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Abstract

Both theory and implementations in deterministic global optimization
have advanced significantly in the past decade. Two schools have devel-
oped: the first employs various bounding techniques without validation,
while the second employs different techniques, in a way that always rig-
orously takes account of roundoff error (i.e. with validation). However,
convex relaxations, until very recently used without validation, can be
implemented efficiently in a validated context. Here, we empirically com-
pare a validated implementation of a variant of convex relaxations (linear
relaxations applied to each intermediate operation) with traditional tech-
niques from validated global optimization (interval constraint propagation
and interval Newton methods.) Experimental results show that linear re-
laxations are of significant value in validated global optimization, although
further exploration will probably lead to more effective inclusion of the
technology.

Keywords: nonconvex optimization, global optimization, linear relaxations,
GlobSol, constraint propagation
AMS Subject Classifications: 90C30, 65K05, 90C26, 65G20

∗Department of Mathematics, University of Louisiana, U.L. Box 4-1010, Lafayette,
Louisiana, 70504-1010, USA (rbk@louisiana.edu).

1



VALIDATED GLOBAL OPTIMIZATION COMPARISONS 2

1 Introduction

1.1 The General Global Optimization Problem

Our general global optimization problem can be stated as

minimize ϕ(x)
subject to ci(x) = 0, i = 1, . . . , m1,

gi(x) ≤ 0, i = 1, . . . , m2,
where ϕ : x → R and ci, gi : x → R, and where x ⊂ Rn is
the hyperrectangle (box) defined by

xi ≤ xi ≤ xi, 1 ≤ i ≤ n,
where the xi and xi are constant bounds.

(1)

1.2 Non-Validated Versus Validated Algorithms

Spurred perhaps by the seminal proceedings [2, 3], numerous methods for attack-
ing problem 1 have been developed over the past thirty years. These methods
can be classified into heuristic methods, such as genetic algorithms or simulated
annealing, in which solutions are found only with a given probability, and de-
terministic algorithms, in which a systematic search of the domain x is made1.
Within the class of deterministic algorithms, development has proceeded along
two separate lines: (i) algorithms that would certainly give all solutions to
problem (1) if exact arithmetic were used, and (ii) algorithms that take ac-
count of roundoff error to certainly give all solutions to problem (1), even with
finite-precision arithmetic. We refer to the latter two classes as non-validated
algorithms and validated algorithms, respectively.

Development in non-validated algorithms in particular has proceeded at an
accelerated pace over the past decade, with both an explosion in the literature
and increasing numbers of commercial implementations. These implementations
have been driven primarily by engineering (chemical engineering in particular)
and operations research applications, such as described in the books [4, 19].
To date, the techniques and implementations in non-validated algorithms, such
as those described in [4] and [19], have been more successful in applications
than techniques and implementations in validated algorithms. However, the
perhaps most important element of the non-validated techniques, namely, linear
relaxations, can be modified to work in a validated context. We have done this.
This raises the question, “In what contexts are linear relaxations necessary, and
how do they compare to techniques traditionally used in validated algorithms?”
That is the subject of this paper.

1Deterministic algorithms can further be classified into complete and incomplete algo-
rithms, as in [18], where the incomplete algorithms seek only one solution of problem (1),
while the complete algorithms seek all solutions. In this work, we consider only complete
algorithms.
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1.3 Outline

In §2, we briefly review the global search algorithm common to all determin-
istic global optimization routines, and we briefly describe our implementation
environment (GlobSol). In §3, we review linear relaxations, used effectively in
non-validated deterministic algorithms. We also review interval Newton meth-
ods and interval constraint propagation, the primary techniques used to date in
validated algorithms, in §3. We explain our implementation of validated linear
relaxations and how we fit our implementation into our computational environ-
ment in §4; this explanation is brief, and points, where appropriate, to other
work we have produced on the subject. We explain what we seek to determine
in our numerical experiments and how we will conduct our experiments in §5,
while we present the actual results in §6. Conclusions, as well as disclaimers
and possible future work, appear in §7.

2 Our Overall Algorithm and Computational En-
vironment

2.1 Structure and Techniques Common to All Algorithms

Deterministic global optimization algorithms in general start by initializing a
list of boxes L by inserting the region x defined by the bound constraints into
L. The algorithms then proceed to subdivide and process the boxes in L as
follows:

1. Remove a box x from the list L.

2. Process x to do one of the following:

(a) Reject x as not containing a solution.

(b) Replace the coordinate bounds for x by narrower bounds in which
any global optima in x must lie.

(c) Determine that either the coordinate widths of x are within a spec-
ified tolerance, or else that x contains a unique solution; if so, then
store x on a list C of “answer” boxes.

3. If x was neither rejected nor placed onto the list C of answer boxes in
step 2, then subdivide x, placing the resulting sub-boxes on L.

One common way of rejecting boxes in step 2 is the lower bound test2.

Definition 1 The lower bound test consists of:

1. maintaining an upper bound ϕ on the global optimum (such as by evalu-
ating the objective ϕ at feasible points), and

2In the interval analysis literature, this is sometimes called the midpoint test, since the
upper bound ϕ can be obtained by evaluating the objective at the midpoint of the boxes x.
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2. computing, for each x, a lower bound ϕ(x) on the objective ϕ over the
intersection of x with the feasible set of problem (1).

In the past, non-verified and verified algorithms have done the lower bound test
in a different way. We will explain this difference in §3 below.

A second way of both narrowing the bounds and possibly rejecting boxes
is by constraint propagation, as described throughout the literature on logic
programming; a good example that also describes a complete implementation
is [20]. One way to view (and implement) constraint propagation is to solve
a constraint for a variable xi. One then substitutes the bounds on the other
variables into the constraint and computes the value with interval arithmetic. If
any resulting interval x̃i for the variable xi is disjoint from the original interval
xi, then x is rejected; if those bounds are not disjoint, but x̃i ∩ xi is narrower
than xi, then these new bounds are “propagated” in the other constraints that
contain xi, to possibly compute narrower bounds on other variables; the entire
process is continued until it becomes stationary (or approximately stationary).
We have worked out a simple example of this process in detail in [6]. There are
numerous implementations of this process, of varying effectiveness.

2.2 GlobSol

Our test bed for comparing various schemes is GlobSol. Considerations that
went into GlobSol’s design, as well as description of a precursor to GlobSol,
appear in [7], while we succinctly review GlobSol in [9]. GlobSol’s overall search
algorithm follows the general scheme above. For reference here, we repeat the
details of this scheme that we gave in [9]:

Algorithm 1 (GlobSol’s global search algorithm)
INPUT: A list L of boxes x to be searched.
OUTPUT: A list U of small boxes and a list C of boxes verified to contain feasible
points, such that any global mimimizer must lie in a box in U or C.
DO WHILE (L is non-empty)

1. Remove a box x from the list L.

2. IF x is sufficiently small THEN

(a) Analyze x to validate feasible points, possibly widening the coordinate widths
(ε-inflation) to a wider box within which uniqueness of a critical point can
be proven.

(b) Place x on either U or C.
(c) Apply the complementation process of [7, p. 154].

(d) CYCLE

END IF

3. (Constraint Propagation)

(a) Use constraint propagation to possibly narrow the coordinate widths of the
box x.
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(b) IF constraint propagation has shown that x cannot contain solutions THEN
CYCLE

4. (Interval Newton)

(a) Perform an interval Newton method to possibly narrow the coordinate widths
of the box x.

(b) IF the interval Newton method has shown that x cannot contain solutions
THEN CYCLE

5. IF the coordinate widths of x are now sufficiently narrow THEN

(a) Analyze x to validate feasible points, possibly widening the coordinate widths
(ε-inflation) to a wider box within which uniqueness of a critical point can
be proven.

(b) Place x on either U or C.
(c) Apply the complementation process of [7, p. 154].

(d) CYCLE

6. (Subdivide)

(a) Choose a coordinate index k to bisect (i.e. to replace [xk, xk] by [xk, (xk +
xk)/2] and [(xk + xk)/2, xk]).

(b) Bisect x along its k-th coordinate, forming two new boxes; place these boxes
on the list L.

(c) CYCLE

END DO

End Algorithm 1

Thus, in GlobSol, in the narrowing and rejection process, constraint prop-
agation is first applied, then an interval Newton method. Within the interval
Newton method, traditional interval techniques, such as interval evaluation of
the constraints to possibly reject boxes by proving infeasibility, or such as check-
ing the lower bound on the objective, are applied. For further details, see [7],
[9], or the GlobSol source code itself.

3 Linear Relaxations Versus Constraint Propa-
gation and Interval Newton Methods

Constraint propagation alone (in the sense of “substitution-iteration” that we
describe in [6]) cannot effectively solve all problems. One way of viewing why
is to imagine constraint propagation to be a nonlinear version of Gauss–Seidel
iteration, which only converges if the off-diagonal elements (i.e. the coefficients
of the variables on the right side of the iteration equation) are sufficiently small.
Otherwise stated, constraint propagation alone (without subdivision and other
schemes) converges only if the variables are only weakly coupled in the con-
straints.
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Similarly, interval Newton methods can fail over larger boxes, due to over-
estimation and other phenomena. In particular, for constrained optimization
problems, GlobSol uses the Fritz–John system for the interval Newton method.
We have found interval extensions of the derivative matrix for this system to
often contain singular matrices for all but very small boxes x.

Finally, the lower bound test (Definition 1), incorporated in GlobSol in both
the constraint propagation and interval Newton steps, is weak in GlobSol, and
is not effective at all for certain problems. In particular, in the past, GlobSol
has obtained the lower bound ϕ(x) exclusively from an interval evaluation of ϕ.
We illustrated this problem in [11, p. 54], and give a specific instance of that
example in §5 below.

An alternative, prevalent in non-validated algorithms, is to form convex, or,
more specifically, linear relaxations of problem (1). To obtain a linear relaxation
to problem (1) over a box x, we replace the objective ϕ by one or more linear
functions that are less than or equal to ϕ over x, and we replace each gi cor-
responding to an inequality constraint by one or more linear functions that are
less than or equal to gi; we replace each equality constraint ci(x) = 0 by a pair
of inequality constraints ci(x) ≤ 0 and −ci(x) ≤ 0, then similarly underestimate
each of these inequality constraints by linear functions. The result, termed a lin-
ear relaxation, is a linear program (LP) whose optimum gives a lower bound on
ϕ over the feasible points in x. Additionally, the optimizer for the LP is, in some
sense, an approximate solution to the original global optimization problem (1),
and can be used effectively in the algorithm. Linear relaxations perhaps began
with McCormick [13, 14], and have since become popular within the global op-
timization community. Extensive exposition of how to obtain linear relaxations
appears in [19], while techniques for more general convex relaxations appear in
[4]. We present a brief introduction followed by an analysis of our view of the
process of constructing linear relaxations in [10].

A process in GlobSol (and in other deterministic search algorithms) not
explicitly described in Algorithm 1 is initial use of a traditional local optimizer to
obtain hypothesized approximate global optima and corresponding approximate
optimizers for problem (1). These approximate optimizers are then used in two
ways: (i) to obtain an upper bound on the global optimum (by evaluation of
ϕ), and (ii) in a box complementation process, as explained in [7, §4.3.1, p.
154]. (In this box complementation process, a small box is constructed about
the local optimizer, local optimality conditions are proven to hold at some point
within the box, the box is placed on the list of answer boxes, and the box is
then removed from the search region.) GlobSol’s local optimizer for constrained
problems3 has consisted of a simple generalized Newton method, in which we
use a generalized inverse of the Jacobi matrix to project onto the feasible set4.
GlobSol could perhaps solve certain problems more efficiently with a stronger
local optimizer.

3For unconstrained problems, GlobSol has used the MINPACK-1 [16] routine HYBRJ.
4This simple local optimizer is to allow GlobSol to be self-contained and free of license

restrictions. We comment more on this in §7.
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4 On Our Implementation of Linear Relaxations

The linear relaxations can be formed directly from the constraints in prob-
lem (1), or problem (1) can be preprocessed in various ways. As we explain
in [10], we have elected to form an expanded system by assigning a variable
to each intermediate quantity computed during evaluation of the objective and
constraints. The resulting constraint matrix, although quite large, is extremely
sparse (with at most three non-zero entries per row), and the relaxation can be
formed automatically from the code list or “tape5” that GlobSol uses internally.
Furthermore, in that context, linear underestimations need be done only for
the univariate and bivariate functions occurring as elementary operations. We
describe the framework for this process in [10].

When we create the LP, we desire to create a machine-representable LP
that is a true relaxation of problem (1). To do this, we must take care with the
direction of rounding, among other considerations, when forming the coefficients
of linear underestimators and overestimators in the process we describe in [10].
We explain the details of this process, as well as put our work into the context
of work by others, in [5]. Some of the techniques we describe in [5] are related
to previous work in [1] and [15].

Once the machine-representable LP is formed, we solve this LP approxi-
mately. In line with our goal to make GlobSol free of license restrictions and in
view of the fact that GlobSol is Fortran-based, we have used the publicly avail-
able SLATEC routine DSPLP, a sparse simplex method solver, for this purpose.

Once we have the approximate solution, we need to validate it. That is,
we use the approximate dual variables (i.e. the Lagrange multipliers) and the
approximate lower bound obtained with the floating-point LP solver to compute
a rigorous lower bound (that takes account of inaccuracies in the approximate
solution and roundoff error) to the solution of the LP. In turn, since the LP
was constructed to be a rigorous relaxation to problem (1), this validated lower
bound to the LP is also a validated lower bound to the global optimum of
problem (1). We use the technique in [17] to obtain this validated lower bound.

Our use of the above process consists not only of obtaining a lower bound on
the objective and an approximate optimizer, but also of obtaining (possibly nar-
rower) bounds on the independent variables xi. This is done by simply replacing
the objective in the LP by either xi or −xi. (We do not claim this technique
to be unique; for example, we understand that it is used in the BARON [19]
software system, and we believe it to be commonplace.)

If the floating-point LP solver does not seem to give a feasible solution, a
simple technique in [17] related to the solution validation process is sometimes
successful in rigorously showing that there is no feasible point in x. This allows
us to safely reject x in the overall algorithm.

Unfortunately, even though the floating-point LP solver produces an ap-
proximate optimizer x̌ that, for many problems and for all problems with the
coordinate widths of x sufficiently small, is an approximate solution to the

5i.e. the list of operations for evaluation of the constraints and objective
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global optimization problem (1), rigorous bounds on an actual optimizer are
not as easily available as the lower bound on the objective. However, we use
the technique we explain in [7, §5.2.4, p. 185] and [8] to construct a box about
x̌ in which a feasible point is rigorously proven to exist. We can then use this
small box to update the upper bound ϕ on the global optimizer.

The source code for GlobSol is available, and we will make our implementa-
tion of the processes described above, in the GlobSol modules LP OPERATIONS
and GlobSol routine LP FILTER available as part of our next public release of
GlobSol.

5 Issues and Questions

If multiple tangent lines can be used as underestimators, we use an adaptive
process that fits the original nonlinear function to a tolerance εLP, as we explain
in [5]. We use the chord rule in the “sandwich algorithm” as explained in[19,
§4.2]; see figure 1 for an example of multiple underestimators to a function.
Although we understand this scheme to be used in the BARON software of [19]
and elsewhere, we understand the number of subdivisions used in BARON to
be fixed, and we are unaware of any implementation of the adaptive process.
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Piecewise linear estimators of y=x3, x ∈ [−1,2], ε=0.1

x

y

Figure 1: Multiple underestimators to y = x3 obtained with the sandwich
algorithm, εLP = 0.1.

Several questions thus arise concerning the tolerance εLP:
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1. Although the convex functions can be underestimated arbitrarily closely
by adaptively adding a sufficient number of linear constraints, non-convex
functions cannot. Thus, if the objective or constraints contain non-convex
operations, highly accurate approximation of the convex part may be over-
whelmed by slackness in the approximation of the non-convex parts, and
subdivision of x may be necessary anyway. How accurate should εLP be
for optimum efficiency?

2. If a very small εLP is demanded, many constraints corresponding to almost
parallel lines will be present. This implies ill-conditioning in the constraint
matrix. For what values of εLP does this occur, and how does it affect the
algorithm?

3. For larger boxes x, the actual range of ϕ is larger, and εLP can possibly
be larger and still be effective. Should a relative or an absolute tolerance
be used for εLP?

There are various other general issues, as follows:

1. The LP relaxations can be formed and solved at various points in the
global search algorithm. In particular, they can be applied before or after
the nonlinear constraint propagation and the interval Newton method,
and the three processes can be iterated, without bisection of x until the
iteration becomes approximately stationary. Is it advantageous to do such
iteration?

2. Using the LP relaxations reduces the total number of boxes that need
to be processed, but it increases the processing time per box. When and
where we actually apply the LP relaxations would thus depend on the bal-
ance of the time spent and reduction in total number of boxes processed.
Also, there may be skepticism about whether validated implementations
of linear relaxations can work as efficiently as non-validated ones. Thus,
we desire answers to the following questions:

• How much CPU time is spent totally in setting up and solving the LP
relaxation, compared to other parts of the global search algorithm?

• How much CPU time is spent actually in solving the LP (i.e. the time
within the routine DSPLP, in our implementation)?

• What effect does solving the LP relaxation have on the total number
of boxes x the algorithm must process, for various problems?

The answers to such questions will also reveal how critical it is to have an
efficient LP solver.

Finally, there are particular problems for which GlobSol without LP relax-
ations is not practical, but for which the BARON [19] does give an answer. We



VALIDATED GLOBAL OPTIMIZATION COMPARISONS 10

wish to determine whether the implementation of LP relaxations we have out-
lined above can be effective on these problems. In particular, we are studying
the nonlinear minimax problem

min
x

max
1≤i≤m

|fi(x)|, fi : Rn → R, x ∈ Rn, m ≥ n. (2)

When we use Lemaréchal’s technique [12], we convert this problem to

minx∈Rn v

such that
{

fi(x) ≤ v
−fi(x) ≤ v

}
, 1 ≤ i ≤ m.

(3)

As we indicated in [11], alternate methods in GlobSol for solving problem (3)
have been impractical, while linear relaxations show promise. We will use the
following problem as an initial test of how our LP relaxation implementation
handles minimax problems:

minx∈Rn x5

such that





x4 −
(
x1t

2
i + x2ti + x3

)2 −√ti − x5 ≤ 0

−
{

x4 −
(
x1t

2
i + x2ti + x3

)2 −√ti

}
− x5 ≤ 0



 ,

1 ≤ i ≤ m, where ti = 0.25 + 0.75(i− 1)/(m− 1).

(4)

Problem 4, proposed as a test problem in [23], represents a minimax fit to
√

t

with a function of the form p(t) = x4 −
(
x1t

2
i + x2ti + x3

)2, with m equally
spaced data points in [0.25, 1].

This problem has at least two solutions, since replacing (x1, x2, x3, x4, x5) by
(−x1,−x2,−x3, x4, x5) results in the same constraint values. In fact our linear
relaxation version of GlobSol proves that there are precisely two solutions, for
m = 5 and m = 21.

GlobSol without linear relaxations has been unable to obtain bounds on the
solution sets to (4), using starting intervals xi ∈ [−5, 5], i = 1, 2, 3, 4, and
x5 ∈ [−100, 100], for m = 21 (as originally stated in [23], or even for m = 5.
However, as we see in §6 below, linear relaxations can solve these problems,
although further development is warranted.

6 Experimental Results

We inserted the LP FILTER we explained in §4 between step 3 and step 4 of
the GlobSol overall algorithm, i.e. Algorithm 1. We also inserted the option
of iterating step 3, LP FILTER, and step 4 to convergence before doing a bi-
section (step 6). When the LP FILTER process is executed, we also check the
approximate optimum of the relaxation by constructing a small box around it
and attempting to verify existence of a feasible point within that box; if this
approximate optimum corresponds to a feasible point of the original nonlinear
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program (1) and the relaxation is a good approximation to program (1), then
we can use the constructed box to reduce ϕ for the lower bound test.

We compiled this modified version of GlobSol with Compaq Visual Fortran
version 6.6, without optimization, on a Dell Inspiron 8200 notebook with a
mobile Pentium 4 processor running at 1.60 GHz. (Memory was not an issue
in these problems, as the modified version of GlobSol ran in a relatively modest
amount of memory for the problems tried.)

6.1 Exploratory Results for Our Initial Problem

We first report some initial exploratory results for problem 4 in table 1. In

Table 1: Results for problem 4. (See text for column headings.)
run # m εd εLP rel? it? ok? NB TT

1 5 10−4 10−2 N T F 11798 60
2 5 10−4 10−1 N F T 16372 55
3 5 10−4 10−2 N F T 13993 48
4 5 10−4 10−3 N F T 14596 66
5 5 10−8 10−3 N F T 12672 56
6 5 10−8 10−4 N F F 11 171
7 5 10−8 10−2 N F T 12677 44
8 5 10−4 10−1 Y F T 15268 50
9 5 10−8 10−1 Y F T 14797 49

10 5 10−8 2× 10−2 Y F T 15263 48
11 5 10−8 2× 10−2 Y F T 15263 49
12 21 10−8 2× 10−2 Y F T 19822 393

Table 2: Timings and effectiveness for problem 4. (See text.)
run # TT TLP TIN RC RLP RIN Nc Na Nu

1 60 58 1.0 261 158 131 2483 1 0
2 55 53 0.9 307 37 138 0 2 10
3 48 47 0.6 417 157 131 0 2 0
4 66 65 0.8 1076 193 325 0 2 14
5 56 55 0.9 906 230 380 0 2 0
6 171 171 0.0 1 0 0 16 1 0
7 44 43 0.9 494 145 368 0 2 0
8 50 48 0.9 297 20 249 0 2 17
9 49 47 1.0 321 30 337 0 2 0

10 48 47 0.9 353 37 218 0 2 0
11 49 47 0.9 353 37 218 0 2 0
12 393 376 14.3 247 26 379 0 2 0

table 1, m is the number of data points, as in the definition of problem 4, εd is
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the tolerance EPS DOMAIN set in GlobSol (at the top of the box data file), and εLP

is the tolerance in the “sandwich algorithm” as explained in §5 and [5]. That is,
creation of additional underestimates to convex functions (or of overestimates to
concave functions) completes if the maximum distance d from the underestimate
to the function obeys d < εLP for an absolute tolerance, and d < εLP ∗ (b−a) for
a relative tolerance, where b−a is the total length of the interval over which the
underestimates are made. (For example, in figure 1, a = −1 and b = 1.) The
column labeled “rel?” indicates whether a relative or an absolute tolerance was
used for εLP; thus, for runs 1 through 7, an absolute tolerance was used, whereas
for runs 8 through 12, a relative tolerance was used. The column labeled “it?”
indicates whether step 3, LP FILTER, and step 4 of Algorithm 1 are iterated;
thus, iteration was done in run 1 only. The column labeled “ok?” indicates
whether or not the run completed successfully; in particular, only run 1 and run
6 did not complete successfully (The only reason for an unsuccessful completion
is exceeding the maximum CPU time. This was set to 60 minutes for runs 1
through 3 and to 166 minutes or 10000 seconds for the remaining runs, except
for run 12, where it was set higher.) The column labeled “NB” gives the total
number of subregions x that GlobSol processed, while the last column, labeled
“TT ” gives the total execution time in minutes.

Table 2 continues Table 1 with additional data on where time was spent in
the algorithm and how effective constraint propagation (step 3), the LP FILTER
process, and the interval Newton method were at rejecting or reducing the size
of regions x. Column 1 gives the problem number as in Table 1, while column 2
repeats the total execution. The column labeled TLP gives the total time spent
in LP FILTER; of this, in all cases, roughly 97% was in the actual LP solver
(the SLATEC routine DSPLP), and the rest was in setting up the LP and in the
Neumaier / Shcherbina validation technique. The column labeled TIN gives the
total time in the interval Newton method. The column labeled RC gives the
number of times constraint propagation rejected a box, the column labeled RLP

gives the number of times LP FILTER rejected a box, while the column labeled
RIN gives the number of times the interval Newton method rejected a box; these
three columns give measures of the effectiveness of these three processes. The
last three columns give measures of the quality of the solution. In particular
NC gives the number of boxes that have not yet been processed, and is non-zero
only if the algorithm could not complete within the allocated CPU time. Na

gives the number of boxes in the answer set verified to contain a feasible point,
while Nu gives the number of small boxes which were neither verified to contain
feasible points nor rejected. For this problem, ideally Nc = 2 and Nu = 0,
since there are precisely two solutions. Larger values of Nu typically happen in
GlobSol when εd is too large.

Preliminary inferences from Table 1 and Table 2 are as follows:

• Iteration of step 3, LP FILTER, and step 4 of Algorithm 1 does not appear
to be worth it in this case.

• Most of the CPU time is in solving the LP. Although use of linear relax-
ations is indispensable for this problem, sparse LP solvers should perhaps
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be investigated and compared for this purpose.

• Except as noted below, the performance of the algorithm does not seem
to depend critically on the exact value of εLP, although too large a value
in conjunction with an absolute, rather than relative tolerance can result
in many unresolved boxes (as in run #2).

Although not evident in Table 1 and Table 2, we also observed that the solver
DSPLP had trouble with ill-conditioning when an absolute tolerance was used
with εLP and εLP = 10−4 or less. This may vary with different LP solvers.

6.2 Systematic Comparisons

For a more systematic comparison (unbiased by our own knowledge of the algo-
rithm), we ran a subset of those problems Shcherbina and Neumaier collected
as part of the COCONUT project [18]. We selected those “tiny” problems (10
variables or less) from Library 1 for which we had implemented rigorous linear
underestimators and overestimators. (We had not yet implemented rigorous
linear underestimators and overestimators for trigonometric functions, nor xa,
nor underestimators and overestimators of x/y except for x ≥ 0 and y > 0)
when we ran these experiments.) The process of running these tests uncovered
several bugs or inadequacies in our implementation of rigorous underestimators
and overestimators. In particular, the relative tolerance used in the exploratory
results of §6.1, namely, d < εLP ∗ (b− a), was inadequate when the values of the
function being approximated were large or when the curvature of the function
being approximated changed rapidly, and led to an excessive number of under-
estimating constraints. Instead, we adopted the criterion to stop subdividing
and adding new constraints when:

either d < εLP max{|f(x̌)|, 1}
or r − ` < εd max{|r|, |`|}, (5)

where f is the function being approximated, and where d, `, and r are as in
step 6 of Algorithm 2 of [5]. That is, we replace d < ε in step 6 of Algorithm 2
of [5] with (5).

In all runs, we used (5) with εLP = 10−1, εd = 10−8, and we terminated
execution with failure if either 3600 CPU seconds elapsed or over 100,000 boxes
were considered.

The results with linear relaxations occur in Table 3, the results without
using linear relaxations appear in Table 4, and a comparison of the two runs
appears in Table 5. In Table 3, the column labeled TLP /TT represents the ratio
of the total time spent forming and solving the linear relaxations to the total
time spent in GlobSol, the column labeled “name” is the name as given in the
COCOS test problem collection, and the other columns in tables 3, 4, and 5 are
as in Table 1 or are self-explanatory. In the “Totals or averages” row of Table 5,
the percentage in the “ok (LP)?” column represents the proportion of problems
that completed successfully with LP filtering, the percentage in the “ok (no
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LP)?” column represents the proportion of problems that completed successfully
without LP filtering, the percentage in the TLP/Tno LP column represents the
average proportion of total execution times (LP filtering to no LP filtering),
and the percentage in the NBLP

NBno LP
column represents the corresponding average

proportion of total number of boxes processed6 in Algorithm 1. (More detailed
tables, including execution times for portions of the algorithm and numbers
of times various parts of the algorithm succeeded, can be obtained from the
author.)

Examining Table 5, we see that, in all but 5 of the 55 problems, the total
number of boxes is less with the LP filtering than without the LP filtering,
although the execution time is often significantly more. The times when the
number of boxes processed is more with the LP filtering must be due to the box
complementation process (which can generate more, albeit smaller, boxes) fol-
lowing successful verification of a feasible point associated with the approximate
optimum of an LP.

There were 8 problems in which GlobSol completed with both the LP filter
and without the LP filter but GlobSol with the LP filter took more than ten
times the execution time of GlobSol without the LP filter. (These are ex4.1.5,
ex4.1.7, ex6.1.2, ex6.1.4, ex6.2.14, ex8.1.5, ex8.1.6, and least.) Of
these, 4 (50%) were unconstrained (other than the bound constraints, which
were handled by preprocessing), in contrast to only 11 unconstrained problems
of the 55 total problems (20%). Furthermore, none of the 8 problems that
required more than 10 times the time with LP filtering took more than 1/6 the
maximum allocated time for GlobSol to solve with the LP filter, and all but
three of them took less than 1% of the maximum allocated time.

In contrast, there were 6 problems in which GlobSol with the LP filtering
process completed and took less time to complete than GlobSol without LP fil-
tering. (These problems are ex14.1.1, ex14.1.3, ex4.1.9, ex5.4.2, ex7.3,2,
and sample.) All of these were equality-constrained problems. The three with
the most striking reductions in execution time, namely, ex14.1. (7%), ex5.4.2
(27%), and sample (19%) had a large number of inequality constraints (with
ex14.1.3 actually having more equality constraints than variables). They also
are among the 23 problems which took the most execution time for GlobSol
without the LP filter, and the fastest one (ex14.1.1 took roughly six times the
average of the execution time of the programs that ran faster than it. Thus,
the problems on which the LP filter was most effective appear to be the harder
highly equality-constrained problems.

In all but one of the 15 failures with LP filtering, GlobSol exceeded the
maximum time limit, and an average of 84% of the time was spent in formulating
and solving the LP problem (mostly in solving the LP problem; see §6.1 above).

6In some cases, the total number of boxes processed is 0. This is because, in all of the
problems in the COCOS tiny-1 test set, the “peeling” process of [7, §5.2.3] was applied for each
coordinate, resulting in preprocessing, including application of an interval Newton method,
which may eliminate all possibilities before Algorithm (1) begins. Because the denominator
in the last column for the “rbrock” row of Table 5 was zero for that region, we replaced the
infinite percentage by 100% in that case.
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In contrast, 4 of the ten failures for GlobSol to complete without the LP filtering
were due to exceeding 100,000 boxes processed in the loop.

Of particular interest are problems ex6.1.1 and sample. In ex6.1.1, al-
though GlobSol without LP filtering completed, it almost exceeded the allocated
execution time and processed 27,610 boxes, while GlobSol with LP filtering had
only processed 75 boxes, and nearly 100% of the execution time was in solving
the LP problem. It appears that, for ex6.1.1, a faster LP solver or, perhaps,
better heuristics for choosing when to apply the LP filter and how fine to ap-
proximate the original nonlinear program with the linear relaxation would lead
to a significantly different result.

For problem sample, GlobSol without LP filtering failed, exceeding the allo-
cated execution time and also almost exceeding the 100,000 maximum number
of boxes allowable, whereas GlobSol with LP filtering succeeded in only 19% of
the allowable CPU time, with only 145 boxes.

In contrast to the minimax problem of §6.1 above, GlobSol without LP
filtering completed within an hour of time and 100,000 boxes in slightly more
of the problems than GlobSol with the LP filtering (81% versus 73%).

7 Conclusions and Future Work

We have implemented an initial version of linear relaxations in a research vali-
dated global optimization code that is nonetheless representative of “industrial
strength” codes in its inclusion of a multitude of interacting techniques.

We have demonstrated that linear relaxations can be implemented in a prac-
tical way within a validated context, and that they can enable reduction of the
search region in contexts where traditional interval methods fail. Although our
present implementation leads to more execution time for many problems, the
linear relaxations make solution of some problems practical when they would
not otherwise be, particularly for highly constrained problems with simple ob-
jective functions. There are indications that the execution time for problems
for which LP relaxations do not lead to lower execution times could be signif-
icantly reduced with a faster LP solver. Also, our experiments hint that the
linear relaxations may be more valuable on faster machines used to solve larger
equality-constrained problems.

A preliminary study of the details of some of the problems where the present
GlobSol implementation results in a large amount of computation appears to
indicate that a better approximate local optimizer for constrained problems
would help in this regard. To date, GlobSol has not included such an optimizer,
since we have included only our own code and code that can be freely distributed,
and since our development efforts have kept us busy on other aspects of the
global optimization process. However, freely distributable local approximate
optimizers such as IPOPT [22, 21] have become available in recent years. We will
experiment with these in the near future, as well as continue to explore inclusion
of linear relaxation technology into validated global optimization codes.

Another phenomenon revealed to use while examining the details was that,
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when many low-quality approximate optimizers (such as mere feasible points)
were found, GlobSol’s box complementation process (as in [7, §4.3.1]) resulted
in many traversals of the linked lists of boxes L, U and C of Algorithm 1, and
most of the execution time was taken in this process. As a consequence, we
implemented a better heuristic (not processing feasible-point-containing boxes
if the upper bound on the objective over the box is greater than ϕ of the lower
bound test). This situation could also be improved with improved programming
or data-structure techniques for processing the box lists, but will undoubtedly
also be improved by employing a better approximate optimizer.

Finally, in [10], we have proposed an alternate scheme for choosing on which
variable to branch in the overall branch and bound algorithm. This scheme
is based upon an analysis carried out during the process of constructing the
linear relaxations, but the branching scheme used in this paper was the “max-
imum smear” scheme ([7, p. 157 and p. 175], with a modification to include
constraints) that GlobSol has used all along. Additional investigation of the
more sophisticated analysis in [10] is warranted.
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Table 3: Results for the COCOS “tiny-1” test set with linear relaxations. (See
text for column headings.)

Name n m1 m2 ok? NB TT TLP /TT

ex14.1.1 3 0 4 T 91 0.1883 96%
ex14.1.2 6 1 8 T 84 0.2137 63%
ex14.1.3 3 0 4 T 278 0.1293 78%
ex14.1.5 6 4 2 T 71 0.1933 83%
ex14.1.9 2 0 2 T 47 0.0132 68%
ex14.2.1 5 1 6 T 159 0.5452 90%
ex14.2.2 4 1 4 T 16 0.0100 40%
ex14.2.3 6 1 8 T 214 1.3413 85%
ex14.2.5 4 1 4 T 68 0.3235 95%
ex2.1.1 5 0 1 T 234 0.0930 79%
ex2.1.2 6 0 2 T 173 0.0768 19%
ex2.1.4 6 0 4 T 222 0.1640 48%
ex3.1.1 8 0 6 F 20229 60.1775 77%
ex3.1.4 3 0 3 T 7 0.0038 35%
ex4.1.2 1 0 0 T 6 0.0118 82%
ex4.1.4 1 0 0 T 9 0.0015 67%
ex4.1.5 2 0 0 T 47 0.0110 82%
ex4.1.6 1 0 0 T 4 0.0003 0%
ex4.1.7 1 0 0 T 9 0.0017 90%
ex4.1.8 2 1 0 T 5 0.0005 33%
ex4.1.9 2 0 2 T 35 0.0067 85%
ex5.2.4 7 1 5 F 36980 60.2352 82%
ex5.4.2 8 0 6 T 515 1.3218 56%
ex6.1.1 8 6 0 F 75 100.9517 100%
ex6.1.2 4 3 0 T 109 0.4143 95%
ex6.1.4 6 4 0 T 420 4.4903 97%

ex6.2.10 6 3 0 F 1901 60.0987 95%
ex6.2.11 3 1 0 F 7686 60.0127 87%
ex6.2.12 4 2 0 F 5820 60.0252 91%
ex6.2.13 6 3 0 F 2719 60.0785 95%
ex6.2.14 4 2 0 T 1383 10.4143 91%
ex6.2.6 3 1 0 F 8871 60.2438 71%
ex6.2.8 3 1 0 F 10637 60.0058 95%
ex6.2.9 4 2 0 F 3558 60.0280 81%
ex7.2.2 6 4 1 T 104 0.4575 91%
ex7.2.5 5 0 6 T 108 0.2740 89%
ex7.2.6 3 0 1 T 39 0.0103 66%
ex7.3.1 4 0 7 T 33 0.1962 93%
ex7.3.2 4 0 7 T 9 0.0043 54%
ex7.3.3 5 2 6 T 33 0.1855 90%
ex8.1.3 2 0 0 F 62334 60.0003 81%
ex8.1.4 2 0 0 T 28 0.0070 79%
ex8.1.5 2 0 0 T 131 0.0560 89%
ex8.1.6 2 0 0 T 29 0.0382 98%
ex8.1.7 5 1 4 F 30105 60.0090 69%
ex8.1.8 6 4 1 T 104 0.4620 91%
ex9.2.4 8 7 0 F 71983 62.8002 70%
ex9.2.5 8 7 0 F 11928 61.1955 87%
house 8 4 4 F 100000 22.7447 56%
least 3 0 0 T 1407 5.0975 92%

meanvar 7 2 0 T 2124 29.2568 98%
mhw4d 5 3 0 T 192 0.3673 92%

nemhaus 5 0 0 T 0 0.0002 0%
rbrock 2 0 0 T 4 0.0013 75%
sample 4 0 2 T 145 11.1345 100%
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Table 4: Results for the COCOS “tiny-1” test set without linear relaxations.
(See text for column headings.)

Name n m1 m2 ok? NB TT

ex14.1.1 3 0 4 T 3183 0.2037
ex14.1.2 6 1 8 T 86 0.0803
ex14.1.3 3 0 4 T 4168 1.7860
ex14.1.5 6 4 2 T 100 0.0548
ex14.1.9 2 0 2 T 186 0.0075
ex14.2.1 5 1 6 T 209 0.0550
ex14.2.2 4 1 4 T 16 0.0057
ex14.2.3 6 1 8 T 230 0.1728
ex14.2.5 4 1 4 T 356 0.0715
ex2.1.1 5 0 1 T 241 0.0180
ex2.1.2 6 0 2 T 168 0.0633
ex2.1.4 6 0 4 T 222 0.0855
ex3.1.1 8 0 6 F 67096 60.1745
ex3.1.4 3 0 3 T 27 0.0030
ex4.1.2 1 0 0 T 6 0.0018
ex4.1.4 1 0 0 T 9 0.0003
ex4.1.5 2 0 0 T 28 0.0008
ex4.1.6 1 0 0 T 4 0.0003
ex4.1.7 1 0 0 T 4 0.0002
ex4.1.8 2 1 0 T 5 0.0003
ex4.1.9 2 0 2 T 280 0.0097
ex5.2.4 7 1 5 F 100000 43.9670
ex5.4.2 8 0 6 T 4449 4.9393
ex6.1.1 8 6 0 T 27610 53.3900
ex6.1.2 4 3 0 T 122 0.0242
ex6.1.4 6 4 0 T 675 0.2373

ex6.2.10 6 3 0 F 46493 60.0880
ex6.2.11 3 1 0 T 11647 4.5502
ex6.2.12 4 2 0 T 6241 3.2658
ex6.2.13 6 3 0 F 49787 60.0702
ex6.2.14 4 2 0 T 1196 0.5315
ex6.2.6 3 1 0 T 18506 5.0968
ex6.2.8 3 1 0 T 14005 3.4003
ex6.2.9 4 2 0 T 11237 7.7175
ex7.2.2 6 4 1 T 142 0.0867
ex7.2.5 5 0 6 T 160 0.0383
ex7.2.6 3 0 1 T 53 0.0033
ex7.3.1 4 0 7 T 81 0.0443
ex7.3.2 4 0 7 T 25 0.0062
ex7.3.3 5 2 6 T 69 0.0557
ex8.1.3 2 0 0 F 100000 26.2655
ex8.1.4 2 0 0 T 28 0.0013
ex8.1.5 2 0 0 T 128 0.0045
ex8.1.6 2 0 0 T 27 0.0008
ex8.1.7 5 1 4 F 92983 60.0070
ex8.1.8 6 4 1 T 142 0.0870
ex9.2.4 8 7 0 F 86551 64.0362
ex9.2.5 8 7 0 F 100000 39.0192
house 8 4 4 F 100000 9.5718
least 3 0 0 T 1443 0.4643

meanvar 7 2 0 T 11558 4.1443
mhw4d 5 3 0 T 372 0.0855

nemhaus 5 0 0 T 0 0.0002
rbrock 2 0 0 T 13 0.0003
sample 4 0 2 F 92264 60.0017
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Table 5: Comparison of success rates with and without linear relaxations.)
Name n m1 m2

ok (no
LP)?

ok
(LP)?

TLP
Tno LP

NBLP
NBno LP

ex14.1.1 3 0 4 T T 92% 3%
ex14.1.2 6 1 8 T T 266% 98%
ex14.1.3 3 0 4 T T 7% 7%
ex14.1.5 6 4 2 T T 353% 71%
ex14.1.9 2 0 2 T T 176% 25%
ex14.2.1 5 1 6 T T 991% 76%
ex14.2.2 4 1 4 T T 176% 100%
ex14.2.3 6 1 8 T T 776% 93%
ex14.2.5 4 1 4 T T 452% 19%
ex2.1.1 5 0 1 T T 517% 97%
ex2.1.2 6 0 2 T T 121% 103%
ex2.1.4 6 0 4 T T 192% 100%
ex3.1.1 8 0 6 F F 100% 30%
ex3.1.4 3 0 3 T T 128% 26%
ex4.1.2 1 0 0 T T 645% 100%
ex4.1.4 1 0 0 T T 450% 100%
ex4.1.5 2 0 0 T T 1320% 168%
ex4.1.6 1 0 0 T T 100% 100%
ex4.1.7 1 0 0 T T 1000% 225%
ex4.1.8 2 1 0 T T 150% 100%
ex4.1.9 2 0 2 T T 69% 13%
ex5.2.4 7 1 5 F F 137% 37%
ex5.4.2 8 0 6 T T 27% 12%
ex6.1.1 8 6 0 T F 189% 0%
ex6.1.2 4 3 0 T T 1714% 89%
ex6.1.4 6 4 0 T T 1892% 62%

ex6.2.10 6 3 0 F F 100% 4%
ex6.2.11 3 1 0 T F 1319% 66%
ex6.2.12 4 2 0 T F 1838% 93%
ex6.2.13 6 3 0 F F 100% 5%
ex6.2.14 4 2 0 T T 1959% 116%
ex6.2.6 3 1 0 T F 1182% 48%
ex6.2.8 3 1 0 T F 1765% 76%
ex6.2.9 4 2 0 T F 778% 32%
ex7.2.2 6 4 1 T T 528% 73%
ex7.2.5 5 0 6 T T 715% 68%
ex7.2.6 3 0 1 T T 310% 74%
ex7.3.1 4 0 7 T T 442% 41%
ex7.3.2 4 0 7 T T 70% 36%
ex7.3.3 5 2 6 T T 333% 48%
ex8.1.3 2 0 0 F F 228% 62%
ex8.1.4 2 0 0 T T 525% 100%
ex8.1.5 2 0 0 T T 1244% 102%
ex8.1.6 2 0 0 T T 4580% 107%
ex8.1.7 5 1 4 F F 100% 32%
ex8.1.8 6 4 1 T T 531% 73%
ex9.2.4 8 7 0 F F 98% 83%
ex9.2.5 8 7 0 F F 157% 12%
house 8 4 4 F F 238% 100%
least 3 0 0 T T 1098% 98%

meanvar 7 2 0 T T 706% 18%
mhw4d 5 3 0 T T 430% 52%

nemhaus 5 0 0 T T 100% 100%
rbrock 2 0 0 T T 400% 31%
sample 4 0 2 F T 19% 0%

Totals or
averages

81% 73% 617% 66%


