ON TWO'ALGORITHMS FOR BOUNDING THE INVERSES
QF AN INTERVAL MATRIX

J. Herzberger and D. Bethke

We consider two different algorithms - an iteration method and a
finite approximation method - for including the inverses®of an in-
terval matrix. Some practical properties are derived and it is shown

that in some cases the results of both methods are asymptotically

the same.
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1. Introduction. Given an n x n-interval matrix A = ([a:j, aizj]) which only con-
sists of regular r‘ea}I n x n-matrices A = (aij). We consider the problem of
including the set of inverses A™! into a proper interval matrix X. The best
possible inclusion would be the interval hull of this set of inverses, but sol-
ving this problem is extremely expensive ( see [8] ). So, we are trying to

compute only a more or less crude inclusion interval matrix by some simpler
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methods. Historically, the first method for this problem was proposed by
Hansen in [4] . But no results were given concerning the quality of the me-
thod. For a special choice of a parameter matrix B in this method we can
derive formulas for the resulting inclusion matrix and can prove a monotoni-
city property. On the other hand, Herzberger has proposed an interval
Schulz-method for improving a given inclusion matrix in [5] . We are able to
show that, starting with the simplest inclusion matrix according to Hansen's
algorithm, this iteration method is monotonic and has asymptotically the sa-
me behaviour as Hansen's method. Finally, we prove an estimation for the
* rate of improvement for both methods compared with the initial inclusion and

thus generalize a result in [6] .

2. Notation. The methods under consideration make use of interval opera-
tions for interval matrices A, B, C, ... . Their definitions and basic properties
can be found in the monograph of Alefeld and Herzberger [2] Chapter 10.

As usual d(A) = (ai% = a:j) denote the width matrix of an interval matrix and

|A] = (max{la i, lael}) the matrix of the absolute value. Remember that for
a symmetric nuII matrix G with G = -G we have the special rules in [2]

Chapter 10 like
Gw = [T slla]
d(@) = 2 - |G| ,
H-G=IH|- -G
which will be frequently applied in the following derivations. Furthermore, we

are using the easy-to-prove equality

|H+G|=_|H|+|G|
By || - Il we denote the row-sum norm and get a norm for interval matrices
by Il 1Al Il . In contrast to [2] we denote the midpoint matrix of an interval
al +a2

matrix A by mid (A) = (——'JZ—'J) . Finally, we mention that real matrices

A= (aij) with a, = a are simply written as A = (a) if no confusion arises. In

the same manner we write interval matrices with equal entries.
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3. Hansen's method. Let A" = {A™1: A ¢ A} denote the set of the inverses

of all matrices contained in A , then we consider a real matrix B and define

E=I-A-B
g

-

Now, we assume that || |E| |l < 1 is fulfilled and compute the inclusion sets
for A7 by : I

ik
A_‘1 Ex(k) = B .'(vZOEV + R(k)) ) EO =1,
(1) ' Ji hee,

; L E| k1
with R&) = ([0 (G070 - |
' [ ] 1- 1 1El |

( see Hansen [4] ) . For a proper evaluation of the right-hand side exbres—
sion in interval arithmetic see also Hansen [4] . In practical computations
it is advisible to choose B ~ (mid(A))™" = A: . This is the reason wP‘1y we

are setting B = A: in the ‘sequel in order to derive - at least theoretically

- good results.

If we choose B = A:, then obviously
E=-Eand E=[-1,1]-|E|

holds true. Thus we get the explicit formula

A WS : STILENS 1 " ik 5 -1
vg?E —I+E-(V§OE)-I+[ 1, 11-1EI (I - |EI")(I - |E])
for the power-sum in (1) which is, of course, not of practical importance. In

(1) the question of the optimal-inclusion arises in the sequence {X¥)} . The

answer gives the following lemma.

Lemma 1: Let X¥ be defined as in (1) then
s X+ o xlid s 0

Proof: Due to the inclusion monotonicity of the interval matrix operations it
is sufficient to show that

k+1 ;
5 Ey + R(k+1) -
vso =

holds true. By the same argument it is sufficient to show that

Ek+1 + R(k+1) = R(k)



s g

is valid. But since we have

. k+2 \
(K - [- d K+1 _,M!::l_“_.)
R [-1, 1] (IIIEI =T

= [-1, 13- (HIEL 1< « ROV

and using again the inclusion monotonicity of the interval matrix operations

it remains to show that the inclusion
E<*? = [-1, 13- 1EI**" ¢ [-1, 11 F (b IET 1D
holds. But this is surely thg case since we have
IE <l 1EL XY - O

From this lemma we can conclude that the optimal result achievable by Han-
sens's method is

X* = lim X%
k—> J

Lemma 2: A" ¢ X* = A" - (“°§° EY) = AZ' + [4. 13« AT |EL +(1 = lENT' .

c

x(k)

Proof: This formula is the (existing) limit of the formula for given

above. |

In [2] Chaptef 16 we can find some estimations for E , namely

IEl =5 d(A) - 1A'

and -
1 I dcAa) |l
S p - —————————————————
I1EIN = 3 x(A) A y
C
with the condition number x(C) = ICll - |l o=t

4. Interval Schulz-method. Let Y > A™' be given, then we are

considering the following iterative process:

YOO = mig (YR + YEOT = Amid (Y1)
(2)
Y(k+1) = ?(k*“l) " Y(k), k=20 .

This is a monotonic version of the interval Schulz-method in [2] Chapter 18
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generalized for an interval matrix A . In [5] one can fing sufficient conditi-
fons for Y such that the iteration according to (2) improves Y(°), Since,

according to the definition of (2) , the property
Y(O) > Y(1) 5 Y(2) >... DY(k) 5 A—1
= Is trivial, we have again that the optimal inclusion achievable by (2) is

Y* = im Y%
k—

Method (2) requires an initial inclusion matrix Y(°)_3A—1 and we take the in-
terval matrix X(©’ for this initial inclusion from Hansen's method, Doing this,

we can prove following lemma.

Lemma 3: If we take Y@ = x() , where X is the interval matrix accordin
, 9

to Hansen's method (1), then we have
mid(Y4) =A™ ka0
Proof: This property is obvious for k = 0. For k = 1 we conclude as follows:
Y = mid(x¢2)) + x©) (1 - A mid (X‘®?))
= AT+ XCOT- A AT 2 ATty gl L E
c i c NG .
with E = - E.Thus we have mid (Y1) = A: and finally get

mid (Y") = mid (¥, x(o) = A SalE

C

The rest is- done by complete ‘induction. O

An immediate consequence of this lemma is the next property.

Corollary 4: If we take Y(©) = X.Soon where X g the interval matrix accor-
ding to Hansen's method (1) , then the method (2) has the special form
YD a1, vk g .
c
(2')
YD o Gkt yldr (el of -

But iteration method (2') can be further simplified. This is the content of the

next lemma.
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Lemma 5: If we take Y®) = X©  where X® is the interval matrix according

to Hansen's method (1) , then the iterates of (2') have the property

Y(k+1) EY(k) , k = 0 )

i.e. the intersection in (2') is a redundant operation,

Proof: Since (2') is a linear interval iteration method, it follows from the

( ~s
Inclusion monotonicity of the interval matrix operations that e [ x(e) = yle)

is sufficient for the monotonicity of the whole sequence of iterates. Let us

assume that

x(O) c Y(1) = A;1 + x(O) o E

holds true. From (1) we get with F = [-1, 1] - (_"_I_L1_ "E|E| ||)'

A: FeX°.E

or
Fc[I+F]-E .

N

Applying the width operator d on this inclusion léads to
"d(F) < d(E) + d(F-E)
2-|Fl <2-|El +2- [F| - |EI
|FI <IEl - (1-]ED™

Now, applying the row-sum norm || - || to this inequality we finally get
‘ HIEL N -1 hHI1El
SN 5N N N q el ¢ 1= U
" Trery ¢ PIEN T TEDTHN S SE
which is a contradiction for n = 1. Since mid (¥"?) = mid (X‘??) = A:

» ~
the asserted property A c X must hold. O

Corollary 6: I we take Y®) = X/  where X' is the interval matrix accor-

ding to Hansen's method (1) , t\F,ﬁen method (2) has the simple form
(2") YRV = AT e ¥ e k20,

We have considered two different methods for improving the initial interval

matrix X > AT, namely (1) and (2") . Both methods produce a nested
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sequence o? interval matrices {X(k)} and {Y™} respectively. Now the que-
. stion arises which method finally gives the better result. The answer of that
question is the following theorem.

)

=) is the interval matrix accor-

Theorem 7: If we take Y - )s(°). where X

ding to Hansen's method (1), then we have
Y)K = x*
Proof: All we have to do is to prove the same explicit formula for Y* as it

was shown to- be valid for X® in Lemma 2. For this purpose we are going to

verify that iteration (2") can be written in the form
Y = ATt 4 2% B, with 2%z 0, /
(2') where zV = IA:I + IA;1| -|F| (for F see Lemma 5) ,
z® = AT+ Z%V B fork =z 2.

We are getting the expression for Z by direct substitution of the expres-
sion for X‘© according to (1) into the iteration formula (2") . The general

formula for Z*) can be proved by complete induction in the following way.
Y(k+1) - A; 1 Y(k) E = A + [A;1 i Z(k) ‘E]-E

=A—1+IA_1+Z(k)'E|'E
- C

c

A—1 + [lA—1I I Z(k)' |E|]'E = A—1 L z(k-it’I)_E

C [=4 (=4
Since | 1E] Il < 1-is fulfilled, the iteration for 7™ converges. :’go the unique
fixed-point Z* with :

Z*

A= + z* - |E|
C
or

z =lianl| g = TIE | Drt
But then the matrices s converge to Y* with

* = —1 *' ".—1 - . _1- . —_ —1
Y =A'+Z"E=AT + [-1, 1] AT |E]- (I - |ED

which is just the formula for X*of Lemma 2 . [
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After this main result we are now proving an estimation of the rate of impro-
vement for Y* (= X*) in comparison to the initial iclusion matrix Yieh caxled,

This is a generalization of a result given in [6] .
\
Lemma 8: Let Y* be the limit of the iterates according to method (2) star-

ting with Y = X \where X‘®? is the interval matrix according to Han-

sen's method (1), then we have

NdeX™I o hdeY®n
Idx{@) I ax©) g

Ji=

Proof: From Lemma 5 in connection with Lemma 2 we have
X* 7 Y" = A+ [-1, 13- AT IEL- (1 - [EDTT

and after applying the width operator d on this equality we get
d(X") = d(Y") =2 A" |-|EI- (1~ [ED"

on which we apply the row-sum norm || - || and derive

dX* N =1 deYSlh<2- | A7y —IELE
ha X =i I T TNE

On the other hand we have

T S iy 1(Mu_)
S dX®) = d(A - F) = 2 (AT | A

on which we are now applying the row-sum norm || - || and, observing the spe-

cial structure of the second matrix, we finally get

(o) - 0. “-n- ILLEL I
| a(X*))ll =2-]| Ac Il n 1 -1 LEL Il

which proves the assertion. 0O

5. Numerical Examples

In order to illustrate the estimation of Lemma 8, we are giving some simple
numerical examples. Doing this, we consider the interval matrices of the

Y v /
form
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A=1+F,withF=([-f f])

which are regular for a suitable choice of f .

First we fix f=5-10"3 and get the following results for several values

of the dimension n where |l - || is the row-sum norm.

Hdor™

Table 1: n
I dxCe g

5 1.999999999973E-01
10 9.999999999886E-02
15 6.666666666623E-02

N

Table 1 clearly shows the predicted dependence of the ratio
ndxte) i

from n .

Next, we fix the dimension n = 10 and ¢hoose several values for f .

Ider*

Table 2:° f
Iax©

1072 | 6.666806088900
1073 | 6.666666311299
10°%| 6.666666311113

Table 2 is showing that the ratio of improvement is nearly independent from

the choice of the parameter f .

The examples were taken from [3] and are computed on a microcomputer in

PASCAL-SC (see [7]). A
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