Interval Computations
No 1(3), 1992

CLASSIFICATION APPROACH TO PROGRAMMING

OF LOCALIZATIONAL (INTERVAL) COMPUTATIONS

Alexander G. Yakovlev

We propose new language constructs in a Pascal-like language that per-
mit increased expressiveness and effectiveness of programs describing lo-
calizational (interval) computations. The constructs generalize traditional
language tools such as enumeration type and case-construction.- Use of the
new language tools is founded on a preliminary ¢lassification of situations
that appear during program execution.

KIIACCUSNKAIIMOHHBIN ITOIXO I

K ITIPOTPAMMMWPOBAHUIO JIOKAJIM3AIIMMOHHBIX

(I/IHTEPBAJIBHI)IX) BBILII/ICJIEHI/II';’I.
A.T". fIxoBaes

IIpensyoyxkeHb! HOBbIE A3BIKOBBbIE KOHCTPYKLMM, MO3BOJISIOLINAE ITO-
BLICUTh BBIPA3MTENIBHOCTL M 5P (PEeKTUBHOCTb MIPOrPaMM, OMMCHIBAIO-
IUX JIOKAJM3aUMOHHbIe (MHTepBaJIbHEIE) BBIYHMCJIEHNsA Ha MacKaJe-
nono6HoM sAsbike. KoHCTpykuum o606IaloT TakMe TpPAIVLIMOHHBIE
A3BIKOBBEIE CPEACTBA KaK MEPeUMCJIMMBII TUII U Case-KOHCTPYKIMA.
IIpuMmeHeHMte HOBBIX A3BIKOBBIX CPEJCTB OCHOBAHO Ha INpPEABapUTENb-
HOM KJlaccuPMKAIMM CUTYyalni, BO3HUKAIOIIMX BO BPeM#A BHITIOJTHEHUA
NporpaMMel.

Introduction

A considerable part of the programmer’s activity deals with classi-
fying situations arising during program execution and directing program

© A. G. Yakovlev, 1992

62 A. G. YAKOVLEV

behavior in each case. For example, if a Boolean variable L is set through
a variable M, then the following two fragments

1)L := M;
if L=TRUFE theni:=1+1
else i ;=1 —1;
2)L := M;
case L of
TRUE : i:=1+4+1;
FALSE : i:=1-1

end;

describe two classes of situations (L = TRUE and L = FALSE) and
indicate what to do when there is a hit in a class.

In both fragments, one may distinguish two kinds of operations: oper-
ations to identify a situation (checking what class it belongs to) and oper-
ations to enumerate the actions to be performed once a situation has been
identified. An important distinction between these fragments is the “de-
gree of procedureness” of the language tools used (the case-construction
hides the order of the identifying actions). However, a general program-
ming rule of thumb is to use non procedural constructs as much as possi-
ble, due to their higher expressive power and due to technology factors;
we then resort to procedural constructs only to improve efficiency. That
is, if the estimated efficiency is equal or higher, it is preferable to use
non procedural means. In particular, the case-construction is preferable
to the'if-construction for binding of identified situations with their cor-
responding actions. (Also, the case-construction’s reliability is higher,
too.)

However, the traditional case-construction has an essential drawback:
it presupposes that the situations are mutually exclusive. In practice, it
often occurs that some situations are special cases of others. Also, classes
of situations may thus intersect and, in particular, be embedded in each
other. Such a structure of situations is characteristic for classical interval
computations [1-3], and, in a more general setting — localizational ones
[4]. Note that a localizational computation is a process of constructing a
set (called a shell) to which an unknown mathematical object (called a

ke
in
is
n

C(
o]
C(
m
it

cl

1Z
al

14
in
as

TE
si
SC

cl

S1

al
SC
Se

be

———————

CLASSIFICATION APPROACH TO PROGRAMMING ... 63

kernel) belongs; usually the object is a solution of some numerical problem
in classical mathematics. In [4] a pair consisting of a kernel and its shell
is called a locus. The simplest example of a locus is an interval: “An-
interval has a dual nature as both a number and a set of "real” numbers.
Many of the algorithms for interval methods make use of this duality and
combine set theoretic operations such as set intersection with arithmetic
operations” [1]. In other words, from the point of view of localizational
computations, an interval is a pair (z,X), where z is an unknown real
number, such that z € X = {z|z; < £ < z,}. In the discussion to follow,
it is sufficient to view a locus to as such an interval. .

If one considers the possible relationships between two intervals as

.. classes of situations, then it 'is easy to see that many of them intersect.

Because correlation of locuses is one of the most used operations in local-
izational computations, one needs adequate language constructs to clearly
and easily describe branching of localizational programs.

The first attempt to achieve this was undertaken by E.A.Musaev [5,6],
who proposed if-construction based on three valued logic (“yes”, “no”,
“unknown”) of conditional expressions. (Evidently, the possibility of us-
ing three valued logic for this purpose was first pointed out by R.E.Moore
as early as in 1968 [7].)

More universal language tools were proposed in [8]. This paper is a
refinement of that paper. These tools were developed as a strict exten-
sion of Pascal-like languages because only Pascal-like languages contain
sophisticated data type mechanisms necessary to achieve the stated goals.
Moreover, they are widely used in practical programming.

The developed language tools allow easy handling of non-intersecting
classes of situations and combine the advantages of case-comstruction
with the efficiency of if-construction. Also, these tools may be used out- -
side the context of localizational computations.

1. A collection of relations

As stated above, intervals act like sets in set theoretical operations
and like numbers in arithmetical operations. Usually, the symbol as-
sociated with an operation indicates whether it deals with numbers or
sets. However, a difficulty arises with the comparison operations: in
both mathematical notation and in a programming language, one should

64 A. G. YAKOVLEV

use separate signs for relations for intervals as sets and for intervals as
numbers.

Let us clarify the point using the relation “<” as an example. Let A
and B be arbitrary intervals (closed, open, semi-open or infinite). Then
the relation

A < B = (Va)(¥b) (a £ b) (1)
a€A bEB _
binds A and B as real numbers because the relation of the same name
binds each pair of real numbers lying within these intervals. But if one
defines “<” as

A< B = (Va')(EIb') (a' < v) & (Vb")(ﬂa") (a" <b") (2)
o' €A VEB b'eB a' €A
then, obviously, here set shells are bound, since the relations of the same
name bind corresponding bounds of intervals.

 Both definitions have equal rights for existence and are used in appro-
priate contexts. So, e.g., if one checks whether a quadratic equation has
complex roots, then the relation ”<” is understood in the sense (1) in the
expression 4ac < 2. However, if one checks whether one should continue
iterations for computing a constant-sign series with positive terms, then
to compare partial ‘sums the relation S, < Spy1 18 understood in the
sense of (2). |

. Therefore, one should put two relations in correspondence with each
of the symbols “<”, “<”, “=n “>7 45 and “£” . However, these 12
generated relations are still not enough. Since intervals act either as
numbers or as sets, one needs classical relations such as “C”, ey
and “D” to work with the sets. Moreover, it may prove useful to have
relations “to contain more than one common point”, “to have the same

~ - right (left) bounds’, etc.

Unfortunately, authors of most theoretical works on interval mathe-
matics introduce only a small subset of the relations of practical signifi-
cance, and do not mention the need a fully versatile set in applications.
So, e.g., in [3] only the relation “=" for intervals a,g;'*Sets/ has been defined;

—.in [2] - the relation (2) and “C”, etc. However, practical needs demand

enrichment of a language to program localizational algorithms, and also

Ie
CC
g
al
mn
ty
CC
al

b

5)
ti
e:

als as

Let A
Then

(1)

' name
if one

(2)

e same

appro-
ion has
) in the
ontinue
15, then
| in tﬁe

ith each
;hese 12
ither as
;”, “D”
to have
he same

| mathe-
| signifi-
ications.
_defined;
demand
and also

CLASSIFICATION APPROACH TO PROGRAMMING ... 65

require a set of primitives used to translate such a language with a larger
collection of relations. We review the sizes of such collections in some lan-
guages described in literature (relations between elements of types real
E}nd interval are considered along with relations between elements of type -
interval): Triplex-Algol [9,10] — 2 relations, Algol-68 with interval data

types [11,12] — 6 (the authors mention the advisability. of enriching this

collection), Fortran-SC (now it has renamed to ACRITH-XSC) v[13 13a]

and Pascal-SC (-XSC) [14,14a] — 8. ,

Also, 15 reflations have been implemented in one of the most recognized
packages for interval operations [15]; the exact same 15 relations have also
been implemented in [16]. ’

It is advisable to designate each relation in the language by a special
f.ymbol. Let us review possible designations and corresponding defini-
tions for some relations. (This notation will be used in the subsequent
examples).

A < B = (Ya)(Vb) (a < b)

a€A bEB

A > B = (Ya)(Vb) (a.> b)
a€A bEB

A+ B = (Ya)(Vb) (a £ b)

g a€A beB

A = B = (Va)(¥h) (a = b)
acA bEB

A < B = (Ya)(¥b) (a < b)
a€A beB

A > B = (Ya)(¥b) (a > b)

a€A bEB
A > B = (Ya)(vb) (a>b)

a€EA bEB
A o~ B = (Va/)(abl al:bl & Vbll ,3’/! 1 — 14
G g e A S
A< B = (Va)(3) (@ <V) & (W")(3a") (a" < b")

a'€A b EB b''eB a"€A

A 2 B = (Va)@3V) (' >b) & (VO')(Fa") (a" 2 ")
a'€cAbeB b'"eB a''€A r

66 A. G. YAKOVLEV

A D B = (Vb)(3a")(3a") (a' < b< a”)
bEB a'€A a”€A

A C B = (Va)(3)(3") (' <a<b")
a€EA VEBb'ER

The symbol “<” is now understood in the sense of (1).

Relations in the “interval” language have a rather complex structure,
which will now be considered.

2. Taxonomic structure of relations
and generalized enumeration type

Let Ry denote the set of ordered pairs of intervals binded by the rela-
tion ¢. It is easy to see that R.CR<C R<, Rs C Ry, etc. The strict

inclusion relation generates some structure on the set of all Ry. If the
following condition holds

(Va)(V,B)(H’)’)(Ra NRg# 2 = R, N Rg = R.y),

then such a structure is called taxonomic, and sets Ry are called taxons.
Various types of taxonomic structures have been described in [17].

Every taxonomic structure may be represented as a connected acyclic
oriented graph. In such a graph, a vertex corresponds to a taxon and an

edge corresponds to an inclusion. The relations defined in Sec. 1 form
the structure shown in Fig. 1.

~ Note that the root vertex Ry corresponds to the maximal taxon (the
taxonomic universe), i.e. just the set of all ordered pairs of intervals.

———

e —

N

=g

[T o < — s |- R o T

ela-
rict
the

ms.

clic
an
rm

ALy A,

S ——

——r

N —

-

CLASSIFICATION APPROACH TO PROGRAMMING ... 67

RO
R e
c Ry Ry Ry NE
SB Su
1S . as
AR
Rg Ry
LE R GR
EQ
R
< Ry
1T)
Fig.1

In what follows, we also need another répresentation of a taxonomic
structure, a linear parenthesis one, constructed by the following rules:
following the symbol for the relation corresponding to some vertex in
the graph, we list in parentheses (and separate by commas) the symbols
corresponding to the vertices on edges of the graph which begin at the
given vertex; enumerating starts from the root, denoted by o. To make
this mapping of the graph into the parenthesis structure single valued,
an order for listing the vertices within a given parentheses level should
be specified. In our case, a linear parenthesis representation may look,

for example, like

O(C7 2y S.a (S (<a :)7 ~ (:))7 Z (z (."_'),‘Z (=’ >))’ == (>a <))

The first symbol in such an expression will be omitted later.

68 A. G. YAKOVLEV

Now let us replace the relation symbols with valid identifiers of the
language. We shall suppose that these identifiers consist of exactly two
letters; we will use capital letters in the English names for the symbols:
C — SuBset, D — SUperset, < — Less as a Set, > — Greater as a Set,
~ — Approximately Equal, and, also, traditional two-letter identifiers
for <, >, =, #, <, > It is then easy to see that a linear parenthesis
representation generalizes a notation of an enumeration type, common in
Pascal-like languages: -

- type RELATIONS = (8B, SU, LS (LE (LT, EQ), AE (EQ)),
' GS (AE (EQ), GE (EQ, GT)),NE (GT, LT)).

Actually, for a graph with a diameter equal to 1, the linear parenthesis
representation does not have inner parentheses, and it coincides exactly
with an expression for a common enumeration type.

Generalized enumeration types may also be written in an abridged
form in which no edge is described twice. If, say, a full form looks like
(A(C(D)), B(C(D))), then an abridged form looks like (A(C(D)), B(C))
or (A(C), B(C(D))). |

Some elements of a type may receive synonymous designations which

are equivalent in all possible contexts. Synonymy is given in a type. de-

-scription: synonymous names are separated by the equality sign. A clever

use of synonyms may enhance the expressiveness of program texts, espe-

cially if in the construction of identifier symbols from different alphabets
" and special symbols are used.

This is a variant of a statement of the type RELATIONS in the
abridged form with synonymous designations of the vertex SB:

type RELATIONS = (SB = SuBset =C, SU, LS(LE(LT, EQ),
AE(EQ)),GS(AE,GE(EQ,GT)), NE(GT, LT)).

Elements of a generalized enumeration type, like elements of a common
enumeration type, may be arguments and values of functions, they may
be combined into sets, etc. Accordingly, predefined standard functions
such as finding a predecessor and a successor of an element (pred and
succ in the Pascal notation) are generalized. The arities,fg}l some of them
then increase. For example, it is convenient to define pred and succ in

3 ¢
gel
1]

su

in

fir
cc
st

m

the
two
»ols:
Set,
fiers
esls
nin

).

esis
stly

ged
like
2)

ich
de-
ver

pe-
ets

he

).

on

ay
ns

m
in

—

CLASSIFICATION APPROACH TO PROGRAMMING ... 69

a general case as t.wo-placed functions (a, b and c belong to the same

generalized erllzneration type):
pred(a,b) takes a value c where c is a name of a vertex
3 which is a predecessor of b in the list of all vertices such
that there are edges from the vertex a to these vertices;

succ(a,b) takes a value ¢ where c is a name of a vertex which
is a successor of b in the list of all vertices such that

there are edges from the vertex a to these vertices.

Ordering of the list corresponds to ordering of the vertices enumeration
in the type description.

For the generalized standard functions pred and succ one may omit the
first operand: the root vertex is assumed. Thus, in the special case of a
common enumeration type, a call to the generalized functions pred and
suce is identical to a call to their traditional analogues.

Also, specific functions and operations may be applied to elements of

a generalized enumeration type, e.g.:
pred2(a, b) takes a value ¢, where ¢ is a name of a vertex which
is a predecessor of b in the list of all vertices such that

there are edges from these vertices to the vertex a;

succ2(a, b) takes a value ¢, where c is a name of a vertex which
is a successor of b in the list of all vertices such that

there are edges from these vertices to the vertex a;
ainb takes a value TRUE if there is a way from b to a,
otherwise FALSE.

The functions pred, succ, pred2 and succ2 form a basis for description
of all actions which are necessary to deal with a generalized enumeration
type. One may recommend that the operation in be predefined because
its use is expected to be rather frequent; and it can be implemented

efficiently in a “built in” language variant.

. To make this clearer, we give examples of evaluation of the proposed
functions for the type RELATIONS described above:

pred (LE, EQ) = LT;
succ (GS) = NE;
pred2 (EQ, succ (GS, AE)) = AE.

70 A. G. YAKOVLEV

3. Derived generalized enumeration types

One may construct derived generalized enumeration types based on
the basic generalized enumeration type. They are generated by only two
operations on a graph corresponding to a basic type:

1) deleting explicitly pointed edges along with those vertices and

" edges such that the path from the root to them consists of only
these explicitly pointed edges;

2) joining of vertices, unconnected in the initial graph, or of explic-
itly pointed vertices with new subgraphs.

The first operation is denoted by the key word delete and the second

one — by join. An enumeration of the edges to be deleted, separated by

commas follows the word delete. An element of the list may have one of
the following three forms:

(X,Y) - an edge from a vertex X to a vertex Y,

(X,*) - all edges going from a vertex X,

(*,Y) — all edges to a vertex Y.

Let us consider an example for the type RELATIONS: the operation
delete (LS, LE), (*,EQ), (GE,*) deletes edges (LS, LE), (LE,LT),

Similarly, a list whose elements are separated by commas follows the
key word join. An element of the list is a subgraph written in the syntax
of a linear parénthesm structure. Identifiers from both the list following
the word join and from the description of a basic type name vertices to
which the join operation applies.

Suppose, for example, that the type RELATIONS is transformed in
such a way that the vertex LS depends on SU, and SB is joined with
a new vertex A and, and a new vertex B depends on A.-This would be

written as follows: join SU(LS), SB(A(B)). Thus, vertices of the basic

type may be connected and new vertices may be joined to new vertices.

Let us consider a realistic example to demonstrate use of a derived
generalized enumeration type. F

Suppose that, instead of the type RELATIONS, we would like to use a
type NEW_RELATIONS containing, instead of the relation C, a relation
C, defined in the following way: =

inte
des
Spo
nax
ver

ty

an
if
L/

frc

al
C
tl

m
70

e

o

o o BBR

¥

CLASSIFICATION APPROACH TO PROGRAMMING ... 71

A C B = (Ya@)E) (¢ <a<d).
; ' a€EA VEBbV'EB

It is not difficult to see that Rc intersects partially with R<, B>, R<,
R and strictly contains R and R—. Some of newly created taxons also
intersect with one another. The resulting taxonomic structure may be
described by the following data type (the relation C is put into corre-
spondence with the element SB2; to make the new names more obvious,
names of new vertices are constructed by concatenating the names of

vertices upon which they depend):

type NEW_RELATIONS = (B2 (SB2LS (SB2LSLE), AE, EQ,
' | SB2GS, (SB2GSGE), SU,LS (SB2LS,LE
(SB2LSLE, LT, EQ), AE (EQ)),GS (SB2GS,
AE,GE, (SB2GSGE, EQ,GT)), NE (GT, LT)).

Although the description of the type NEW_RELATIONS is given in *
an abridged form, it looks cumbersome. It may be made more compact
if the type NEW_RELATIONS is described as a derived one from RE-
LATIONS. For this purpose let us use a key word derfrom (“derived
from”) indicating the type from which the given type is derived:

type NEW_RELATIONS = derfrom RELATIONS delete (%, SB).
g join SB2 (SB2LS (SB2LSLE), AE, EQ,
SB2GS (SB2GSGE), LS (SB2LS), LE
(SB2LSLE), GS (SB2GS),-GE (SB2GSGE)).

Note that both the basic and derived generalized enumeration types
are static — execution of the operations delete and join takes place at
compile time. In the description of a derived type, an arbitrary number of
the operations delete and join may occur; these operations are executed
strictly in the order of their occurrence.

The possibility of describing new types as derived from already avail-
able ones may be of great practical importance for languages, allowing
export and import of types. For an already available module (package)
within which a large and complex taxonomic structure is defined, modify-
ing this structure to meet certain requirements.may be much easier than
constructing a new structure from scratch. This is clearly demonstrated
by the above example of a taxonomic structure of relations between in-

tervals.

72 A. G. YAKOVLEV

. To conclude this section, let us indicate that the idea of using derived
types goes back to the language Ada (the Ada counterpart of the key-
word derfrom is the keyword new, less understandable in this context).
However, a derived type in Ada is constructed only by limiting a basic
(parental) type, while, in our case, extending, as well as limiting, is pos-
sible. Let us also note that. a possible (in Ada, too) collision between
elements with the same names from different enumeration types can be
settled by giving explicit qualifiers for the corresponding types.

4. Correlation function and its realization

A correlation function is a function of two interval arguments whose
value is an element of a generalized enumeration type. The value denotes
a relation which binds the atguments of the function. A value of the
function corresponds to-a taxon in the taxonomic structure of relations
between pairs of intervals. It is natural to choose the minimal such taxon.
Thus, for example, for the pair ([2;3],[7;10]), the relations <, <, #, <
hold, but the most “precise” characterization of this pair is given by the
relation “<”. It is thus advisable to set rel ([2;3),[7,10])= LT where rel
is the name of the correlation function. (This notation will be used later,
too.) In addition to maximal “precision”, it is natural to demand yet
another property from the correlation function — that it be totally defined
(i-e. there is no pair of intervals for which it would be impossible to set,
by a correlation function, a relation which binds them): If necessary,
it is easy to make a correlation function totally defined in a somewhat

artificial way: by adding a special taxon to the taxonomic structure to
complete the taxonomic universe.

The purpose of a correlation function is, obviously, an automated clas-
sification or, in other words, identification of situations.

Let ‘us study implementation of correlation functions.

To discuss this question, non constructive definitions of relations (like
those given in Section 1) are not enough. Rules of identification (construc-
tive definitions) will be introduced through relations between bounds of
intervals. For the sake of simplicity we shell limit ourselvgs to closed in-
tervals and to the collection of relations considered in Secgsn 1. Decision
tables with bounded exit [18] will be used for the notation.

Such a table is shown in Fig.2. As is customary, it is divided into two

pa
of
ne

CLASSIFICATION APPROACH TO PROGRAMMING Y 73

parts. The symbol “+” in the upper part of the table signifies fulfillment
of a condition from a corresponding line, while a blank position means a
neutral state. The structure of the lower part of the table is standard.

ay = az ‘ a0
by = by . ' AT
a; < by + +
ay = b]_ + + +
a >bh + +
az < b +
az =b +
az > by +
ay < by +
a] = b2) +
ay > by : +
az < by + +
a = b2 + + =+
az > by il : e :
ACB +
ADB ik
ASB + | + | + :
AL<B + | + + | +
A<B + '

AZ B + | +
A>B n
A>B
Ax B ' i s +
A=B + +
A#B -1 + +

Fig.2

The main problem associated with realization of a correlation function
consists of considering the ways of obtaining a procedural representation
for a decision table. An efficient realization of such a mapping (i.e. of
a correlation function) is not as simple a task as it may appear at the
first sight. The point is that one should consider such factors as the com-
putational complexity of the testing conditions from the upper part of
the table and the probabilities of the identifications from its lower part.

The complexity of construction of an optimal procedural representation
grows combinatorially as a function of the number of conditions. There-

+|+|+
+
+

74 A. G. YAKOVLEV

fore, standard methods of obtaining optimal or sub optimal procedural
representations as well as every possible trick to improve the final result
are of interest [18]. Striving for efficiency is reasonable here because a
correlation function will almost always be computed within some loop,
and an efficiency difference of several orders of magnitude is possible in
different implementations.

The information which may help increase the efficiency of an imple-

mentation of a correlation function is divided into a priori (known before
a program execution) and a posteriori (appearing during a program ex-
ecution) information. To obtain the information, we must analyze the
expected dependencies (including static ones) in the input data, as well
as particular features of the algorithms in which correlation of intervals
will be tested. It may then turn out that requirements on a correlation
function will be substantially different for different algorithms or for dif-
ferent parts of the same algorithm. In this case it is advisable to use
-procedures, prepared beforehand, whose calls are semantically equiva-
lent but are implemented in different ways. Note that a part of work
in forming the text of these procedures, including their specialization,
may be given to a preprocessor, if a decision table is kept in the form of
a parametrized macro (like a generic component in the language Ada).
Parameter values inay be defined by the results of an automated analysis
of the context in which a correlation function is called.

A posteriori information may be considered by reordering testing of
conditions during program execution. Whether reordering is carried out
or not depends on statistical properties of a function of pairs of intervals
present upon entry each time a function is called. For a discussion of such
reordering methods, see [19] Section 6.1 “Consecutive Search”, Subsection
((“Self-organizing” File)) and, also, the exercises (and the corresponding
answers to them) for this subsection.

It is interesting to note that, the more natural a classification reflected
by a taxonomic structure is, the more closely the rank distribution of the
number of hits of each of the taxons resembles the hyperbolic distribution
(the Zipf’s distribution). This regularity, empirically verified repeatedly,

-was given a theoretical ground in [17]. In this light, tunipg of the algo-
rithm for computing a correlation function to some conégete context of
its use seems somewhat important.

The ad\risabiiity of special design of modules (packages) containing

de:

‘ the

co!
dif
tw
sy:

(4

te
pI
1t
fu

le
ti
el

tl
tl

\w |t W —

-

el

CLASSIFICATION APPROACH TO PROGRAMMING ... 75

descriptions of complex taxonomic structures was stressed at the end of

“the previous sec,tlon An integral part of such modules (packages) should

consist of procedures implementing corresponding correlation functions in
different ways (depending on potential conditions of use). The modules,
tuned in such: a way, substantially enhance development of automated
systems for interval computations [20]:

Se Y h .
5. Organization of branching
and generalized case-construction

The simplest way to organize the branching in interval programs con-
sists of using the traditional if-construction where conditional expressions
contain operations to correlating intervals:

if A< DB then ...

This way is indispensable when it is necessary to check whether a pair
(A, B) belongs to a concrete relation. Perhaps the only difficulty encoun-
tered while organizing the branching in this way is a lack of necessary
predefined relations and an impossibility to define them. In principle,
it is easy to overcome the difficulty with the use of two placed logical
functions: :

if Is(A,B) =TRUEF then ...

However, such a notation makes program texts more cumbersome and
less expressive. Besides, one needs a complete library of logical func-
tions. But such a library can be dispensed with by using a generalized
enumeration type, a correlation function and the operation in:

if rel(A, B) in LS then ...

Clearly, if 7el is not tuned to be used in the concrete context during the
process of translation of the body of the procedure (as was said before),
then the speed of checking the corresponding relation may prove lower
than in the previous cases.

Thus, the simplest way to simultaneously achieve expressiveness and
efficiency is to provide the capability to define new relations in the lan-
guage. Such capabilities are present, for example, in universal languages

~ Algol-68 and Ada (but lacking in Pascal and Modula-2), and in contem-

76 A. G. YAKOVLEV

porary SC-languages [13a,14a].

~ So far, we have dealt with organizing the binding of only one situation
with corresponding actions. However, when comparing intervals in inter-
val programs, one should expect, as a rule, a detailed analysis of possible
ways that two intervals can be related, along with the actions to be under-
taken in each of the cases. The tool for checking the relationship between
two intervals (identification) has been already presented — it is a corre-
lation function. The remaining task is to connect a taxonomic structure

of situations (relations) with the imperative structure of a program (a

description of actions to undertake). The generalized case-construction
serves this purpose.

Syntactically, the generalized case-construction differs from the tradi-
tional one only in one way: its selector and labels of variants belong to
the (same) generalized enumeration type.

' Performing a case-statement generated by the case-construction pro-
ceeds in the following way: the branches are chosen whose labels name
the vertices lying on all the routes from the root of the graph, correspond-
ing to the selector type, to the vertex whose name is the selector value.
Three cases may then occur:

1) only one label satisfies the condition given; in this case the control
is-just transferred to the corresponding branch;

2) there are no such labels; one then performs the else-branch, if
any, and, if not, the program terminates with a failure;

3) there are several such labels; if each of them belongs to the list
of labels of the same variant, then the branching just follows this
variant. If they belong to different variants, then one searches
for all minimal taxons from taxons corresponding to the selected
labels. The branching follows the last variant from the set of
variants marked with labels corresponding to these minimal tax-
ons.

It is not difficult to see that if a selector of a generalized case-con-
struction belongs to a standard enumeration type, thon the generalized
case-construction also reduces to a standard one.

Execution of a case- statement may be illustrated Wlﬁl the followmg
example:

18

5
1

L]

= ot i

Ca T ol e T o — L

CLASSIFICATION APPROACH TO PROGRAMMING ... 77

case rel(A, B) of
LS, LE: ...|
jg GE: ...
else
end,
where rel(A, B) takes values of the type RELATIONS, and the sign “|”
is a delimiter of a variant (in the Modula-2 notation). The first variant
will be chosen for, e.g., the following pairs (4, B): ([1;5], [2;7]), ([1;5],
[5;70), ([1;5], [1;5]), ([1;5], [6;7]); the second one — for ([5;7], [1;5]), ([657],
[1;5]), ([1;1], [1;1]); the else-branch — for ([1;7], [2;5]), ([2;5], [1;7]), etc.

A statement which is semantically equivalent to the above fragment
might be written in the terms of an if-construction with elsif-branches.
On the surface, this way seéems to be even more natural. However, the
approach based on the generalized case-construction gains expressiveness
as well as, in general, efficiency. The gain in expressiveness is due to
the fact that all the variants are explicitly named, and these names are
separated from the actual imperative part of the statement. The gain in
efficiency is due to the fact that consecutive identification of situations
may lead to the need to repeatedly check the same elementary conditions
and exclude the possibility of “self-organization” mentioned in Section
4. For example, for independent identification of LS and LFE, one would
need to check the conditions a; = b; and ay = by twice, as’is clearly seen
in Fig.2. :

Now let us present yet another possible improvement of the traditional
case-construction.

Introduction of this improvement is motivated by the following con-
sideration: since representatives of each subtaxon inherit features of the
parental taxon, one would expect the processing of representatives of
these taxons to include (at least partially) the same operations. There-
fore, it is advisable to have a construction allowing exclusion or, at least,
reduction of duplication of coinciding operations on different branches of
the case-statement. Certainly, duplication may be avoided in a tradi-
tional way by placing coinciding statement sequences into separate sub-
programs. However, in our case it can be done with a special construction
like which is substantially more explicit in this context and has a more
efficient implementation. ‘ ‘

The construction like may occur in every place of a variant of a case-

78 A. G. YAKOVLEV

statement. It creates the statement like whose only argument is a label of
one of variants of the case-statement containing the given like-statement.
The execution of a like:statement consists of an unconditional transfer
of control to the beginning of the variant with the label indicated, and
a subsequent return to the point of call (i.e., it resembles an execution
of a subprogram without parameters). The construction like also may
be viewed as a macro whose processing results in substituting a like-
statement for the body of the corresponding branch.

Let us consider an example illustrating use of the like-construction.
Suppose we have the following case-statement:

case S of
Ml: B:=B+1,C =C+1| :
M2: A:=A+4+1;,B:=B+1;C :=C+1; D := D+1|
M3: A = A+1

end.

A semantically equivalent fragment may be written with the help of
the like-construction:

case S of
Mi: B: =B +1;,C = C+
M2 : like M3; like M1; D :=
M3: A = A+41

end.

1|
D+1|

If several like-statements are components of a single case-statement,
then it is natural to require a sequence of macro generations to be finite.
Control of checking of this requirement may be given to the compiler.

If one represents the statements constituting the parts of the case-
statement with like-statements in branches, as vertices and potential
transfers of control between them as edges, then the resulting graph will
be connected, acyclic and oriented. Thus, the like-construction facilitates
establishing a conunection between a taxonomic structure of situations and
an imperative structure of variants.

To conclude this section, we must make the following remark. If a
language allows composition of identifiers of symbols from a sufficiently
representative set, and if visualization devices can displaﬁgthese symbols,
then specially designed pictograms may be used to denote elements from

an
of
Rl
th

PC

qt
ev
se

Cs
Ve

i
.

N P R

el B e N I |

T

(=]

CLASSIFICATION APPROACH TO PROGRAMMING ... 79

an enumeration type. This will undoubtedly enhance the expressiveness
of program texts. In the example in Section 6, elements of the type
RELATIONS aie assumed to be directly represented by the symbols of

the corresponding relations.

6. An example of use of the proposed language tools

Let us demonstrate possibilities of using of the language means pro-
posed above with the following simple example.

Consider the task of finding real roots of a function f(z) = az?+bz+ec,
where a, b and c are floating point numbers. Since the discriminant of a
quadratic equation does not have an exact computer representation for
every a, b and ‘¢, it is natural to do the task localizationally, i.e. not to
seek nuclear real roots, but to seek their interval shells.

During the solution process, it becomes necessary to distinguish five
cases of the position of the interval D = [dy,ds], containing the exact
value of the discriminant, with respect to zero (the interval [0, 0]):

1) dy >0, do > 0
2) d1 = d2 = O,
3) ds < 0;
4) di < 0, dy = 0;
5) d; <0, dy > 0.
In cases (1) and (2), roots are found by the standard rules

z12 = (-bx \/B)/Qa and 1 = x3 = —b/2a,

respectively. (All operations are executed as interval-arithmetical ones).
Case (3) does not cause problems — obviously, real roots do not exist.
Cases (4) and (5) are somewhat harder. In (4), the correct solution looks
like “Real roots are absent or ;" = 2» = —b/2a”. Thus, (4) actually
breaks down into (2) and (3). Similarly, (5) breaks down into (1) and
(3), where the interval [0, dy] is taken as D for calculation of z; and
in case (1). 5

The proposed constructions and a sufficiently rich collection of prede-
fined relations allow description of the solution of the given task in terms
of operations on objects of an abstract interval data type. In the pro-
gram, the following functions are used: rel (see Section 2) with values of

80 A. G. YAKOVLEV

the type RELATIONS, left and right (whose argument is an interval and
whose value is a degenerate interval, numerically equal to the left (right)
bound of the argument), compose (whose arguments are a two degenerate
intervals and whose value is an interval composed of arguments taken as
bounds). We suppose that all variables are of the scalar interval data
type and both the arithmetical operations and the operation of extract-
ing a square root are performed as interval operations. The accuracy of
computations (the width of the resulting intervals) depends only on the
number of digits used in intermediate results. -

D :=bx*x2—4%a*c;
case rel(D, [0,0]) of
> : 1 := (=b+sqrt(D))/(2 * a);
22 := (—b—sqrt(D))/(2'* a);
print('zl =', =1, '/, 22 =, 22) |
=:zl:=-b/2%a;
print(zl = 22 =', 21) |
< : print('Real roots are absent') |
< :like <; print(’ or'); like = |
5 : like <; print(’ or’); :
D = compose(left([0,0]), right(D));
like >

end.

In accordance with the remarks in Section 4, the function rel may
be specialized for identification of only the five relations actually used.
“Self-organizing” may prove to be useful, too, since, obviously, in actual
applications of this program, the different branches will be selected with
frequencies, far from being equal.

As we see, the proposed language tools allow the writing of programs

for localizational computations in a compact and .@éxpressive way with

subsequent generation of an efficient object code.

ha
is

lot
st
us
i
th

wi

in
{
n
e
in
pl
1C

Ca

St
ge
g1

st
Tl

\f:
iz
in
fr
e’
s

and
ght)
rate
n as
lata
-act-
ry of
. the

[may
- used.
actual
d with

»grams
y with

CLASSIFICATION APPROACH TO PROGRAMMING ... 81

Conclusion

In the preseg‘t paper, some new constructions are proposed which en-
hance possibilities of Pascal-like languages. Use of these constructions
is illustrated in examples concerning the organization of branching in
localizational programs. All the given examples deal with correlation of
standard closed intervals only. At the same time, modern interval analysis
uses various generalizations of closed intervals: irregular intervals, multi-
intervals, etc. [21]. Their correlation generates new relations, stressing
the necessity of special language tools to deal comfortably and efficiently
with them.

One should note that complex structures of relations do not arise only
in localizational programs. Thus, for example, during 1985-1987 in the
USA, national (actually, international) standards for arithmetic-for float-
ing point numbers have been adopted [22-23]. According to these stan-

- dards, 26 types of relations are supposed to hold between objects written

in the format of floating point numbers. This generates a sufficiently com-
plex taxonomic structure. Correspondingly, traditional language tools are
not enough to deal comfortably with such a structure.

In reality, the proposed language means may also find broad appli-
cations beyond numerical programming. The main part of the program-
mer’s activities, irrespective of the application area, consists of classifying
situations and defining a program behavior in each of the situations. The
generalized enumeration type and the case-construction will give the pro-
grammer more adequate language tools than the traditional ones.

In the present paper, we have considered use of the generalized enu-
meration type and the case-construction only for dealing with taxonomic
structures. Actually, these language means also form a basis for en-
riching a language with other classification structures — meronomic ones
(archetypes) [17]. Thus, elements of the generalized enumeration type
may be used for forming the descriptor of variant records. Therefore, the
variant record type itself can be generalized. Accordingly, the general-
ized case-construction appears in its definition. Since the record type is
intended, first and foremost, for describing a structure of objects, then,
from the classification point of view, generalization of this type implies
extension of possibilities for constructing archetypes. More detailed con-
sideration of the meronomic aspects goes beyond the scope of the present

82

paper.

A. G. YAKOVLEV

The language is known to always influence the programmer 's way of
thinking. In conjunctmn with regular use of classification structures in
the language, it is valid to speak of forming of the classification style
of programming and of appearance of the corresponding programming
technology [24,25]. Growing interest in the classification aspects of the
programmer’s activities would lead to further development of the pro-
posed language tools.

10.

References

Moore R.E. "Methods and applications of interval analysis”, SIAM Studies
in Applied Mathematics. SIAM, Philadelphia, Pennsylvania, 1979.
Kalmykov S.A., Shokin Yu.I;, Yuldashev Z.Kh. ”Methods of interval analy-
sis”. Nauka, Novosibirsk, 1986 (in Russian).

Alefeld G., Herzberger J. ”Introduction to interval computations”. Aca-
demic Press, New York etc., 1983. (Russian translation: Mir, Moscow,
1987.) ‘
Yakovlev A.G. Locuses and localizational computations. In ”Conference on
Interval Mathematics, [Saratov], May 28-25, 1989”7, pp. 54-56. Saratov,
1989 (in Russian).

Musaev E. Some ways to support interval computations in high-level lan-
guages. In *International workshop on reliability in computing — the role of
interval methods in scientific computing, Columbus, Ohio, USA, 8-11 Sept.
1987 : Abstracts of invited lectures and poster talks”, pp. 19-20. The Ohio
State University, 1987.

Musaev E.A. The support of interval computations in high-level languages.
»Proc. 1-st Sov.-Bulg. Seminar on Numerical Processing, Pereslavl-Zalessky,
Oct. 19-24, 1987”, Program Systems Institute of the USSR Academy of Sci-
ences, Pereslavl-Zalessky, pp. 110-121 (1989), deposited in VINITI 21.04.89,
N 2634-B89 (in Russian).

Moore R.E. Practical aspects of interval computation. Apl. Mat. 13, 52-92
(1968).

Yakovlev A.G. Organization of branching in interval programs. ”Proc. 1-st
Sov.-Bulg. Seminar on Numerical Procesging, Pereslavi-Zalessky, Oct. 19-
24, 1987, Program Systems Institute of the USSR Academy of Sciences,
Pereslavl-Zalessky, pp. 147-173 (1989), deposited in VINITI 21.04.89, N
2634-B89 (in Russian).

Apostolatos N., Kulisch U., Krawczyk R., Lortz B., Nickel K., Wippermann
H.-W. The algorithmic language Triplex—Algol 60. Num Math 11, 175-
180 (1968). ;’

Cole A.J., Morrison R. Triplex: a system for interval arithmetic. Software
- Pract. E:cper. 12 (4), 341-350 (1982). '

B e e

11.

12.

13.

13a.

14.

14a.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

CLASSIFICATION APPROACH TO PROGRAMMING ... 83

Guenther G., Marquardt G. A programming system for interval arithmetic
in Algol 68. In ”Interval mathematics 19807 (K.Nickel, ed.), pp. 355-366.
Acadeg’ic Press, New York etc., 1980.

Guenther G., Marquardt G. A programming system for interval arithmetic
in Algol 68. Math. Centre Tracts 134, 201-215 (1981).

Bleher J.H., Rump S.M., Kulisch U., Metzger M., Ullrich Ch., Walter W,
FORTRAN-SC. A study of FORTRAN extension for engineering/scientific
computation with access to ACRITH. Computing 39 (2), 93-110 (1987). -
Reprinted in: ”Scientific computation with automatic result verification :
Papers presented at a conf., Sept. 30 - Oct. 2, 1987, Karlsruhe” (U.Kulisch
and H.J.Stetter, eds), pp. 227-244. Springer (Computing, Suppl. 6), Wien
and New York, 1988.

"ACRITH-XSC: IBM High Accuracy Arithmetic — Eztended Scientific Com-
putation. Version 1, Release 1”. IBM, 1990. '
Bohlender G., Rall L.B., Ullrich Ch., Wolff von Gudenberg J. "PASCAL-
SC: A Computer Language for Scientific Computation”. Academic Press
(Perspectives in Computing, vol. 17), Orlando, 1987.

Klatte R., Kulisch U., Neaga M., Ratz D., Ullrich Ch. ”"PASCAL-XSC.
Langiage reference with examples”. Springer Verlag, Berlin etc., 1991.
Yohe J.M. Software for intetval arithmetics: a reasonably portable package.
ACM Trans. Math. Software 5 (1), 50-63 (1979).

Rogalyov A.N., Shokin Yu.I. ” A package of interval operations for the BESM-
6 computer. Preprint 24-81”. Siberian Branch of the USSR Academy of
Sciences, Institute of Theoretical and Applied Mechanics , Novosibirsk, 1981
(in Russian).

Shreyder Yu. A., Sharov A.A. "Systems and models”. Radio i svyaz,
Moscow, 1982 (in Russian). :

Humby E. ”Programs from decision tables”. MacDonald (Computer mono-
graphs), London etc., 1973.

Knuth D.E. ”The art of computer programming. Vol. 3: Sorting and search-
ing.” Addison Wesley (Addison-Wesley series in computer science and infor-
mation pfocessing), Reading etc., 1973.

Yakovlev A.G. What should an automatized system of interval computations
be? In "Inf.-operat. material (interval analysis), Preprint VTs SO AN
SSSR, N 67, pp. 42-44. Krasnoyarsk,1988 (in Russian).

Yakovlev A.G. Interval computations on electronic computers (a brief sur-
vey). Addition to the Russian translation of ”"Introduction to interval com-
putations” by G.Alefeld and J.Herzberger, pp. 336-352. Mir, Moscow, 1987
(in Russian). :

"An American national standard. IEEE standard for binary floating-point
arithmetic : ANSI/IEEE Std 754-1985”. IEEE, New York (N.Y.), 1985.
"An American national standard. IEEE standard for radix-independent
floating-point arithmetic : ANSI/IEEE Std 854-1987”. IEEE, New York
(N.Y.), 1987.

Yakovlev A.G. On the classification style of programming. In "All-Union
Conf. on Actual Problems of New Information Technology Development

84 A. G. YAKOVLEV

and Inculcation, Tallinn, March 29-81, 1989, Part 1”7, pp. 69-71. Moscow,
« 989 (in Russian).

25. Yakovlev A.G. The classification approach and programming technology. In
” Programming Technology of 90-th : International Conference-Fair, Kiev,
May 14-17, 19917, pp. 61-63. Kiev, 1991 (in Russian).

Moscow Institute for New Technologies
in Education

Nizhnyaya Radishchevskaya 10
Moscow, 109004

Russia ‘

E-mail: yakovlev@ globlab.msk.su

109004, MockBa

ya. Huwxuaa Panumesckana, a. 10
MockoBckunii UHCTUTYT HOBBIX
TeXHoJioruii o6pa3oBaHUA

daxc: (095)315-08-08

9. nouta: yakovlev@globlab.msk.su

O bl A

~a

