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INCLUSION OF THE SOLUTION FOR
LARGE LINEAR SYSTEMS WITH M-MATRIX

Siegfried M. Rump

In this paper algorithms are described for computing guaranteed error
bounds for the solution of a linear system with M-matrix. The matrix as
well as the right hand side may be afflicted with tolerances in which case
bounds for the set of all solutions for input data within the tolerances
are computed. Given a (ﬂoating—point) LDMT- LDLT- or Cholesky-
decomposition, resp., the additional computational effort to obtain the
bounds is O(n - p) for dimension n and bandwidth p. The method works
very well for ill-conditioned and for large linear systems with M-matrix;
compared to IGA (Interval Gaussian Elimination) we gain a factor 4 in
speed. The algorithms were tested up to 1000 000 unknowns.

JIOKAJIN3 ANV ITJEHIEHI/IH
JIJIST BOJLIINX JINHEWMHBIX CUCTEM
C M-MATPNITIAMUA

3ur¢pus M. Pymn

B cTaTbe OMMCAHBI AJITOPUTMBI IJIA BHIUMCIICEHUS] apaHTUPOBaH-
HBIX CpaHMIl oUMbOK pelreHUi JIMHEHHBIX CHCTEM C M-MaTpuuaMm.
MaTpuila ¥ npaBasg yacThb CMCTeMbl MOTYT GLITH 3aJaHbl C JOIYCKa-
MM; B ®TOM cJiydae IPaHMIbL AJ1A MHOKeCTBa BCEX pelnleHui4 BBIUMCIIA-
JOTCA /1A BXOIHBIX AAHHBLIX C 3aJaHHBIMM AOIIyCKaMH. Ecnn 3anansl
passoskenus (¢ miapatomeil Toukoit) LDMT, LDLT unn pasnoskenue
XoJIenKoro, TO 1A HAXO0KAeHMA IPaHull TPeGYIoTCA JIOITOJITHUTEILHBIE
Boerumcienus o6bemom O(n - p) rae n — pa3MepHOCThb, a p — MIMPUHA
rpanutl. MeTon o4yeHb xopouio paBoTaeT AJA IJIOXO ofBycJI0BJICH-
HBIX Y GOJBIIMX JIMHEHBIX CUCTEM C M-marpuueii. Ilo cpaBHEeHMIO C
IGA (MHTepBaJIbHBIA METO MCKJIOUEHN laycca) 1oJIy4eHo yCKope-
sve B 4 pasa. AnropuTMm Gbli MPOBEpeH Ha CUCTEMaX colepyKaumnx
no 1000000 Hen3BeCTHBIX.
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1. Introduction

Let F C R be a set of floating-point numbers. Operations between
floating-point numbers are denoted by fl(a*b) for a,b € F, * € {+,—,-,\}.
For a machine unit e € R and £ = [—¢,¢] :={z € R| —e <z < €} our
general assumptions are

fi(a*b) € axb-(1+E) and fl(a*b) € axb/(1+ E), T
axb€ fllaxb)-(1+ E) and axbe€ fllaxdb)/(1+ E) (1.1)

where * € {+,—,-,/}. This will be true as long as no overflow and un-
derflow occurs during computation. Furthermore, we define by induction

k k—1
Z fici = fl (Z fiGi + ck) for ¢; € F.
1=1 =1

E 71 denotes the ﬂoatlng -point sum. Finally, the basic floating-point

operations * € {+,—, -, /} are assumed to be sign-preserving, i.e. a*xb>
0 = fllaxb)>0aswellasa*xb< 0 = fllaxb) <0. We want to
stress that these assumptions are satisfied on most computers, especially
on all satisfying the IEEE 754 or 854 floating-point standard.

The set of vectors, matrices over R, F is denoted by R™, R®*" F" F**"
respectively. In this paper only vectors, matrices with n, n? elements oc-
cur, respectively. For matrices we use the componentwise order relations
and componentwise absolute value |A| € R™*™ with (|A4]):; = [A4ij].

2. Some estimations

In the following we analyze the LDMT -algorithm e executed in floating-
point arithmetic, namely we estimate the residual LDMT-A for the com-
puted floating-point matrices L, D and M of an M-matrix A.

For a real matrix A € R®*" the real LDM”-decomposition is givén
for example by the following algorithm. ’

fork=1...ndo
for j=1...k—1do rj:=dj; - My;

k=1
Ak = Agke — 3 Lgj =Tk
i=1 '
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k

_ -1
fori=k+4+1...ndo Lix:={Aw— X Lij-7jx}/dkk
8 =1

j
for j=1...k—1do sjk:=Lgj-dj;

k—1
fori=k+1...ndo M = {Aki — > M;; - Sjk}/dkk
: J=1

For our purposes we formulate the algorithm for a floating-point matrix
A € F**" with lower, upper bandwidth p, q, resp., i.e. A;; = 0 for
i—j>pandforj—i>gq, p,g=>0.

fork=1...ndo
p = max(1,k —p, k —q)
for j = p...k—1do Fj := fl(djj - ;)
k=1 e ~
e = 2 aflle; - Fin); die = fl(Akk — Pk)
i=p

fori=k+1...min(k +p,n) do
k—1 -
v :=max(l,k —q,i — p); Ok := E s fl(l; - Tik)
j=v

T o= FU(FI(Ask — Tir) /drr)
for j=p...k—1do 5 := fl(Ix; - djj)

for i=k+1...min(k+q,n) do
' k—1

¢ :=max(1,k — p,i — q); Tk ==y, afl(Mij - Sjk)
j=¢ ‘

ok o= FIFI(Aki — Tor) /dik)
Algorithm 1: Floating-point LDM T without pivoting

If all operations were executed exactly and no diagonal element Jkk be-

~ comes 0 then A = LDMT. Due to rounding errors approximate equality
holds and we are going to estimate the error A — LDM T, Of course, the
algorithm could calculate E,f),M in the same memory as A; however,

. the following estimations become clearer using separate variables in each
step.
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We start with some simple estimations.

] . .
Lemma 1. ﬁi;c,- € F,i=1...k and define S := E i, Gp = ). fICi.

=1 i=1

Then Sk € G + (Z IGil) - E. If the ¢; satisfy ¢; > 0 or ¢; < 0 for
=2 ‘

i=1...k;then S € Gi-(1+ (k—-1)-E).

Proof. By induction follows

k
Skt1 =Sk +cky1 € G + cpg1 + (Z IGzl) - B

\t=2
k
€ Giy1-(1+E) + (ZIGiI) - E.

=2
For ¢; > 0 we have G; < G341 and 0 < G; < Grfori=2...k implying
k .
Y G;<(k-=1):-Gy. Forc;; < 0use E=—F. . |
=2

=~

Remark. Here and in the following we use the following convention.
If in an expression a set E occurs more than once then the sets E are
treated independently in the sense of power set operations. For example -

k
Gry1- (1+E) + (Z |Gi|) B

=2

=4

k
= {Gk:+1 (Tte)+ (Z |Gz|) - €2

7=2

=2

€1,€9 € E} .

In this way the notation seems to be-more convenient to us than absolute
values.

Lemma 2. Let ¢ < 0.01. Then for c € R holds .

(14+¢cE)-(14+E)* C1+(c+2.01(1+cE))-E and
(I+cE)-(14+E)° C1+ (c+3.04(1+cE))-E. -
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Proof. Obvious. | |

\

We define the matrix (o) with components c;; by

oy :=1; agy :=min(k —1,p,9) for2<k<n
aj =0; o :=min(k - 1,q,k—% +p)fork<i<n 2.1)
ay; = 0; ap; :=min(k - 1;p,k—i+ q) for k << n.

Lemma 3. With 8 := min(p,q) holds a;; < Bfor1<i, g<mn

Proof. For 2< k < Bisaw =Fk-1 < B-1,for B <k < nholds
agr = 3. Purthermore for k < 4 is aix < min(k - 1,¢,p — 1) < o and

ap; <min(k —1,p,q — 1) < Ak .-

Let A := A— ADMT. Note that the operations in the definition of A

are real operations whereas E, D, M have been computed using floating-

point arithmetic. Following algorithm 1 we first note that Tiks Ph> ik
Giky liks Sjks Tok and Mg is computed once and not altered during the
algorithm. It is

C%j.-ﬁlkj E"ijr-(].'i'E) aﬁd Tkj aj” Egjk'(l-{—E) .

Now we assumé A to be an M-Matrix (see [Neu90]) and dr, > 0 for
k=1,...,n (which is true for exact computation). Checking algorithm
1 then implies that all Mg;, 7jk, 5jk are not positive. i

Therefore using
k~1

Akk = Algk = Z lkj C djj Mg — dkk

j=p

for 1 < k < n and using p = max(1,k—p, k—q) as defined in algorithm

1w

pro

For
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1 we obtain

: ;3: k=1 n
Apr €Agy — Z lej - Tik(1 + E) — dig
j=u
k-1
CApk = > fI{l; - Tie) - (1 + E)? — d

j=u
CAkk — P - (1+ (ak — 1) - E) - (1 + E)? — dya
using Lemma 1 and k —1— p=min(k - 1,p,q) — 1. Therefore

Akk € Ak = P — dik + (e — YA + E)? - E - B
Cdkk (1 + E) dk:k + (akk — 1)(1 + E) - B ﬁk
={dk + (e —1)(1 + E)? - .} - E .

Hence c?kk < Agi and pr < Ay, implying

27

(2.2)

Agpr € {l-l—(a’kk—l)(].-i-E)g}-Akk-E = {1+1.03(O!]§k—1)}-Akk-E (23)

provided e < 0.01. Using lemma 3 this implies

Apr €1.03-8-App - E for 3<k <nand
App €Ak - F - for k =2 and
A =0 (o) ol SE—uy

For 7 > k we have

k—1
Az =Ajp, — Z Lij - diz - Mg — Lk, - dik
=
k=1 ,
€Ak — ) lij - Tig - (1+ B) = I - di
j=v -
k=1

CAzk—Z fl z] T]k)(l_I_E) —lk dkk

J =V

(2.4)
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Using A;x < 0 because A is an M-matrix yields together with lemma 1 o1
andk—1—v+1=min(k—1,¢,k —i+p) = ir B
A € fl(Aj —ax) - (1 + aiE)(1 + E)* - Tixdr is
~ o~ ~ = b
C duk - Lk - (1 + it E)A + E)® = Lindik (2.5) Ci
- Tik . Jkk . {Olz'k: + 3.04(1 + a,-kE)} . E. : is
Using lemma 3 this implies ' _ _ T
A € T,k . gkk g 3.08,3 - E. (26) g Zﬁ
We can conclude in a very similar way for i < k
Apr; € Jkk e {0k + 3.04(1 + o E)} - E and (2.7)
Ap; € gkk S Mk 3.08ﬁ - B. (28)
We can use these estimations to derive rigorous bounds for A = A — g4
LDMT.
Theorem 4. Let A € F**" be an M. -matrix of lower, upper bandwidth
p,q, resp., B = min(p,q) and L, D, M the computed matrices using ; wi
algorithm 1, assume D > 0, and € < 0.01. Define B € R"*™ by ba
‘ in
By :=1.03 - 3+ Ak an
B; :=3.08 - g - Z’k . Jkk for 1>k = (29) E}é
B :=3.08 - ,8 : C’i/kk - my; for 1 < k. l
Then |A| = |A - LDMT| < |B|-e.
Using estimations (2.3), (2.5) and (2.7) yields better values for B. Note o

that rigorous bounds for B can be computed in floating-point either by
using upward rounding directed or by multiplying floating-point results
by (1+¢€)*.

Computing B is very cheap, it needs only n - (p+ q¢+ 1) additional

operations. For large matrices the storage requirement is .crucial. In a
practical implementation of algorithm 1 the LDM T decomposition would
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overwrite the matrix A. Therefore B needs one additional vector of length
n to store thp diagonal of A.

If the ma,trlx A is symmetric the LDLT algorithm can be applied. This
is the very same as algonthm 1 except that in line 3 my; is to be replaced
by Ix; and the computation of M (lines 8 . . 11) can be omitted. In exact

computation it follows A LDLT. The analy51s of the LDLT-algorithm
is the same.

Theorem 5. Let A € F**" be a symmetric M-matrix of bandwidth p

and L D ) the computed matrices using the floating-point LDLT-algorithm,
assume D > 0, and € < 0.01. Define B € R**" by

B :=1.03 - p- Arr
B, :=3.08 - p- Z’k . (’lvkk for i # k

Then |A| = |A— LDLT| < |B| -e.
3. Cholesky decomposition

Let A € F"*™ be a symmetric and positive definite matrix of band-
width p. Then as in the case of M-matrices error bounds can be computed
bascd on the floating-point Cholesky decomposition. The sums occuring
in the algorithm do not necessarily consist of summands of equal sign
and the error estimates using lemma 1 would become poor. Therefore,
we use a scalar product with one final rounding as proposed by Kulisch

. [Ku76]. This means that for a;, b; € F,1<i<n

_ \
i=1 i=1
where E = [—¢, +].
fork=1...n do
1= max(1l, k - p)

§kk=fl<4kk 29k1>; Tk = \/ 11 Sk

J=u
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for i = k+ 1...min(n, k + p) do

v =max(1l,i —p); £ =min(n,k— 1)

o= Sl N
gir = [l (fl (Aik— > Gij -mw)/m:a—)
j=v

Algorithm 2. Floating-point Cholesky decomposition
' using the precise scalar product

Executing algorithm 2 without rounding errors yields A = G - GT.
Next we are going to estimate A= A— G- GT. The analysis is similar
to the one described in [Kie87] but adapted to our purposes. We assume

Si > 0for 1 <k < n. First

Sy € Gik - (1+ E) implying Sue € G (1 + E)™.
Hence

k—1
A =Ark — Y Gig — Otk € Sk - (L +E) — Tk
= ] . (3.1)
" Cir - (3+3E+E?)-E.
Again we want to stress that different E in (3.1) are treated independently.
That means (3+3E+E?)-E = {(3+3e1+ex-€3)-€4 |e; € Eforl <i< 4}

Furthermore
13
A =Agr — Z Gij * Okj — Jik * Gkk e
I=v
: 3
efl | A= Gij-Grj | -1+ E) = Gk - Gr
pr (3.2)

5 s
= fl | A — Zﬁij ‘G | - (L4 BE)/Gre — 9 ¢ - Gk
j=v

Q{?fik-(1+E)2—Eik}-ﬁkk=§ik'§kk'(2+E)'E-
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Lemma 6. Let A € F"*" be symmetric with bandwidth p and assume
Sk > 0 during execution of algorithm 2. Then for € < 0.01 and using

By :=3.04-3%, 1<k<n

g 3.3
Bir :=2.01 - gip. - grr i # K ( ' )
the computed matrix G satisfies -
|Al=|A-GGT|<e-|B].
Using = N
C :=3.04- |G| - diag(G) (3.4)
we have / '

|Al<e-C ..

The estimation matrix B and slightly weaker C bear the advantage that
all components compute directly from G; no additional memory for the
diagonal of the matrix A is necessary. Furthermore, the bounds are very

simple and sharp.
4. Verified bounds

Let A € R"*" be an M-matrix, b € R® and Z € R™ be given. There
is no prerequisite on the accuracy of Z. If Z is not too bad the residual
Az — b is small.

In practical applications frequently uncertain data occur. Those can
frequently be packed into the right hand side. We therefore assume
bounds b,b be given for the right hand side b. In interval notation it
is [b] = [b,0] := {beR" | b < b < b} with componentwise <. We ask for
bounds for the solution complex

S (A = {2 [ Az =bbe [b]}.

For practical applications it turns out that it is superior to ask for bounds
for 3 (A, [0] — AZ) and use Y (A, [B]) = T + (A4, [b] = AF). Since in
practical applications [b] — A7 is almost symmetric to the origin we use
|[b] — AZ] := y with y; = max|[b]; — (4%);|.

.

Definition 7. For a nonsingular lower triangular matrix L € R™*” and
right hand side b € R™, b > 0 we define y := L\ b by
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i—1
yi o= (b + » _ |Lij| - b;) / |Liil - (4.1)

i=1
Furthermore y := L \_b is defined by (4.1) using upward directed round-
ing.

This form of backward substitution satisfies L\b = (L)~ -b where (L)
'is the comparison matrix (see [Neu90]). L "\ b yields the upper bound
of the result of performing interval backward substitution for L and b.

Using b > 0 implies L™ -b € L\ b C £L "\ b. For upper triangular
and diagonal matrices \ and "\ are defined similarly.
Definition 7 implies

M-T.D=t.L71.([b] — AZ) C £z for

2= MT\(D\(L\ |[p] - AF])) = (MT)™ . D~' (L)™' - |[b] - AF]| .

Define
y 1= MT\ (D\(L\(1A]-2)) = (MT)™ - D7t ()™ -] - 2 .

Then y € R*,y > 0. Assume z > y and let 6 € R be given such that
6> yif(zi—yi) forl<i<n,

Using R := <MT>_1 D71 (L)"1 this implies
y+oy=R-|A|-(z+62)<6-2.

The quantities z, y, R and 6 are nonnegative. Hence for all C €
RP*™ 2 € R" with 0 < |C| < R-|A] and 0 < |2] < z + 6z holds

-8 z2<C-2<b 2.
Therefore for all 7 € R*,0< |Z] < zand X :=2+ 6 -2z € PR®

C-XCint(X-3) or z+C-X Cint(X) . (4.2)

The operations in (4.2) are the power set operations. The assumptions are
valid for C := M~T.D=1.L='.(LDMT - A) and every z = M-Tp-tL-.
(b—AZ), b € [b]. X isnonempty, compact and f(z):=Zz+C-z:R" = R"
is continuous such that (4.2) and Brouwers Fixed Point Theorem implies
the existence of a fixed point Z of f within .X. Using theorem 11 in [Ru86]

implies the nonsingularity of A and

Th

Tt
Ps¢
alg
let

P
Th
Sys

bac
triy
adc
2n

2n
2n
2n

Co
8 Is

(b -
effo
’iha



(4.1)
1 round-

here (L)
r bound
[ and b.
iangular

) — A7 .

NEER
ch that

all C €

(4.2)

ptions are
Dbkt
]R” — R"
m implies
in [Ru86]

INCLUSION OF THE SOLUTION ... 33

T=I-C)1 - Z=(MTDIL1A) 1. Z=A"1b-AF) e X .
Therefore, observing |X| < (1 + 6) - z we have the following theorem.

Theorem 8. Let A € F**" be an M-matrix of lower, upper bandwidth
p,q, resp., 8 = min(p,q) and L, DM the computed matrices using
algorithm 1 with di, > 0 and € < 0.01. Define B € R"*» by (2.9) and
let [b] € PR", T € R™, |[b] — AZ| = max{|b— A%| | b € [b]},

z:=MT (DN (LN |[b] - 4Z])) €R™ and
y =M (DN (LN (e |B]-2))) €R"

using the backward substitution "\ as defined in Definition 7. Assume
z >y and let some § € R be given with § > yi/(z; —y;) for 1 < i < n.
Then A is invertible and for every b € [b] the solution A=1-b of the linear
system Ax = b satisfies ‘

ATV bez+(146) 2. (4.3)

The quantities used in Theorem 8 are all rigorously computable. One
backward substitution of the form of Definition 7 for a triangular ma- .
trix of bandwidth § requires less than n - B operations. Hence the total
additional effort to obtain guaranteed bounds is

2n - (p+q) operations for computing B
n-(p+q+1) operations for computing |[b] — AZ|
2n-(B+1) operations for computing z
2n-(B+1) operations for computing y
2n operations for computing 6
n operations for computing  + (1 4+ 6) - z

counting one addition and one multiplication as one operation.

Corollary 9. The computational effort for the bounds (4.3) in Theorem
8 is less than n - {3(p + q) + 48 + 8} operations.

This compares to n- {(p+q) +25+3} for computing z+MT\ (D\ (L
(b — AZ))). When accepting slightly weaker bounds the computational .
effort can be further diminished in obvious ways. It should be stressed
Ehag COI‘OH'il\I;y 9 estimates the total computational effort after computing

L, D and M. The cost reduces for symmetric matrices in obvious ways.
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Following the proof of Theorem 8 it is i%mediately clear that A =
A — LDMT can be replaced by A = A — GGT together with Lemma 6
for estimating A. '

Theorem 10. Let A € F"*" be a symmetric positive definite matrix
of lower bandwidth p and G be the computed Cholesky decomposition
using Algorithm 2 with Gir > 0 and € < 0.01. Define C' € R"*" by (3.4)
and let [b] € PR", Z € R, |[b] — AZ| = max{|b - Az| | b € [b]},
z=GT \ (G \ (|[b] - AZ])) € R" and :
y=GT (G\ (¢-C-2)) €R"
using the backward substitution "\ as defined in Definition 7. Assume
z > y and let some § € R be given with 6 > yif (2 —y;) for 1 <i<n.

Then A is invertible and for every b € [b] the solution A™'b of the linear
system Az = b satisfies

Al bez£(1+6) 2.

In a practical implementation we need memory for A, b, T and one
additional vector z. Then the algorithm would calculate A\ b =: T using
the additional z, then z := |b—A%F|,z= AN z,b=€C-zandb= A\ b.
Then § = maxb;/(z; —b;) and A~ -beZ £ (1+9)- 2

Given 5,5 the total additional computational effort for computing
guaranteed bounds is less then n - (63 + 8) operations. The total effort is
therefore  -n - 8%+ 8n- (64 1).

For M-matrices the interval version of Gaussian elimination is always
executable, at least when computing in IR. The computational effort is 2.
n3 when counting one interval operation as two floating-point operations.

For symmetric matrices of bandwidth 3 these are % .m - 3% operations.

5. Numerical results

All of the following numerical results are obtained using IEEE 754
single precision which is equivalent to roughly 7 decimal digits in the
mantissa.

Our proposed approach first computes a floating-point decomposition
of the matrix of the linear system (LU, LDLT or Cholesky) and then
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uses an estimation of the residual A — LU , A — LDM T A-— IDIT or
A-GGT, respectively to obtain verified bounds for the solution together

. with the nonsﬁigularity of A. In the following examples A is symmetric.

Extensive tests with nonsymmetric A have been performed yielding very
similar results.

The results of our proposed algorithms are referred as new(Gaufl) and
new(Chol). They are compared with interval Gaussian elimination using
LU-decomposition (referred as IGA) and with interval Gaussian elimina-
tion using LD L”T-decomposition (referred as IGAS). Counting one inter-
val operation as two floating-point operations IGA requieres % -n-3% and
IGAS % +n - 32 operations for symmetric matrix of bandwidth B. This
is a factor 4 of IGA against our method. Both algorithms use interval
backward substitution for obtaining verified bounds for the solution.

When using interval arithmetic over real numbers IGA without pivot-
ing will produce an inclusion of the solution for M-matrices (see [Neu90]).
When executing IGA with interval arithmetic over floating point numbers
the small overestimations due to directed rounding of the floating-point-
bounds may force a breakdown of the algorithm at a certain point, that
is division by intervals containing zero occurs.

All of the right hand sides of the following linear systems are con-
structed such that the ith component of the true solution is —1— Other
right hand sides have been tested and showed similar results.

We always display two results for such a linear system Az = b, one for
point data and one for interval data with relative perturbations of 1E-5.
That is we look at the solution of the interval linear system

{2 | AZ =bfor |A— A| < 1E-5-|A], |b—b| < 1E-5- [b]}.

For point data, interval data inclusions X, Y are produced, respec-

tively. In the following we display the minimum and maximum relative
error of X and Y w.r.t. the solution of Az = b, i.e.

minM and maxM
i 1/ i 1/3

and similarly for Y.
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Our first example is the well-known matrix

2. -1
-1 2 -1
- (5.1)

-1 2

The following graph shows the minimum and maximum relative error
of the computed inclusion versus dimension for :
new(GauBl) solid line
new(Chol)  dashed line
IGA dotted line

for point data. All graphical output is in a semilogarithmic scale. For
comparison we also display -

cond(A4)/107 circles (we are computing in single precision).

(5.1) point data, - new(LU), - new(Chol), : IGA
101 T Y v

100 |

10+

102}

103}

104 B T o |

108}

106 e

7 . : R . .
. 0 1000 2000 3000 4000 5000 6000

Graph 1: matrices (5.1), point data

The results show that the minimum relative error is almost constant
whereas the maximum relative error grows with the condition number.
This is due to the fact that the components of the solution differ by
several orders of magnitude. IGA works for higher dimension better than
new(Gauf). However, for dimensions beyond 4000 some components the

e e e i — =
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inclusion become wide.

37

.In the following graph the same situation is shown for interval data
with relative perturbation 1E-5 in the matrix and right hand side. For
comparison we display

108

102

10!
100}

101}

cond(A)/107 - 107-1E-5  circles..

(5.1) interval data, - new(LU), - new(Chol), : IGA

102f

107+

104}

10-S

0 1000 2000 3000 4000 5000

Graph 2: matrices (5.1), interval data

Following are the results for IGAS. Obviously interval dependencies
are responsible for those very bad results. The algorithm fails already for

20 unknows.

10!

(5.1) point data, -. IGAS

100

10}

102}

103}

104}

10}

10-6L

T r

6 8 10 12 14 16 18

Graph 3: matrices (5.1), IGAS

20
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Following is the discretisation of the Poisson equation with

4 -1 ' M I
-1 4 I M
M= and A= (5.2)

-1 4 -1 M

The bandwidth equals the number of rows of M, the condition number of
A increases with the bandwidth. The following graph shows the minimum
and maximum relative error for the inclusion computed by new(Gauf})
and new(Chol) for bandwidth 5 and 10. Bandwidth 5 has been computed
up to 10% unknowns, bandwidth 10 up to 5 - 10° unknowns.

1 (5.2) 5/10, point data, - new(LU), — new(Chol)

1061

1441

10-7}

|lﬂl.ll L

108 i " " s " A '. " i X lU’
0 1 2 3 4 5 6 7 8 9 10

Graph 4: matrices (5.2), bandwidths 5 and 10, point data
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(5.2) 510, interval data, - new(LU), -- new(Chol)

...............
.........

10.5 lL " i A M N L " M "
0. 05 1 15 2 25 3 35 4 45

Graph 5: matrices (5.2), bandwidths 5 and 10, interval data

x10°

We see that both algorithms produce very sharp bounds independent
of the number of unknowns.

For bandwidths 20 and 40 the situation is similar.

104 (5.2) 20740, point data, - new(LU), — new(Chol)

105k

104

L SRRl

ST .

4 [ss

x103

10 . L i " " i " i s
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Graph 6: matrices (5.2), bandwidths 20 and 40, point data
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v (5.2) 20/40, interval data, - new(LU), — new(Chol)

1041

105 = r = r r n n n y 1 r
0 02 0.4 06 08 1 12 14 1.6 18 2

Graph 7: matrices (5.2), bandwidths 20 and 40, interval data

Matrices with bandwidth 20 have been computed up to 2 - 10°, with
bandwidth 40 up to 8 - 10* unknowns.

x10%

We also tested the interval version of Bunemann’s algorithm as pro-
posed by Schwandt [Sch84]. We obtained for as small examples like 5110
unknowns, bandwidth 10 inclusions of the solution with relative error far
beyond 1.0, i.e. no correct figure of the result.

The following Graph shows the results for a point matrix of band-
width 10.

103

bandwidth 10, point data, - Schwandt

102 -
100 |
100 |
101
102}
109}

104}

105}

106 Lo I - —— ————— - T I T
1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Graph 8: matrices (5.2), bandwidth 10, point data

tl
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The rapid growth of the maximal relative error is due to the increas-
ing number of recursive calls. Only in the middle (around the 2500
unknown) the‘relative error is large.

From [Gre69] we used example 4.16

5 —4 1 \
( -4 6 -4 1

1 -4 6 —4
A= (5.3)

\ 1 —4 5/

with eigenvalues A\ = 16 - sin* (%) , k=1...n.

Following we display
new(Gaul)  solid line
new(Chol)  dashed line
IGA dotted line
IGAS dashdot line
cond(A)/107 circles .

s (5.3) point dats, - new(LU), ~ new(Chol), : IGA, -. IGAS
10 . . + v - .

10 | ,
10! | ' I
109 | ,,
101} i
102}
103 ’-
104}

105

106}

107

2 4 6 8 110 1.2 14 16 1.8 20
Graph 9: matrices (5.3), point data

Obviously the new method with LDLT-decomposition is superior to
the others. It yields at least one correct figure for dimensions up to 20
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whereas the others give up at much lower dimensions. The graph for
interval data looks totally similar.

Finally dependency on the dimension for constant condition number
was tested. We choose

A= (5.4)

with value for a such that cond(A4) = 10°.

(5.4) point data, - new(LU), — new(Chol)

1o-l§

102 5 ............................... : -
103}
N -

0o 12 3 4. 5 6 7 8 9 10
Graph 10: matrices (5.4), point data

The new algorithms show equal performance independent of the di-
mension. The maximum relative error of the inclusion is equal to
cond(A)/107. That means the accuracy of the inclusion equals the sen-
sitivity of the solution w.r.t. perturbations in the last bit of the input
data.

The results for interval data are totally similar.
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