[}

Interval Computations
No 1(3), 1992

WAVE COMPUTATIONS

A TECHNIQUE FOR OPTIMAL
QUASI-CONCURRENT SELF-VALIDATION

Eldar A. Musaev

A method with a variable data representation and automatic choice of
minimal necessary data representation is proposed. Due to a hierarchical
organization of representations, it is possible to avoid concurrent program-

ming and to describe the method with coroutines.

BOJIHOBLIE BBIYVICJIEHW S

CIIOCOB KBABMHAPAHHEHBHOﬁ‘
CAMOKOPPEKIIY BBIYNCJIEHNUA
C MUHUMU3AIINEN ITPENCTABJIEHUA

9. A. Mycaes

Hpe,zmaraeTca MeTOoJ BHIUUCJIEHUA C NNepEMEHHBIM npeacraBJi€eHA-
€M JAaHHBIX U aBTOMaTHU4YECKHUM BbIGOpOM MUHUMAaJILHO Heo6X0aMMOoro
10 BpeMEeHHBIM 3aTpaTaM npeacraBJi€eHUA. B.naroz[a.pﬂ uepapxmuue-
CKoO OpraHM3al HpeIICTa.BJIeHI/Iﬁ YaaJioCh usbekaThb nmapaJujejganuiMa

U U3JIOMKUTHh NaHHBbII MeTol B paMKax conporpamMm.

One of the most serious problems of interval analysis is the possibility
that continuation of computations is impossible because two values to
be compared happen to be incomparable. The simplest example is the

© E.A. Musaev, 1992

54 ELDAR A. MUSAEV

computation of roots of a quadratic equation:

1 Sega,b,c,d; Read ((a,b,c)); d:=b*xb—4xaxc;

2 Ifd<0 Then Print(“No roots.”)

3 Elifd=0 " Then Print((“One root :”,b/(2 *a)))

4 Else Print((“Two roots : 7,(b+ Sqrt(d))/(2*a),
5 ((b—Sgri(d))/(2+a)))
6 Fi

-

It is evident that, if Seg is an interval data type and d = [~1, 1], then
choice of the branch in line 2, is already impossible, and even more clearly
so in the line 3, where comparison would not make sense in practice even
if d were an ordinary floating-point value. In this case, indeterminacy
in the original data prevents us from taking any action. However, when
a, b, and ¢ have been obtained as a result of computations, repeating
the computations with higher precision usually seems to be an attractive

idea. On the-other hand, it is impossible to determine a priori what pre-

cision is necessary to get the proper result, so this leads to loss of time
when numerous repetitions or too high a precision is used. The idea that
a computational process can choose the necessary precision is suggested
in [1]. Let us use the term program shell to refer to this program’s com-
putational process (in sense of UNIX or Modula-2), together with an
associated data representation. Suppose that the program consists of the
several shells which differ only in the representations used. In the im-
plementation suggested here, the shell with the simplest representation
is initialized first. If incomparable values occur, then this shell is frozen,
and control is transferred to a shell with a more complex representation
(in the case of concurrent processes it could be initialized immediately,

- - but have lower priority). When this shell comes to the point with incom-

parable values, it corrects them, then activates the previous shell, but if
the values are still incomparable, a third shell is initialized to compute
the values more accurately. -In this scheme, the low level shell makes a
path for the complex and expensive high lével shells, computing, when

possible, directions for IF and CASE operators, as well as iteration coun--
ters for loops. On the other hand, the high level shells correct the values'

computed by the low level shells. This is why we use the term “wave

computations”: the points of control in the shells run ong after another

like waves on a sea.

An implementation of this idea is considered here. It is described using
a language similar to Algol-68, with elements of Pascal and C. It could

—

=t
-

H o o oD

oO0m P P P

@ = 1 e+ (D

]

WAVE COMPUTATIONS 55

be also described in C4+ or other object-oriented languages.

When concurrent processing is actually available, it is not necessary
to freeze all high level processes. It is sufficient to have a guarantee that
a process with a higher level will never overtake any lower-level process.
(i.e. it is necessary to process rendezvous points properly.) A low-level
process should have higher priority than a higher-level process, so a level-
0 process is frozen when and only when it requires the help of the level-1
process, a level-1 process frozen when and only when it requires the help
of the level-2 process, or it-is at the same point as the level-0 process,
or the level-0 process is presently running and there are no processor

resources.

1. Language conventions

The language to be used to describe the method is similar to Algol-68,
with the following exceptions:
1. The language contains the enumerable data types of Pascal
Two of them will be important here. The first is
Mode Trin = (True, False, Unknown);
The Trinary data type is used together with the ordinary
Boolean type. The common True and False are accompanied
by the new value Unknown, used in the situations like [-1,1] >
[0,0]. For more details about this type, see [2].
Mode Level = (Single, Double, Multi);
Level FirstLevel = Single, LastLevel = Multi;
This data type is used to specify the representations and shells.
It should contain the names of all representations in order from
the simplest to the most complex one. In this example, three rep-
resentations are assumed: a single precision floating-point based
representation, a double ﬂoatmg point based representation, and
a multiple precision representation. More precisely, this type can
be replaced by the following set of descriptions:

Mode Level = ShortlInt;

Single = 1,
Double = 2,
Mult: = 3;

Level First Level = Single, LastLevel = Mults;

56 ELDAR A. MUSAEV

2. The language contains a numerical data type which is a base
type, and which can be described by:

Mode Num = Struct (SingleSeg s,
DoubleSeg d, MultiSeg m);

All variables of this type are static and common to all shells. All
other variables, except global variables, are dynamic (automatic),
and every shell has a unique copy of them.
3. A library to support coroutines is present and consists of:

Activate (Corout) — This procedure activates the specified
coroutine, and freezes the current coroutine.

Initialize (Ref Corout, Proc Void) — This procedure links
the body and the name of coroutine, and initializes it.

Ready () - This procedure creates a signal that initialization
is complete and transfers control to the parent process.

These procedures organize the work of the coroutines as follows. The par-
ent process links the names of coroutines (variables of type Ref Corout)
with the bodies (procedures of type Proc Void) using the Initialize
procedure. In particular, Initialize transfers control to the body of each
coroutine, while Ready returns control upon completion of the initial-

ization. After that, the parent process initiates one of the coroutines’

using Activate. The initiated coroutine then becomes active. During
execution, the active coroutine can transfer control to another coroutine
using Activate; in this case it is frozen, and the coroutine pointed to by
Activate becomes active.

2. Implementation with coroutines

It isnatural to implement the wave computations support as a separate
module which contains all necessary procedures and data. First, we need
a pointer to the active shell and an array of coroutines:

Level GlobLev := FirstLevel;# Global Level#
[Level |Corout Shell; # Shells o

Additionally, we need a multilevel queue, defined as follows. We require
a queue with a special pointer for every level. An item leaves this queue

&

[aF e IS SAe e

. O »n 3

A

WAVE COMPUTATIONS 57

when the last pointer attains and surpasses it. An item is placed in the
queue when the first pointer is used to determine its value. There are
only two operations associated with this queue. The first is to examine
the value of the current item at the current level, while the second is to
change the current value and move to the next item. (If the next item
does not exist, then create it by the some rules.) Data for the multilevel
queue takes the form:

Struct([Level] Int p # Pointers #,
[10000]Struct(Trin r, Level l)q)
GlQ # Global Queue #;

ptrs of GIQ := (0,0,0)‘; r of q of GIQ) "= Unknown;

The following procedures implement the actions listed above:

Proc SeeQueue = Trin:
r of g p[GlobLev] of GlQ]of GIQ;

Proc SetQueue = (Trin ¢, Level [)Void :
If ¢[p[GlobLev] of GIQ] of GIQ = (t,1);

p[GlobLev] of GIQ = 10000

Then p[GlobLev] of GIQ := 1
Else p[GlobLev] of GIQ+ := .1
Fi

- The procedures JumpUp and JumpDown are also useful; these activate a

shell one level higher or lower if present, respectively. Now, if the program
of computations is written as procedure Run, the parent process body
should be the following:

(For i From FirstLevel To LastLevel
Do GlobLev := i; Initialize(Shell[i], Run)
Od; GlobLev := FirstLevel; Activate(Shell[GlobLev]))
The body of Run should be started from the call of the Ready pro-
cedure. As it was mentioned above, the numerical data are common to
all shells, while other data are individual. Arithmetic operations are exe-
cuted only for the item of a structure corresponding to the current level.

58 . ELDAR A. MUSAEV

e.g.: | ,
Op + = (Num a,b) Num: (Num r;
(GlobLev ! sof r := sofa + sofb,
dofr := dofa + dofb,
mofr := mofa + mofbd); r)

The comparison operations use parameters in a way similar to Algol-60
parameters, i.e. as quantities which are computed every time the param-
eter is used and which are never computed if the parameter is not used.
Thus, values computed at the lower levels are taken from the queue,
while expressions used as arguments in comparisons are not calculated.
The comparison operations are used as points of rendezvous, and appear
to be critical points of a program. It is also possible to combine these
with the operation of converting a Num data type to integer to make
a special function for the correction of a numerical value. This is easily
implemented by a small modification of the queue, in which a queue item
is not only trinary, but may also be integer or numerlcal (interval). All
comparison operations are similar, so we’ll consider only the ‘Greater’
operation:
Op > = (Num a,b) Trin:
If Trin f = SeeQueue;
f <> Unknown # Already computed 7 #
Then SetQueue(f,GlobLev); f :
Elif # This level has not been computed yet #
Correct all values for a level down !
RecomputeAll,
Compute at this level
"Trin f = (GlobLev! s ofa > s ofb),
dofa > dofb, m ofa > mofb),
f = Unknown # Not success 7 #
Then # This level is insufficient #
A level up and compute ...
Jump Up; JumpDown,; SeeQueue
Else # Success, now save ... #
SetQueue(f ,GlobLev); JumpDown; f
Fi :
The only procedure not given in detail here is RecomputeAll, i.e. the

correction of all values for one level down. This routine transfers the .

Vi

T

O o NP @ o AW

<

AP S Mol

LTEP<Y O o H

WAVE COMPUTATIONS 59

values computed at the higher levels to the lower levels. It could be im-
plemented as an intersection of every value at the present level with the

~ corresponding’ value at.the previous level. Since the comparison oper-

ations are the points of rendezvous the values have the same meaning.
Of course, the results should be stored at both levels, e.g. if the val-
ues are [—1,3] and [2, 5], the result would be [2, 3], which is better than
both source values. The full list of variables can be obtained using the
technique described in [2] or using object-oriented programming.

Note that coroutines are not even necessary. Let us suppose that
every variable:(not only numerical, but also non-numerical ones) is an
array with index of type Level. At each point, only the items with index
GlobLev are used. Also, exclude from the language automatic variables or
Algol-like block structure (when every block is used for declaration and
allocation of the automatic variables). Finally, two procedures, similar
to the procedures presented in some implementations of C, are needed.

. The first one is SetJump, which sets the dynamic label to make a subse-

quent jump to this label, and the second one is Jump, which carries out,
the jump to the dynamic label created by SetJump. The JumpUp and
JumpDown procedures can be written as:

Proc Label SetJump;

Proc (Label) Void Jump;

Label Returns [Level];

Macro Proc JumpUp = Void :

(GlobEev = LastLevel ! print(” Indefinity error.”) !
Returns|[GlobLev] := SetJump; '
GlobLev + := 1; Jump[Returns[GlobLevel]])

Macro Proc JumpDown =_Void:

(GlobLev = FirstLevel ! Skip !
Returns[GlobLev] := SetJump;
GlobLev — := 1; Jump[Returns[GlobLevel]])

An interesting question for the future research is the possibility of
structuring such computations without a hierarchical organization of nu-
merical data types. That could be useful if there are several represen-

60 ELDAR A. MUSAEV

tations which are approximately similar in complexity, e.g. centre and
left-right bound representations of interval numbers.

References

1. Yakovlev ‘A.G., On some possibilities in the organization of localizational (inter-
val) computations on electronic computers, Inf.-operat. material (Interval anal-
ysis), preprint 16, Computer Centre, Siberian Branch of the USSR Academy of
Sciences, Krasnoyarsk, 1990, p. 33-38. (In Russian)

2. Musaev E.A., The support of interval computations in high-level languages, Proc.
1-st Sov.-Bulg. Seminar on Numerical Processing Oct. 19-24, 1987, Program Sys-
tems Institute of the USSR Academy of Sciences, Pereslavl-Zalessky, 1989, pp. 110--
121, deposited in VINITI 21.04.89, 2634-B89. (In Russian)

3. Musaev E.A., Wave computations in interval analysis, Proc. Seminar on Interval
Mathematics, May 29-31, 1990, Saratov, 1990, pp. 95-100. (In Russian)

St.Petersburg Division of
Steklov’s Mathematical Institute
Russian Academy of Sciences

" Fontanka 27 <1
St.Petersburg 191011 Russia
e-mail: eldar@lomi.spb.su

