,

1t is obvious that the proof will be too complex. So we require that the

projections on the i-th axis be multiples of some h;. Without loss of
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generality, we can assume that all h; = 1, i.e., the bounds of T and Z are
integers.

Yu.V. Matiyasevich observed that the aforementioned algorithm could
often give results that were far from optimal in the most general setting,
and proposed the following.

A division of Z into two parallelepipeds will be called a “splitting” of
7 We have to minimize ¥ Jp(Z;) — min provided that UZ; = T and
that the cover {Z;} was obtained through successive splitting of D.

The following recursive algorithm has the simplest form among all the
algorithms solving this problem:

Jr(Z) if the volume of Z is equal to 1;

Jo(Z) = { min(JF(Z),miIl{JO(Z’) + Jo(Z")}) otherwise.

where the innermost min is taken over all splittings of Z. Then Jo (T)
gives the required results.

A corresponding subroutine (with some enhancements that diminish
the number of repetitions while searching) has been written in PASCAL-
8000.

4. Combined methods for search for proofs of inequalities

Suppose we have to prove an inequality (strict of the form (3) or non-
strict) for a finite number of scalar variables in a given domain X.

a) By means of equivalence transformations and change of variables
we try to eliminate: '

i) use of transcendental functions of variables;
ii) calculation of roots other than square roots;

iii) calculation of square roots and division.
b) If X isnot bounded, we try to replace the inequality being proved
by an equivalent one with a bounded domain.

by) If the inequality is homogeneous (e.8. geometric) then, with-
out loss of generality, we can assume that some norm of the
vector of variables is equal to 1.
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re bz) one can make substitutions of the form z = 1/z (for the
scalar case), which transform unbounded domains into boun-

1d ded ones: (1 < z < 00) = (0 < z < 1). This may be

combined with a study of the asymptotic behaviour of the

& functions in a neighbourhood of points at infinity (see, e.g.,
4]). |
of c) If the inequality is strict, we jump to f), and otherwise proceed
d to d). *
d) By standard methods of non-validating computations (as S.Ulam
he : proposed) followed by strict proof, we determine the subset X, C
X, where F(z) = 0. (Usually, X, consists of some points or
lines.)
e) Separately, we prove the inequality in a sufficiently small neigh-
bourhood X; of the set Xy by the standard methods, or by re-
duction of this inequality to strict inequalities for other func-
tions corresponding to F', followed by application of validating
T) computations to them. (For example, in [14] it was shown that

for a problem of the form F(z) > 0 (0 < z < ;) we had
ish F(0) = F'(0) = F"(0) = 0 and F"’(z) > 0.) In the remaining
L— domain X\ X; the equality is strict.

f) For proving a strict inequality in a bounded domain, we use the
algorithm of generalized bisection of the domain (see, e.g., [13]),
or the algorithm of Section 3 if the inequality is simple enough.

Some results obtained with the help of these methods using the soft-
- ware [15] are described in [3] and [4].
There is also a possibility of using methods of heuristic-logic search as
les in [16].
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