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OPTIMAL SOLUTION
OF INTERVAL LINEAR ALGEBRAIC SYSTEMS. I

- Sergey P. Shary

For an interval linear algebraic system Ax = b, the problem of compo-
nent-wise evaluating the united solution set X *(A, b) = {A_lb | A€
A, b € b} is considered. An iterative PSS-algorithm is introduced
to compute optimal (exact) component-wise X *(A,b) estimates. Some
possible generalizations are pointed out, concerning interval linear algebraic
systems with tied coefficients in particular.

OIITUMAJILHOE PEINIEHMNE
. MHTEPBAJIbBHBIX CUCTEM o
JIVHENHBIX AJITEBPANYECKNX YPABHEHUMU. 1

C.II. Tapsit -

518 MHTepBaJILHOM CUCTEMBI JIMHEMHBIX aJrebpaMyeckux ypaBHe-
mmit Az = b paccmarpmBaercsa 3asaua TIOKOOPAWHATHOIO OLEHHUBA-
. -~ * b
Hua obbeamuénHoro Muoskectpa pewennii X *(A,b) = {A 1p| A€
A,b € b}. IIpenJiorkeH UTepaTUBHbIN PSS-anzopumm nnsa Bbrumc-
X*(A,b
JIeHMsl ONTUMAJIbHBIX (TOUHBIX) MOKOOPAMHATHBIX OLIEHOK , D).
Yka3aHbl :HeKoTopble U3 ero o6o6iuenmii, kacaloumecs, B YaCTHOCTH,
MHTEpPBaJbHbIX JIMHEWHBIX aJre6panyvyccKMX CUCTEM CO CBA3AHHBIMM

koapprumMenTaMmn.

© S.P.Shary, 1991



8 S.P. SHARY

Several interval problems are well-known that naturally generalize the
familiar linear algebraic system

Az = b (1)
All of them are usually denoted by one formal notation
Az =Db, (2)

— interval linear algebraic system (ILAS) with interval matrix A 3 A and
interval right-hand side vector b 3 b. The most popular, and historically
first of these generalizations, is the problem of finding outer component-
wise estimates for the united solution set (USS)

X*(A,b) = X* = {z€R"| (FA€ A) (B eb) (Az=b)}

— the solutions set of all real linear algebraic systems contained in (2). It
is often formulated as follows:

find an interval vector V that contains
the united solution set of the given ILAS.

(3)

If the components of V have the least possible lengthyi.e. coincide with
the projections of X*(A,b) onto the coordinate axes, then V is called
the optimal interval solution of the problem (3) and the corresponding
componentwise estimates X*(A,b) are called optimal ones. When re-
ferring to this problem one sometimes talks about solving interval linear
algebraic systems or even solving interval linear equations [8,23]. To my
mind, the wide-ranging term outer problem for interval linear algebraic
systems is more suitable for this case.

A large number of papers are devoted to problem (3), see for exam-
ple [1,3-5,8,11,13-17,23-25] and extensive references there. All the algo-
rithms so far devised compute an interval vector V guaranteed to contain
the set X*(A,b), but only a few of them ensure optimality of V in general
and such algorithms are very labour-consuming (see, e.g., [4,23]).

The purpose of this work is to construct a class of PSS-algorithms to
compute effectively optimal or near optimal solutions of ILAS (i.e. of
the problem (3)) and of some other similar interval algebraic problems as
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well. Section 1 presents necessary notation, reviews some facts of interval
analysis and states the problem. Section 2 is devoted to the construction
proper of the simplest PSS-algorithm, and Section 3 gives a proof of
its convergence to optimal USS estimates. In §4 the basic algorithm is
improved to incorporate accuracy control and to save storage. Finally, §5
discusses some possible generalizations of the technique elaborated in the
previous sections. In particular, the outer problem for tied coefficients
ILAS, of practical importance, is considered. This problem statement is
non-traditional for interval analysis, but a version of the PSS-algorithm is
shown to solve it successfully after introducing some fictitious variables.
A good many of the results stated below were first published in abridged
form in [27] and in [28].

The author is grateful to Dr. V.A. Novikov for his critical analysis of
this work.

1. Notation, conventions and problem statement

Let IR be the set of all real intervals [a; bl on R, a <D,
"~ IR™, the set of n-dimensional intefval vectors.
In this paper intervals and other interval objects are denoted by boldface
letters while non-interval (real) objects are not distinguished in any way.
Also, we need the following notation

a, a denote lower and upper bounds of the interval a, respectively,
med a = (& + a)/2 is the mean value (median) of the interval a,
wid a = a — a the width of the interval a,

la| = max{|al, |a]} - absolute valuc of interval a,

(a) min{|al,|al}, if0 ¢ a,
a o]
0, if 0 € a,
— the mignitude or least distance between points of a and zero, which is

in a scusc the opposite of absolute value.

If a = (a;)/, is an interval vector, then all above defined operations
shall be understood component-wise, so that med a. for instance, is real
. AN
vector (med a; )il .

Throughout the rest of this paper, all arithmetic operations with inter-
vals and interval objccts are those of classical interval arithmetic [1,5,14,15].
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except for division by a zero-containing interval, where we will make use
of the extended Kahan arithmetic [12]. Besides common intervals of IR
its elements are sets of the form (—oo;p] U [g; +00), p < ¢, and (—o0; p]
and [g;+00). We allow the equalities p = —oo and ¢ = +o00, so that
the former of these sets includes the latter ones. Results of the division
a/b, 0 ¢ b, and of all other operations on objects from IR are the same
both in classical and in I{ahan interval arithmetics. For convenience, we
write results concerning the division a/b, 0 € b, in detailed form:
I. b=0.
If 0 € a, then a/b = R - the whole real axis, and
if 0 ¢ a, then a/b = @.
II. b#0.
1) Let zero be one of endpoints of b.
If 0 ¢ a, then a/b = (—o0; —(a)/|b|]
whena<0<borb<0< a,
and a/b = [(a) /|bl; +0) |
when both a and b are nonnegative or nonpositive intervals.
If 0 € a, then a/b = R.
2) Let b< 0<b. , .
If a > 0, then a/b = (—o0;(a)/b] U [(a)/b;+00)
and
“ifa< 0, then a/b = (—o0; —(a)/b]U [—(a)/b; +c0).
If 0 € a the set a/b is the union (—oo; 0]U[0; +00), i.e. coincides
with the whole of R.
It is worthwhile to note that in the Kahan arithmetic the fundamental
property

axb = {axb|a€a, beb} forxe {4+, -, -, / }
holds (which is the basis of the classical interval arithmetic too) as well
as inclusion monotonicity.

Let A De an interval n x n-matrix and b € IR™. As was already noted,
the united solution set (USS) of the interval lingar algebraic system (2)
18

Y*(A.b) = X* = {2 €R"| (34 € A) (3 eb) (Az =b)},

and the problem of concern to us is that of computing the most accurate
“outer” component-wise estimates for this set, i.c. the problem of evalu-

ating min{ey | o € X*(A.b)} from below and max{x; | * € X*(A,b)}
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from above, k = 1,2,...n. In what follows, our attention will be focused
on finding min{x, | = € X*(A,b)} because

max{zr | € X*(A,b)} = —min{zx |z € X*(A,-b)}.

Besides, in interval analysis A is usually assumed to contain non-singular
matrices only in order to ensure USS boundedness. We shall consider
also that some initial approximation interval vector V' 2 X*(A,b) is
alrcady known. It may be found by any of the algorithms presented in
[1,3,5,8,11,13-17,24,25] and its size does not matter in the sequel, though,
of course, the choice of more “narrow” initial approximation favors faster
convergence of the algorithms developed.

-

2. Basic algorithm

Let [ be a straight line in R" with parametric equation

([ Xy = 1
Th—1 = Tk-1
0w =y (4)

Tht1 = Tk+1

L T, = T, (y € R — parameter),

parallel to k-th coordinate axis. Each such line is defined completely by
the (n — 1)-dimensional real vector © = (71,.-sTh=1,Tk+1, - - )T,
“and to indicate these line parameters explicitly we will sometimes denote
the line as I(r). Let also

Q@) = min{ 2, |z € X*(A,b)NI(r)}
e the least A-th coordinate value of points from intersection of I(r) with

the united solution set of ILAS (2) (if X*(A,b) Ni(r) = &, then set
Q(r) = +00). How are the function values Q(r) computed?
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Fig. 1

To answer this question we “substitute” the parametric equation (4)
into ILAS (2), which then turns into a system of n linear equations with
only one variable y and interval coefficients:

[ AnkY - Z?jzl,j#k} a,jr; = b,;.
or in matrix form )
Aky + Ar = b. (6)
where Ay — k-th column of the matrix A,
A - interval n x (n — 1)-matrix obtained from A Ly removing its
k-th colwinn.
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The essence of this procedure is as follows. When substituting the
parametric equation (4) into the point system (1), we get a system of n
one-dimensional equations that coincides with (5) in structure, but has
real coefficients. Then vary the elements a;; of the matrix and the element
b; of the vector within the prescribed bounds a;; and b;, respectively.
Clearly the set of all point systems so obtained forms exactly (5)-(6).

It is easily seen that the solution of the i-th equations of this system
is the set

n
(b; — Y air; )/ au (7)
Jj=1
itk
where “/” is, in general, the Kahan arithmetic division. Having solved
separately each of one-dimensional interval linear equations belonging
to the system (5), intersect their united solution sets (7). Since within
all intervals entering into (5) the corresponding coefficients are varying
independently from each other (as in the initial ILAS), the set we have
thus gotten gives k-th coordinate values of points from X*(A,b)Nl. Note
that it may proved to be empty if the system (5)—(6) is incompatible, or
non-connected (as shown in Fig. 1) if some of equations from (5) have
solutions (—oo;p] U [g;+00), p < ¢. Nevertheless, X* N1 is always a
bounded set. Indeed, owing to the matrix A’s nonsingularity at least one

of ajk, ask, . - -, ank shall not be a zero-containing interval, and the USS
of the corresponding equation has to be a bounded set.

For the rest of this paper, the fact of fundamental importance is that
of reformulating the outer problem for interval linear algebraic systems
as an optimization problem —

min{z; | z € X*(A,b)} = min{zy |z € |J (X*(A,b)NI} =
INV#2
= min { min{z, | € X*(A,b)NI(r) } | (8)
r e (Vla---,Vk—I,Vk-i-l,- ..,Vn) } =
= min{ Q(r) |r € (Vl,...,Vk_l,Vk+1,...,Vn) }
— i.e. as a problem of minimizing the objective function Q(r) on some

finite-dimensional compact set. We have already seen how to compute
the values ©(r), and so one would think that the “outer problem” may
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be solved successfully by any of the well-known global optimization al-
gorithms®. The objective function Q(r), however, has a disagreeable dis-
tinction: it is not even continuous in general. Given, for instance, the-
interval system from [3]

]

(-ra 24) = = (33)

(its united solution set X* is represented in Fig.1), we have

—2;2
-2;2

)

lim . Qr) =2 # -4 = lim Qr)

r—~3-— r—-=3+0

when estimating min{z; | z € X*}.

These circumstances crucially limit the range of global optimization al-
gorithms applicable to the problem (8). Currently popular methods from
[6] and [20] are obviously unfit for solving (8), because they substantially
exploit Lipschitz continuity of the objective function.

Nevertheless, we shall demonstrate that the “outer problem” can be
solved by an algorithm of successively improving estimate type (in terms
of P.S.Pankov’s classification [19]). In interval mathematics since the pi-
oneer work of S.Skelboe [30], this this kind of method was developed ex-
tensively by R.E.Moore [15], N.S.Asaithambi, Shen Zuhe and R.E.Moore
2], E.Hansen (9], K.Ichida and Y.Fujii [10], H.Ratschek [21] and many
others. We need only to construct effective ways to compute a domain
minorant for £(r) (its inclusion function’s left endpoint).

To put it another way, for any r = (P1y. .oy The1,Tht1,y...,Tp)] €
IR™! we have to evaluate

min{Q(r) |r €r} =

(9)
= min{z, | 2 € X*(A,b) N (r)}

from below. The simplest way of doing it is as follows. We proceed
with the initial interval system (2) just the same as in the case of de-
termining (X *(A, b)NI), but now intervals ry,...,rx_1,rxq1,...,r, are

TA good survey of Russian works on this sub ject was done by P.S.Pankov [19].
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substituted for xy,...,Zr—1, Tk41,- .., Ty in (2) rather than real numbers
T1y.++yTke1,Tk41,---,Tn. Then, as before, we shall compute the united
solution set S of the system formed by n one-dimensional interval equa-
tions

(aiky + 2fj=1 k) 315%5 = bu,

4 ; i3 (10)

| anky + E?jﬂ,#k} an;rj = by,
or )
Aw + Ar = b, (11)

in the notation of (6). It is now fairly simple to realize that

52 {or | = € X*(A,b) ()

rer

inasmuch as

{ USS of the system Agy + Ar= b} C
{ USS of the system Aiy + Ar= b}

for all » € r. Therefore

Q(r) = min{ SNV}

gives the required low estimate for (9) (cf. with operator I in [18]). If the
system (10) is incompatible for some r (that corresponds to X*(A,b)N
I(r) = @ for all r € r), then put Q(r) = +o0.

We utilize the notation §}(r) to emphasize that the procedure we have
implemented is actually a kind of natural interval extension of Q(r) [15].
We may even consider a function € : VYV — R’ to be defined, with
range in the semi-extended real axis R = R U {400}, and with the set
V ={relR"!|rC(Vy,....,Vic1, Vis1,..., V,,)} as its domain. It
is worthwhile to note that Q(r;) > Q(rz) for r; C ry, and evaluating (9)
through €(r) is more precise, the thinner the vector r is, i.e. the smaller
| wid r || is, provided some natural restrictions on A, b, V, and r are
imposed. This assertion will be discussed thoroughly in §3.
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Finally, we are ready to construct our algorithm for determining min{z
| = € X*(A,b)}. This is an iterative procedure for successively refin-
ing this low value estimate based on the well-known “branch and bound

method” strategy, similar to what has been done for optimization prob-
lems in [2,7,9,10,15,19,21,26,30] and other works. Here, bisections of the
initial (n — 1)-dimensional box

(Viyeety Vie1, Vigty -, Vi)

(it contains all vectors r corresponding to lines I(r) that have nonempty
intersection with X*(A, b)) to thinner ones P, P C (V1,...,Vi_1, Vi1,
..., V,), form ”branches”, while computing Q(P) — k-th coordinate esti-
mates of points from {X*(A,b)NI(r) | r € P} — corresponds to finding
“bounds”.

The algorithm generates an ordered list A consisting of pairs (P, Q(P)),
P C (Vi,..., Vo1, Vigr, ..., V), so that the second members of all
pairs increase. The first pair (Q, 2(Q)) of the list A is of special impor-
tance in our consideration. We will call it, as well as the related box Q
and estimate 2(Q), the leading one. Before starting the algorithm the
list A contains the only pair ((V1,..., Vi—1, Vi41,..-, V), V). The
sequence of steps is then carried out, each divided into several stages:

1. In the leading box Q choose the largest component Q,,, i.e. the
one such that
wid Q,, = max wid Q;. If several components of Q have maxi-
mum width, then m is the number of any one of these.

2. Bisect the leading box Q in component m to get descendants

Q’ = (Qla-"an—la[gm;med Qm]va+1,---,Qn)7
Q" = (Qla---an—l,[med Qm;—Qm]an+1,---,Qn)-

Compute 2(Q’) and Q2(Q").

Remove the late leading pair (Q, 2(Q)) from the list A.

5. Insert new pairs (Q',2(Q’)) and (Q”,2(Q")) into A in proper
order (of increasing second member).

Ll

Thus, executing the algorithm yields a non-decreasing (beginning with
the second step) leading estimates sequence which is shown in [21] to
approximate the required min{z, | r € X*(A,b)} from below. In the
next section we prove that this sequence converges to the exact min{zy |

z € X*(
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z € X*(A,b)} value. We shall refer to this class of algorithms to solve
the outer problem for interval algebraic equations, based on adaptive
Partitioning of the united Solution Set, as PSS-algorithms. The main
idea of the basic method described above will be further developed and
updated to result in highly perfected computational procedures.

3. Convergence proof

Lemma. In the PSS-algorithm the component length sums of the lead-
ing boxes tend to zero.

Proof. We will show that the sequence {0, } of component length sums
of the leading boxes is majorized by some sequence {Z,} — 0. Define

o(P) — the sum of component lengths of a box P,
A, — the set of all boxes P such that the pair (P,(P)) is contained
in the list A at the beginning of the v-th algorithm step and then
becomes the leading one at a step with some number > v.

It is not hard to see that if

r, = max a(P)

then ¥, > 0, and the sequence {X,} is non-increasing. Indeed, the set
Au41 contains all boxes from A, except the box Q that was the leading
one at the v-th step: instead of Q the set A 41 may contain or not contain
its descendants Q' and Q”. Since

a(Q") < o(Q) and c(Q") < o(Q)

we conclude

= > = V 0.
¥, Inax o(P) > Pren)ﬁ}i] o(P) Tog1 >

So, what is lim ¥, (which exists by the well-known Weierstrass theorem)?
When limX, = 6§ > 0 there is positive integer p such that
2n

2n —1

5> %, 26
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provided v > p (n denotes dimension) and therefore

2n

T 16 > o(P)

for al P € \,, v > u. Having fixed v > p consider any box P € A,.
Suppose the largest term in the sum o(P) corresponds to j-th component
of P. According to the very definition of A, there exists a positive integer
pp, pp > v > psuch that P will become leading box at the pp-th step
of PSS-algorithm. At that time it will be bisected in its j-th component,
and for every descendant P’ of P

o(P') < o(P) = o(P)/2n = 2"2;10(1)) <6 . (12)

is valid. If M = max pp, then inequality (12) holds for all boxes from the
set Aar4+1. But this contradicts the assumption ¥, > § > 0. Therefore,
lim ¥, = 0 as required.

This result was also obtained by H.Ratschek [21] and V.I.Senashov
[26], but in other ways. '

Theorem. Let the interval linear algebraic system A. x = b and interval
vector V. D X*(A,b) be such that

( for each 1 = 1,2,...,n the following condition holds :
zero is not an endpoint of a;x
or
4 for each T C (V1,..., Vie1, Vigts- .-, Vn) (NZ)
zero is not an endpoint of the interval
{ (bi — Yj=1ayT;).
J#k

Then the PSS-algorithm of §2 converges to min{z | z € X*(A,b)} from
the initial approximation V.

Proof of the Theorem, in contrast to [2,9,10,15,19,25], is not trivial be-
cause the objective function (r) is in general discontinuous. The most
general conditions on the objective function and its domain minorant,
sufficient for this type global optimization algorithm to converge, were
formulated by Yu.G.Evtushenko and V.A.Rat’kin in [7]. Despite appar-
ent simplicity, their verification, however, may become rather complex
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for concrete problems. Our proof of the Theorem boils down to this,
actually.

Let B denote the set of all those i € {1,2,...,n} for which 0 ¢ a;,
where the united solution sets of the corresponding equations from (10)
are bounded intervals [y ;%;]. B is not empty because the interval matrix
A is nonsingular. Also denote Y = {1,2,...,n}\B, and for ¢ € CalU
let (—oo;y.] U [7;; +00) represent the unbounded united solution sets of
equations from (10) with 0 € a;k, where y. = —o0 or J; = +00 when the
corresponding USS is a ray in R, and y, = §; = 0 when the USS coincides
with the whole of R.

In interval spaces the standard topology is set by the Hausdorff met-
ric, and all interval arithmetic operations are continuous relative to it
[1,14,15]. Hence, y. ‘and 7;, i € B, are continuous functions of (ry, ...,
Tk—1,Tktl,..-,Tn) " from (10)—(11). But when O € a;; the real numbers
y, and J; defining the USS of the one-dimensional equation

n

aiy + Y ayrj= by,
j=1
I#

also depend continuously on the interval vector (ry,...,Tk—1,Tk41y---,
r,)7, if a;, < 0 < &, or if (b; — Z#k a;;r;) never has zero as one
of its endpoints. This follows from formulae of §1 and is ensured by the
condition (NZ) of the Theorem. So, we may consider in the sequel the
values ming ;, maxpy, minyy., maxyy; to be continuous functions of
the vector r from (10)—(11) (as usual min & = 400, max@ = —oo).

Next we shall prove that the effective domain of the function Q(r),
i.e. the set dom Q = {r € V | Q(r) < 400}, is compact. If the vector r
belongs to dom (2, this means that the corresponding system (10)—(11)
is compatibile. Then, firstly, the intersection ﬂg[gi;yi] of all bounded
solutions of equations from (10)-(11) is nonempty. That is equivalent
to mingy; > maxpy,. Secondly, ﬂg[gi;y’i] has nonempty intersection
with unbounded solutions (—o0; y.| U [¥;; +00), ¢ € U, of one-dimensional
cquations of the system (10)—(11). The latter is equivalent to

miny. > maxy.)V (maxy, < miniy,;
('u Y; = B l,,) ( z?' Yi = z% i)
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On the whole dom € is described by the condition
min { mBmyz- —maxy,, max{mdny_i — maxy,, ményi - mgxyi} }> 0.

Since the function in the right-hand side of this inequality is continuous
on r, we have thus proved that dom ( is closed. Obviously dom §2 is
bounded as well, so it is compact.

In general the function Q(r) is not even continuous on its effective
domain. If r € dom 2, then

a(r) maxg ¥, if miny y, 2 maxg y,,

r e - . » - -
max{ maxp y, maxy ¥;} if minyy, < maxg y,

(Fig. 2 depicts various situations). Nonetheless, Q(r) is lower semi-

continuous on V [31].

: ' | min[/}’,‘ maxﬁ'
R A LA

maxﬁjj- mlnE};

min . F; max [/7;
|
4

" { i s

max g y; mn g 7

minl/j,' méx[/’—f
B hil bl i i

max g y; 2
-4 min ;, 7

Fig. 2
Indeed, let dom @ = Do U Dx, where

n-—-1 :
Dy= {re domQ C IR |n%}ngi2 mg,xgi},

D;= {re dom Q C IR™ | rrgn y; < max y.}-
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Then the function (r) can be defined in the following way:

maxg Y, , ifr € Doy,
Q(r) = { max{maxg ¥y, , maxy v:,}, ifr € D1,
+ o0, ifr € V\( Do U D,),

and Q(rg) < Q(r1) < Q(rz) for any ro € Dy, r1 € D; and ry € V\dom
). Moreover, described by non-strict inequality between continuous func-
tions, Dy is closed, and §(r) is continuous on both Dy and D;. So the
Lebesgue set {Q < c} is closed for any ¢ < sup{Q(r)|r € Do}. Suppose
now that ¢ > sup{Q(r)|r € Do}. Then all limit points of {Q < ¢}
can belong to (Do U D;) only because the complement V\(Do U Dy) is
open. But the set {Q < c}N Dy = Dy is closed in IR™™1 and the set
{Q < ¢} N Dy is closed in D,. Hence {Q < ¢} N Dy contains all limit
points of {Q < ¢} belonging to Do, and {§2 < ¢} N D; contains all limit
points of {Q < ¢} belonging to D;. Since

{<c} = ({Q <c}ln Do)__|U {Q LN Dy),

we thus get that the Lebesgue set {Q2 < c} is closed for ¢ > sup{Q(r)|r €
Do} as well. This completes the proof that (r) is lower semicontinuous
[31].

Denote by W the set of all point vectors from V, i.e. the set V NR"-1
The following reasoning depends heavily on whether we have WNDg # @
or WNDy=2.

If WN Dy # @, then all leading boxes Q belong to Dy. In fact, for
any p € WN Dy the inequality Q(p) > min{zi|z € X*(A,b)} is valid.
In case Q € D; we would have Q(Q) > Q(p), and thus

Q(Q) > min{z|r € X*(A,b)},

which runs counter to the leading estimate’s properties.

Whenever r € Dy,
min{Q(r)|(r € R™)E(r € 1)} = Qro) (13)

for some teal rg € T, 79 € R*7!, as long as the lower semicontinuous
function Q(r) attains its smallest value on the compact set {r e R*7|r €
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r} [31]. But || o —r ||<|| wid r ||. So, due to uniform continuity of Q(r)
on Dy, for any € > 0 there exists a § > 0 such that

0 <min{Q(r)|r er} - Qr) <€
when || wid r||< 6

(14)

Therefore, under condition (NZ), we have rigorously substantiated the
assertion of §2 that the accuracy of estimating (9) by means of Q(r) is
higher the thinner the vector r is (provided r € Dy). -

Now convergence of the PSS-algorithm of §2 can be easily proved. If
{Q)} is the sequence of leading boxes (as before, v is a step number),
then || wid Q™) ||— 0 by the Lemma. Hence for any € > 0 there is a
positive integer IV, such that, analogous to (14), the inequality

0 < min{Q(r)|r € QM} -~ QM) < ¢
holds for v > N,. Also making use of

min{Q(r)|r € Q"W} >
Z mm{Q(r)lr € (Vl, oo ,Vk—l, V-k+1, .o ,Vn)} =

= min{zk|z € X*(A,b)} > QQM),
we obtain
0 < min{zx|z € X*(A,b)} — Q™)) <€ for v > N..

But this is just the definition of convergence of the simplest PSS-algorithm.

Evidently the above conclusion remains valid if Dy = @ (then dom
0 = D;). To make certain of this we shall merely replace Dy by D; in
all preceding arguments beginning from (13).

Consider now the case Dy # @ and WN Dy = &. Let
T=min{ || ro —r1 || | (to € Do)&(r1 € W)}.

It is clear that 7 > 0, since W and D, are nonintersecting compact sets.
Then the set

{r € dom Q | min || r—r| <7/2} (15)



OPTIMAL SOLUTION ... 23

also does not intersect Dy, i.e. it is wholly contained in D;. Obviously
|r—7| > | wid r || /2, so that

min || r —r ||>|| wid r || /2
r

Hence the set (15) as well as Dy contains the subset D, = {r e dom( |
| wid r ||< 7}, to which all leading boxes beginning with some number
belong. The remaining argument is analogous to that of the previous
case: since the function §(r) is uniformly continuous on the compact set
D,, inequality (14) holds and so on. The theorem is thus completely
proved. ’

4. Improvements

Applying the simplest PSS-algorithm directly to practical problems
would evidently be unwise, notwithstanding its above convergence proof.
This algorithm can be considerably improved in many ways which are-al-
ready standard for this kind of method. Usually, such algorithms contain
the following modifications (see [2,7,9,10,19] and other works):

after revealing monotonicity of the objective function in some
variables one reduces the dimension of boxes from the list A;
tracing values of the objective function at some points of boxes
along with evaluating over entire boxes enables one to control the
precision of the approximation to min{zk|z € X *(A,b)} and to
delete useless pairs (that never become leading pairs) from the
list A; thanks to the last property growth of the list A size is
confined to some extent;

based upon local characteristics of the objective function one
employs minimization procedures in appropriate boxes which are
more effective than bisection;

one constructs a highter quality (more accurate) inclusion func-
tion for the objective function.

The latter two improvements are involved ones, and we postpone their
careful consideration until a future part of this work. But here we sacrifice
efficiency of our algorithms to get generalizations of §5.

As for the first of the above items, nomcontinuity of the objective
function ©(r) seriously complicates determining its monotonicity in any
of the variables. The standard way to do this — investigating the sign of
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the ranges of the derivative 9Q(r)/dr; — fails now. Moreover, verification
of whether Q(r) is continuous or not in a box is not at all simple. Taking
these facts into account, the author makes ventures to assert that intro-
ducing a monotonicity test into the PSS-algorithm does not essentially
increase its efficiency, but only weights the algorithm down and makes it
more sophisticated. So we shall pursue that idea.

Now, let £(P) be a point from P and let us compute Q(£(P)) along
with the estimate Q(P) for boxes P obtained by the algorithm. It is evi-
dent that Q(£(P)) > Q(P) and values Q(§(P)) approximate min{zy|z €
X*(A,b)} from above: if for each step of the algorithm we define

w = min Q(£(P)) (16)

for all such boxes P for which corresponding pairs have ever been in the
list A up to the current step, then, always,

min{z,|z € X*(A,b)} < w.
On the other hand, given a leading box Q,
Q(Q) < min{zi|z € X*(A,Db)},

and we may now terminate iteration when the quantity (w — ©2(Q)) is
sufficiently small. '

Therefore a pair (P, Q(P)), satisfying
QP)>w (17)

at a some step, never becomes a leading one and deleting it from the
list A has no influence on the algorithm’s performance. This condition is
asserted a priori for boxes P with Q(P) = 400’ (it immediately implies
Q(£(P)) = +o0) and corresponding pairs do note even need to be placed
into A. Altogether, by means of (17) we have to test all n>wly generated
pairs at each step of the algorithm, but completely cleaning the list A —
running through it and deleting pairs satisfying (17) — makes sense only
after the parameter w changes (i.e. decreases).

The ideal choice for {(P) is, of course,

¢(P) € Arg min{Q(r)|r € P}.
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In general, however, finding such a desirable {(P) is at any rate no easier
than solving the initial problem, so we shall take £(P) = med P to min-
imize any possible deviation of £(P) from the set Arg min{Q(r)|r € P}.

To summarize, we come to a slightly more perfect version of the PSS-
algorithm to compute min{zx|z € X *(A,b)}. As before it operates
with the list A of pairs (P,Q(P)), P C (V1,... Vi1, Vit1,---3 V),
ordered in terms of increasing values Q(P). Besides, the real parameter
w defined by (16) is connected with the algorithm. At the beginning the
list A consists only of the pair ((V1,..- Vi—1,Vit1,---, Vn), Vy), and
w is set to equal V. One step of executing the algorithm is made up of
the following stages :

1. If (w — (Q)) < ¢, then stop computation.

2. In the leading box Q choose the largest component Qn.-

3. Bisect the leading box in component m to subboxes Q' and Q".

4. Remove the previous leading pair (Q,(Q)) from the list A.

5. Compute 2(Q’).

6. If Q(Q’) < w, then insert the new pair (Q',Q(Q)) into A in the
proper order (of increasing second member).

7. Compute Q(Q"). ‘

8. If Q(Q") < w, then insert the new pair (Q",2(Q")) into A in
the proper order.
9. Compute

, { Qmed Q') , i (Q, Q) €A,

+o00 , otherwise ,

" { Q(med Q") , if (Q",2(Q")) €A,
+o00 , otherwise ,
and n = min{n’, n"}.
10. If w > 0, then set w = n and clean the list A : remove from it all
pairs (P, Q(P)) such that Q(P) > w. ‘
Here € is the prescribed absolute accuracy. In case ensuring relative
accuracy € is required, the termination criterion at stage 1 should be
taken as

(w-AQ))/UQ) < e

(w—2(Q))/wid Vi S €

or in some other way in conformity with practical needs.
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5. Some generalizations

The version of the PSS-algorithm developed above may be employed
to solve interval algebraic systems which are more general than linear
equations, i.e. to evaluate the united solution set

X5 ={z € R*|(3a € a)(F(z,a) = 0)}

component-wise, for F(z,a) = (fi(z,a), f2(z,a),..., fr(z,a)), a € IR™
and f;(z,a) having the form

1 2 m 1 1 n .
al, a2, a™ gl gL g
E a,7ay” . oam’ VB, Lz ,i=1,2,...,n, (18)
F \

where ai-j , B ; are nonnegative integers. If the USS of the system F(z,a) =
0 is an unbounded set, let X} be an intersection of the whole USS with
some interval vector u given beforehand ( similar to [18]).

Suppose we already have an interval vector V D X}. Asis easily seen,
further sharpening of k-th component estimate X to the optimal one can
be performed by the PSS-algorithm (leaving the question of convergence
open), if the following condition holds :

substituting real numbers for all variables z,, ..., Tk—1, Tk+1,
..., Tn, (except z}) transforms the initial interval system
F(z,a) = 0 into a system of one-dimensional linear interval equa-
tions with independently varying coefficients (resembling (10)-
(11)).
In turn, for the above statement to be valid with k = 1,2,...,n it is
sufficient that

A) each scalar parameter a;” has only one entry in each of f;(x,a),
! y

i=1,2,....n,
and
(B) all f;(z,a) are polylinear functions of the arguments z,,z,, ...,
Tp.

Allowing for (A)—(B) leads to a more exact description of a certain class
of interval algebraic systems amenable to the PSS-algorithm. Instead of

(18) we shall have

. Bl B B
fi(z,a) = E a;T, Ty . T 1 =1,2,... n,
J
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where ﬁfj =0 or ﬁf-j — 1 for any i, j,! from corresponding sets and each
a; is the only coefficient of one monomial in a single fi(z,a) (we use the
substitution @ = a* if necessary). If the united solution set is unbounded,
employing the PSS-algorithm may require changing slightly the way the
function  is computed : it shall equal the least k-th coordinate value
of points from intersection of the system (10)-(11) USS with the interval
vector u.

Sometimes practice requires finding the component-wise united so-
lution set X *(A,b) estimates for the interval linear algebraic system
Az = b whose coefficients are not independent from each other. As in
the initial ILAS (2) they are allowed to vary within prescribed intervals
a;j, b;, but are connected by the additional relations

¢1(all,alz,---,b1,...) =0,

Ya(ai1,a12,- -+, b1,...) =0, (19)
where 11,1, ... are some functions. We shall refer to these relations as
ties between aj1,a12,...,b1,..., and to the corresponding ILAS as a tied

coefficients ILAS. Traditional interval analysis approaches are unlikely
to solve such problems effectively, because classical interval arithmetic
operates only with independently varying quantities. Of course, we may
ignore ties (19) assuming all coeflicients to be independent and then apply
any of the well-known methods (e.g., from [1,3-5,8,11,13-17,23,24,25]) to
evaluate X*(A,b). An interval vector V will thereby be obtained which
contains the USS of the tied coeflicients system. X* and V, however, can
differ greatly in size even when V is optimal for the ILAS without ties.
So we ought to consider this vector V only as an initial approximation
for the optimal interval solution of the tied coefficients ILAS.

We shall examine the simplest form of ties (19), namely when some of
coefficients a;; are linear combinations of any other parameters

i
ay =Y char, cEeR, v=(i,7)el C{1,2,.. ., n}2 (20)
k=1

Here aj may be either the initial system’s coefficients a;;( after chang-
ing notation) or any other, additional parameters. Furthermore, all a,



28 S.P. SHARY

are assumed to vary independently within corresponding intervals and
none of the a, from the left-hand sides of (20) enters any right-hand
side of these equalities®. If the ties (20) are already substituted into
the real system (1) and all brackets are opened, then some of the a
may turn out to have several entries in the system so obtained. As-
sume these are aj,as,...,as,s < t. Declaring them as new, extra vari-
ables Tpy; = G1,Tp42 = A2,...,Tn4s = G, Gives rise to a system of
n algebraic equations of degree no more than 2, with n 4+ s variables, in
which the independently varying coefficients a;;, (¢,7) € {1,2,. n}z\I‘
Qs41, 0542, ,04,b1,b2,...,b, each enter only once. The correspondmg
interval system is

1

n .
Y= aijz; = by, i €H,

where

= {ie{,2,...,n}3j € {1,2,...,n} ) (i,5) €T )},
= {ie{1,2,...,n}|(Vi€{1,2,...,n} ) (i,§) ¢T)} =
= {1,2,...,n}\G.

It already satisfies the conditions (A)—(B) for applying the PSS-algorithm.
On the other hand, X*(A,b) coincides with the set {(z1,Z2,...,z,)|z €
Z C R™**} where Z is the intersection of USS of the system (21) with
the strip in R*** defined by

Tp41 € A1, Tng2 € 82,...5 Tngs € As.

Since an initial approximation for Z is known to be the interval vector
(V1,Va,...,V,, aj,as,...,a;), optimal component-wise X*(A, b) esti-
mates can be found then by applying the PSS-algorithm to the system
(21) on the 1-st, the 2-nd, ..., n-th coordinates.

*F.Sik in [28] dealt with a similar problem, but his primary interest was in char-
acterizing the set X*(A,b). J.Rohn [22] tackled the problem (3) with additional
weighed sum constraints imposed on the columns of real matrices from A.
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