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Abstract

Uncertainty is present in any measurement process and in modeling real phe-

nomena. Frequently, available information is not 100% reliable or accurate. This

work considers the modeling of uncertainty in epidemiological models based on

systems of Ordinary Differential Equations (henceforth ODEs) where knowl-

edge and available information on model parameters and initial conditions is

limited. This is especially true for models that simulate the transmission of

vector-borne diseases such as dengue, our study case. To achieve this goal,

we model the uncertainty through interval analysis by representing the input

parameters and initial conditions as closed real intervals. To find guaranteed

enclosures on the solutions of such systems, we apply a method based on the use

of Taylor series and Taylor models to represent dependence on uncertain param-
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eters or initial conditions; specifically, we use the VSPODE software (Verifying

Solver for Parametric ODEs). To enhance the use of this numerical method,

we perform structural identifiability and sensitivity analysis to determine which

parameters and initial conditions should be considered uncertain. Finally, our

results so obtained enable us to show the worst-case scenarios of an outbreak,

according to uncertainties considered. This allows considering under-reporting

in the modeling process and designing more effective control strategies.

Keywords: Ordinary Differential Equations; Uncertainty; Interval analysis;

Epidemiological models.

1. Introduction

Uncertainty is present in any process of measuring and obtaining information

that is required to explain a real phenomenon. One source of uncertainty may

be the lack of knowledge about the study phenomenon, to determine which char-

acteristics will be considered and which to ignore within the modeling. Other5

sources include the impossibility of obtaining measurements of some relevant

factors, collecting information over long time periods, etc. [1].

In the case of vector-borne diseases such as West Nile virus, Malaria, Zika,

and Dengue, among others, there is uncertainty due to the inability to accurately

and reliably measure transmission rates, vector populations, and the recovery10

rate in humans. Usually, these characteristics are included in the modeling pro-

cess as parameters or initial conditions. This information is necessary to build

more reliable models that allow us to understand the dynamics of this type of

disease and thus be able to propose appropriate control strategies. However, in

contrast to other sciences where it is possible to carry out several experiments15

to obtain information and test hypotheses, such experiments are often impossi-

ble, unethical or expensive when modeling the spread of infectious diseases in

human populations [2].

For instance, when we perform experimental assays with vector populations,

these experiments involve imprecision, some degree of approximation, or uncer-20
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tainty to various degrees, since it is not possible to include in the laboratory all

external aspects involved in development process. As an example, consider an

experiment where three replicas with vector population are carried out. Sup-

pose that each experiment starts with 100 eggs, and we want to measure the

percentage of eggs hatching for this vector population. This measure may be25

stated in different ways as follows: (a) between 86 and 92 percent, (b) about

89 percent, or (c) has a mean value of 89 and a standard deviation of 2 percent

and follows a normal distribution. Depending on the nature of imprecision, the

analysis of the system can be conducted using interval analysis, fuzzy theory,

or a probabilistic approach [3]. For the interested reader, we suggest seeing [4].30

According to the type of information obtained from experimental assays, we

consider that, for transmission of vector-borne diseases, an efficient and reliable

way to account for uncertainty is through interval analysis: unlike applications

based on probability and fuzzy theory, interval analysis does not attempt to infer

an uncertainty structure of the model-output based on an uncertainty structure35

assumed for model-input.

On the other hand, recently, there has recently been an increasing interest

in understanding and identifying the main factors involved in transmission and

spread of infectious diseases through different strategies, such as as the for-

mulation of models based on ODEs, the construction of risk maps considering40

external factors (social and environmental) [5, 6, 7], the analysis of development

features of vector population through experimental assays [8, 9], and the for-

mulation of statistical models that consider information from social media [10],

among others. All these approaches require information in order to obtain solu-

tions, formulate control strategies, or make predictions about the spread of in-45

fectious diseases. However, as we have mentioned before, to obtain more reliable

conclusions from models, special attention is required to support and validate

them by data specific to the disease, and to include a realistic assessment of

parameter uncertainty and variability [11].

Our focus here is on ODE models which are formulated as Initial Value50
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Problems (IVPs). Usually, an analytical solution does not exist for these models,

so we have to use numerical methods to obtain the model trajectories. To

compute these solutions, it is necessary to define initial parameters and initial

conditions taking into account the features of the phenomenon under study, and

thereby obtain mathematically reliable solutions.55

In summary, this study was designed to incorporate uncertainty in param-

eters and initial conditions of epidemiological models that simulate the trans-

mission of vector-borne diseases through the application of interval analysis,

where the available information is not accurate and sufficient because of the

characteristics of these diseases. To this end, we will perform local sensitivity60

analysis and structural identifiability analysis to select the parameters and ini-

tial conditions, to which we will incorporate the uncertainty due to the lack of

information and due to lack of measurement precision.

From the mathematical point of view, we will consider the initial value prob-

lem (IVP) in ODEs given by

ẋ(t) = f(x, θ), x(t0) = x0, (1)

where t ∈ [t0, tk], tk > t0, θ ∈ Θ is the m-dimensional vector of parameters, x is

the n-dimensional vector of state variables, and x0 is the n-dimensional vector of65

initial conditions. Furthermore, Θ and x0 are interval vectors that represent the

enclosures of the uncertainties of parameters and initial conditions, respectively.

The purpose here is to obtain mathematically and computationally guaranteed

enclosures for the vector of state variables x at all times, i.e. from t0 to tm, and

compare these enclosures with the behavior of real data. To do this, we will70

use the software VSPODE (Validating Solver for Parametric ODEs), which can

produce guaranteed enclosures on models when initial states and parameters

are given by intervals. Moreover, VSPODE has been applied to obtain rigorous

enclosures for some psychology models, ecology models, and epidemiological

models [12, 13, 14]. For a deeper discussion of different methodologies proposed75

to solve (1) and the main drawbacks (overestimation caused by the dependency
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problem and wrapping effect) that arise and how they have been solved, we refer

the reader to [15, 16].

To illustrate the performance of this methodology, we formulate a model of

seven state variables and nine parameters that simulates the transmission of80

dengue diseases. We chose this model based on the availability of information

on new dengue reported cases per week and the results of experimental assays

with the local population of mosquitoes, allowing us to establish the initial

ranges for human initial conditions and parameters of development stages of

the vector. Also, because of the high epidemiological, social, and economic85

impact of dengue transmission in tropical countries [17, 18], it is relevant to

evaluate different levels of uncertainty in parameters and initial conditions that

have the primary role in the production of new outbreaks.

The remainder of this paper is organized as follows. First, we provide back-

ground on interval analysis and a brief introduction to the use of Taylor mod-90

els. Section 2 describes the problem we are addressing, the notation used, the

model formulation, and methodology details for the sensitivity and structural

identifiability analyses. After that, we present the results of several numerical

experiments for two municipalities of Colombia. Finally, we draw our main

conclusions and discuss some future work.95

2. Background

2.1. Interval analysis

Interval-arithmetic is largely attributed to Ramon Moore in the 1960s; he

developed it to rigorously account for rounding errors linked to mathematical

calculations: The object on which this theory is constructed is the set of closed

intervals in R.

I = {X = [x, x ] | x ≤ x ∧ x, x ∈ R }.

This definition can be extended in a natural way to n-dimensional real interval

vectors, In as X = [X1, . . . , Xn ]T , where Xi = [xi, xi ] and n ≥ 1. An n-

dimensional interval vector can be interpreted geometrically as an n-dimensional100
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rectangle or box. For X and Y ∈ I is possible to define the basic arithmetic

operations according to X ◦ Y = {x ◦ y |x ∈ X, y ∈ Y }, ◦ ∈ {+,−, ∗,÷}, where

we require 0 /∈ Y for division3. Additionally, addition and multiplication in

I are associative and commutative, but only subdistributive: (X ∗ (Y + Z) ⊆

(X ∗ Y ) + (X ∗ Z)). The interval [0, 0] plays the role of neutral element in105

addition, while the interval [1, 1] has the same role for multiplication. In general,

for an arbitrary interval X there exists neither an additive nor multiplicative

inverse, that is, X − X = 0 and X ∗ 1/X = 1 are not satisfied. Furthermore,

although interval evaluation of an expression always contains the set of all values

of the expression as the arguments to the expression range over all values in110

the specified intervals, ways of rewriting the expression that are equivalent in

real arithmetic are not equivalent in interval arithmetic; for example, matrix

multiplication is not associative.

An interval-valued function F can be defined as an extension of a real val-

ued function f , if for degenerate intervals, that is, intervals of the form [a, a],115

F ( [x, x] ) = f(x). Moreover, for a real function f : Rn → R we can use interval

arithmetic to bound the range of f over an interval X, replacing all the occur-

rences of x by X, to obtain f(x) = {f(x) |x ∈ X } ⊆ f(X). A challenge in

particular applications is to choose the form of the expressions or computation

order for f to obtain the narrowest possible interval extension f(X). For details,120

consult introductions to interval computations, such as [20] or [21, Section 1.3].

Finally, if we consider the metric

dH(X,Y ) = max { |x− y |, |x− y | }, (2)

where X = [x, x] and Y = [y, y] ∈ I, it is possible to define all the elements of

local analysis, such as limits, sequences, continuity, convergence, weak differen-

tiablility, and integrability over I. With this we have all the tools to formulate

differential equations in I [20].125

The main drawbacks when using interval analysis are the dependency problem

3Division is extended in various ways to remove this restriction; see, for example [19].
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and the wrapping effect. The dependency problem occurs when there is more

than one occurrence of the same variable in the expression for a function. The

wrapping effect appears when, in intermediate computation steps, the result is

not an interval or box, and it is necessary to enclose the result in an interval or130

box.

2.2. Taylor models

Consider a function f : D ⊂ Rs → R that is (n + 1) times continuously

partially differentiable. A Taylor model for a function f that is (n + 1) times

continuously partially differentiable is given by T = (P, e) = P + e where P

denotes the n-th order Taylor polynomial of f around the expansion point x0 ∈

D and e is a small bounding set for the remainder of this approximation:

f(x)− P (x− x0) ∈ e, ∀x ∈ D where x0 ∈ D. (3)

3. Materials and methods

3.1. Solution procedure

In this work, as in [14] and [22], we consider systems of ordinary differential

equations given by the following formulation:

ẋ(t) = f(x, θ), x(t0) = x0, (4)

where t ∈ [t0, tk], tk > t0, and θ ∈ Θ is the m-dimensional vector of parameters.135

The variables x and x0 are n-dimensional vectors of state variables and initial

conditions, respectively. In addition, Θ and X0 are interval vectors that rep-

resent the enclosures of the uncertainties of parameters and initial conditions,

respectively. Also, we assume that f : Rn×Rp → Rn is k−1 times continuously

differentiable with respect to x and q + 1 times continously differentiable with140

respect to θ.

To solve (4), we applied the method proposed in [22] which was implemented

by the authors in the VSPODE software (Validated solutions of initial value
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problems for parametric ODEs). We briefly describe the method here; for more

detailed information, we refer to [22].145

First, consider a sequence of values t0 < t1 < · · · < tm with step size

hj = tj+1 − tj at the (j + 1)-th integration step, j = 0, 1, . . . ,m− 1. A solution

to the IVP

ẋ(t) = f(x, θ), x(tj) = xj

is given by

x(t; tj , Xj ,Θ) = {x(t; tj , xj , θ) |xj ∈ Xj , θ ∈ Θ }.

In algorithms to solve (4), each integration step is divided into two stages. The

first stage consists of validating the existence and uniqueness of the solution,

while the second stage consists of computing a tighter enclosure.

3.1.1. First stage

The goal in the first stage is to find a step size hj = tj+1 − tj > 0 and an150

a priori enclosure X̃j of the solution such that a unique solution x(t; tj , xj , θ)

is guaranteed to exist for all t ∈ [tj , tj+1], all xj ∈ Xj and all θ ∈ Θ. For

this purpose, the algorithm uses Interval Taylor Series (ITS) with respect to

time. The uniqueness of the solution x(t; tj , xj , θ) is proved by using the Picard-

Lindelöf operator and the Banach fixed-point theorem [15].155

To compute the enclosure X̃j , VSPODE uses high-order enclosure methods

based on using many terms in the Taylor series. In this way, it is possible to

determine hj = tj+1 − tj and X̃j such that

X̃j =

k−1∑
i=0

[0, hj ]
iF [i](Xj ,Θ) + [0, hj ]

kF [k](X̃0
j ,Θ) ⊆ X̃0

j . (5)

where (Xi)j = F [i](Xj ,Θ) are the interval extensions of the Taylor coefficients4

for xj ∈ Xj and θ ∈ Θ. One of the advantages of considering more terms in the

Taylor series is that it is possible to consider larger step sizes, unlike first-order

enclosure methods (constant enclosure methods).

4The j-th Taylor coefficient evaluated at ti is denoted by (xi)j =
x(j)(ti)

j!
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3.1.2. Second stage160

The goal in the second stage is to compute a tighter enclosure Xj+1 such

that Xj+1 ⊆ X̃j . In VSPODE this is done by using ITS to compute a Taylor

model Tf [i] = f [i](Txj
, Tθ) which depends on the initial conditions (x0) and

parameters (θ). For the Taylor model computations, the interval initial states

and parameters are represented by the Taylor models

x0i ∈ Tx0i
= m(X0i) + (x0 −m(X0i)) + [0, 0], i = 1, . . . , n.

θi ∈ Tθi = m(Θi) + (θi −m(Θi)) + [0, 0], i = 1, . . . , p.

Then, it is possible to determine Taylor models Tf [i] of the ITS coefficients

f [i](xj , θ) by using remainder differential algebra (RDA) [23] to compute Tf [i] =

f [i](Txj
, Tθ). To reduce the overestimation produced due to interval dependency

and the continuous growth of the remainder in each integration step, we use

Taylor models Tf [i] and the mean value theorem to compute the enclosure for165

each coefficient f [i](xj , θ) for the ITS of xi+j . Thus, we obtain the Taylor model

Txj+1
for xj+1 in terms of the uncertain quantities θ and x0. Finally, to control

the wrapping effect, the state enclosures are propagated using a new type of

Taylor model. This new Taylor model consists of a polynomial and a remainder

bound represented by an n-dimensional parallelepiped.170

3.2. Mathematical model: Dengue transmission

The model developed here is based on the one given in [24], where the

female mosquito population M is divided into three compartments: susceptible

(Ms), exposed (Me), and infected (Mi). Moreover, we allowed the size of the

mosquito population to change in time. Also, we captured the behavior of the175

aquatic phase of the vector population in one parameter, Λ, which is interpreted

as the recruitment rate. To establish an appropriate biological range for this

parameter, we define Λ = fγmA
∗ with A∗ = C

(
1− 1

Rm

)
and Rm = ρfγm

µm(γm+µa)
,

where Rm is the number of secondary females produced by only one female

(the offspring), and A∗ is the equilibrium value of the aquatic phase in which180

mosquitoes are present. Thus, we take into account parameters that describe
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the transition and mortality from the aquatic phase to the adult phase of the

vector (ρ, γm, µa, µm, f).

To define the biological ranges for these parameters, we used the results of life

tables created from experiments performed in the BCEI laboratory (Grupo de185

Bioloǵıa y Control de Enfermedades infecciosas de la Universidad de Antioquia)

between 2017 and 2019, with mosquito populations of Itagǘı and Neiva. For a

deeper description of the experimental protocol, we refer the reader to [25].

Then, we applied interval arithmetic to compute the range of Λ. The biological

interpretations of these parameters and their ranges for each municipality are190

summarized in Table 1.

The size of human population H is considered constant with respect to the

per capita mortality rate (µh), and is divided into four compartments: suscep-

tible (Hs), exposed (He), infected (Hi), and recovered (Hr).

In both populations, the flow from the susceptible to exposed compartment195

depends on the proportion of infected in each population (Hi

H and Mi

M ) and

the transmission coefficients (βh and βm). Here, we assumed the transmission

coefficients to be the product of the mosquito’s biting rate and the transmission

probabilities. Once extrinsic and intrinsic incubation periods are completed,

the exposed mosquitoes and humans become infected at a rate of θm and θh,200

respectively. Finally, infected humans recover at a rate of γh, while mosquitoes

remain infected for the rest of their lives [26].

Based on the above assumptions, the dynamics of dengue transmission is
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given by the following system of differential equations:

dMs

dt
= Λ− βm

Hi

H
Ms − µmMs

dMe

dt
= βm

Hi

H
Ms − (θm + µm)Me

dMi

dt
= θmMe − µmMi

dHs

dt
= µhH − βh

Mi

M
Hs − µhHs

dHe

dt
= βh

Mi

M
Hs − (θh + µh)He

dHi

dt
= θhHe − (γh + µh)Hi

dHr

dt
= γhHi − µhHr

(6)

3.3. Basic Reproductive Number

The Basic Reproductive Number (R0), is defined as the expected number of

new cases of an infection produced by a typical infected individual in a wholly205

susceptible population over the full course of the infectious period [27]. In

mathematical epidemiology, this number is one of the most important concepts,

since it is a threshold parameter that helps us to determine if the disease dies

out (R0 < 1) or if the disease persists (R0 > 1).

Several strategies have been proposed to calculate R0. However, for a fixed210

model, the R0 values calculated with the different strategies may differ. This

shows the difficulty in accurately calculating the number of secondary infections

within an entirely susceptible population [28]. Here, to compute R0, we applied

the Next Generation Matrix (NGM) to model (6) around the disease-free equi-

librium point. This approach gives us the geometric mean of the number of215

infections per generation [29]. From the mathematical point of view, according

to [30], R0 is given by the dominant eigenvalue of the matrix K = −TΣ−1,

where the entries of the matrix T are the rates of appearance of new infections,

and Σ is the transition matrix.

The disease-free equilibrium for model (6) is given as P0 = (M, 0, 0, H, 0, 0, 0),

where the variables are arranged in the same way as the equations in the system.
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Computing the matrix K at the disease-free equilibrium gives

K =


0 0 βmθh

(θh+µh)(γh+µh)
M∗

s

H
βm

(γh+µh)
M∗

s

H

0 0 0 0

βhθm
µm(θm+µm)H

∗
s

βh

µm

H∗
s

M 0 0

0 0 0 0


where

T =


0 0 0 βm

M∗
s

H

0 0 0 0

0 βh
H∗

s

M 0 0

0 0 0 0

 ,

Σ =


−(θm + µm) 0 0 0

θm −µm 0 0

0 0 (θh + µh) 0

0 0 θh −(γh + µh)

 ,

H∗
s = H, and M∗

s = M . Therefore, the basic reproductive number R0 is given

by:

R0 =

√
βmβhθmθh

µm(θm + µm)(θh + µh)(γh + µh)
(7)

For more details about the calculation of R0 for model (6) we refer the reader220

to [24].

3.4. Structural Identifiability Analysis

Structural identifiability analysis of a model can be interpreted as a way to

determine if it is possible to uniquely recover the best model parameters if the

data is assumed to be noise-free [31]. This analysis is only based on the model225

structure, and is independent of the accuracy of experimental data. When the

identifiability issue is addressed by taking into account the type and quality of

available data, we refer to practical (a posteriori) identifiability [32], but we do

not consider this analysis here.
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Formally, we say that a system (1) is globally identifiable if for any two

parameter vectors θ1 and θ2 in the parameter space,

y(x(t), θ1) = y(x(t), θ2) (8)

holds if and only if θ1 = θ2, where y(x(t), θ1) and y(x(t), θ2) are the trajectories230

solutions for θ1 and θ2, respectively. If the equation (8) is only satisfied for any

θ1 and θ2 within an open neighborhood of some point θ∗ in the parameter space,

we say the system (1) is locally identifiable (definitions taken from [32]).

Different approaches have been proposed to test if a model is structurally

identifiable; among these are the direct test, differential algebra, Laplace trans-235

form, implicit function theorem, the application of Taylor series, profile like-

lihood, and output sensitivities. We refer the reader to [33, 32] for a deeper

discussion of these approaches.

In this study, we just can test locally structural identifiability analysis of the

epidemiological model of dengue transmission (6). To achieve this goal, we use240

the Identifiability Analysis package in Mathematica software. This implemen-

tation is based on a probabilistic numerical method of computing the rank of

the identifiability (Jacobian) matrix, where the matrix parameters and initial

state variables are assigned random integers. Then, from the application of the

inverse function theorem, it is possible to determine if parameters and initial245

conditions can be estimated uniquely if and only if the Jacobian matrix has full

rank [34].

3.5. Data and Parameter values

In this study, we consider the data from the 2016 dengue outbreaks in the mu-

nicipalities of Itagǘı (Antioquia, Colombia) and Neiva (Huila-Colombia). The250

outbreak in Itagǘı lasted 60 epidemiological weeks, beginning in epidemiological

week 51 of 2015 (with 10 reported cases) and ending in epidemiological week

6 of 2016 (with 4 reported cases). The total number of dengue cases reported

during this period was 2915.
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Meanwhile, the outbreak in Neiva lasted 24 epidemiological weeks, beginning255

in the epidemiological week 38 of 2016 (with 16 reported cases) and ending in

the epidemiological week 9 of 2017 (with 7 reported cases). The total number

of dengue cases reported during this period was 687. The information of the

reported dengue cases was obtained from the National Public Health Surveil-

lance System (SIVIGILA by its Spanish initials) (http://portalsivigila.260

ins.gov.co/sivigila/documentos/Docs_1.php). The information about the

size of human population for each municipality was taken from the National

Administrative Department of Statistics (DANE by its Spanish initials).

Ranges for parameters and initial conditions for each municipality are sum-

marized in Tables 2 and 3, respectively.265

4. Results

4.1. Mathematical model: Dengue transmission

The model defined in (6) with some parameter and initial condition val-

ues taken from their biological ranges (see Tables 2 and 3) is capable of suc-

cessfully simulating the dengue outbreak that occurred in Itagǘı and Neiva in270

2016 (see Fig 1).

4.2. Local sensitivity analysis of R0

To investigate the local sensitivity of the basic reproductive number (R0) to

changes in the parameters, we calculate the derivative with respect to each one.

14
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We observe from the expression (7) that:

∂R0

∂βm
=

1

2βm
R0

∂R0

∂βh
=

1

2βh
R0

∂R0

∂θm
=

µm
2θm(θm + µm)

R0

∂R0

∂θh
=

µh
2θh(θh + µh)

R0

∂R0

∂µm
= − 1

2(θm + µm)

(
2 +

θm
µm

)
R0

∂R0

∂γh
= − 1

2(γh + µh)
R0

Partial derivatives of parameters such as transmission rate from human to

mosquito (βm), transmission rate from mosquito to human (βh), transition rate

from exposed to infected mosquitoes (θm), and transition rate from exposed to275

infected humans (θh) always are positive, i.e. an increase in them increases the

value of R0. Meanwhile, for mortality rate in mosquitoes (µm) and recovery

rate in humans (γh), partial derivatives always are negative, thus when values

of these parameters decrease, the value of R0 increases.

To determine which parameters have more influence in the occurrence of new

dengue cases, we calculate the elasticity of R0 with respect to each parameter

θ. The elasticity is given by

εR0

θ =
∂R0

∂θ

θ

R0
≈ %∆R0

%∆θ
. (9)

The elasticities give the percentage change in R0 in response to 1% increase in280

the parameter θ. When εR0

θ > 0, that means that R0 increases with θ; when

εR0

θ < 0 that means that R0 decreases when θ increases [35]. For instance, the

fact that εR0

βm
= 0.5 means that 1% increase in βm will produce 0.5% increase

in R0. We summarize these results for each municipality in Table 4.

4.3. Structural Identifiability285

We evaluated if model (6) is locally structurally identifiable from the weekly

number of reported dengue cases when we fix: (1) the values of human mortality
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rate (µh), (2) the size of human population (H), (3) the initial condition of

infected humans (Hi(0) as the lower bound), and (4) the initial condition of

recovered humans asHr(0) = H−Hs(0)−He(0)−Hi(0). Under these conditions,290

the parameter Λ and the initial conditions for susceptible, exposed and infected

mosquitoes are not locally identifiable.

4.4. Numerical Simulations

In the formulation of model (6) we included nine parameters, seven state

variables, and their respective initial conditions. Additionally, the vector func-295

tion is a polynomial function in the model parameters and a rational function

in the state variables. In this way, the function satisfies the condition of con-

tinuous differentiability with respect the state variables and model parameters

necessary to apply the VSPODE algorithm.

We perform simulations for Itagǘı and Neiva considering uncertainty in some300

parameters and initial conditions according to results obtained from local sen-

sitivity analysis of R0 and the locally structurally identifiability analysis of

model (6). We applied VSPODE, with its default ITS (Interval Taylor Se-

ries) order k = 17 and a default Taylor model order q = 5, to determine a

verified enclosure of all possible solutions for model (6) under several scenarios305

for each municipality. We defined the interval integration for each municipality

according to the duration of the outbreak. For Itagǘı the interval of integration

was from t = 0 to t = 60 epidemiological weeks, while, for Neiva was from t = 0

to t = 30 epidemiological weeks. We consider only the scenarios below:

1. Considering uncertainty in one parameter at a time. In this310

scenario we considered uncertainty in transmission rates from human to

mosquito and from mosquito to human (βm and βh respectively), mortal-

ity rate in mosquitoes (µm), recovery rate in humans (γh) and recruitment

rate in mosquitoes (Λ). The first four parameters were included according

to results obtained from local sensitivity analysis of R0 (see Table 4). The315

recruitment rate (Λ) was included since it was the only parameter that is
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not locally structurally identifiable (see Section 4.3). Fig 2, 3, 4, and 5

show the guaranteed enclosures for the possible trajectories of infectious

humans for Itagǘı and Neiva.

2. Considering uncertainty in several parameters at the same time.320

In this scenario we obtained verified computational and mathematical en-

closures when (a) uncertain values are assumed for βm and βh, (b) uncer-

tain values are assumed for βm, βh, and µm, and (c) uncertain values are

assumed for βm, βh, µm, and γh. Fig 6 and Fig 7 show mathematically

and computationally guaranteed upper and lower bounds for the possible325

trajectories of infected humans for Itagǘı and Neiva, respectively.

3. Considering uncertainty in initial conditions only. In this scenario

we considered uncertainty in (a) the initial mosquito population (Ms(0),Me(0)

and Mi(0)), (b) initial human population (Hs(0), He(0), Hi(0) and Hr(0)),

and (c) all initial conditions of model (6). These scenarios make sense be-330

cause it is not possible to determine exactly which is the number of suscep-

tible, exposed, and infected mosquitoes in a specific region. Additionally,

these initial conditions are not locally structurally identifiable (see Sec-

tion 4.3). On the other hand, according to the World Health Organization

(WHO), the number of reported dengue cases is not 100% reliable or ac-335

curate because of under-reporting concerns, which can affect up to 75%

of the total number of cases occurring anywhere Dengue transmission is

present [36]. Fig 8 and Fig 9 show mathematically and computationally

guaranteed upper and lower bounds on the possible trajectories of infected

humans for Itagǘı and Neiva, respectively.340

4. Considering uncertainty in parameters and initial conditions at

the same time. In this scenario, we consider uncertainty in transition

rate from exposed to infected mosquito (θm) and exposed and infected hu-

man initial conditions (He(0) and Hi(0) respectively). VSPODE breaks

down at the second integration step for Itagǘı when He(0) ∈ [21, 61] and345

Hi(0) ∈ [10, 30], and at t = 18 for Neiva, when He(0) ∈ [27, 77] and

Hi(0) ∈ [16, 46], due to rapid growth of the enclosure. Thus, to obtain
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guaranteed enclosures, we split the intervals of He(0) and Hi(0) into 10

equal-sized sub-boxes for both municipalities, and then used VSPODE to

determine the solution for each sub-box. The final solution enclosure is350

then the union of all the enclosures resulting from each sub-box. However,

with the VSPODE specifications that we mention above the solutions for

Itagǘı always blow up in some integration point. For that reason, we con-

sider (only for Itagǘı and this scenario) ITS (Interval Taylor Series) order

k = 12 and a default Taylor model order q = 9. Fig 10 and 11 show mathe-355

matically and computationally guaranteed upper and lower bounds on the

possible trajectories of infected humans for Itagǘı and Neiva, respectively.

Tables 5–6 show the interval enclosures and their widths at different times t

(in epidemiological weeks), calculated with VSPODE for the first three scenar-

ios.360

5. Discussion

We present a novel strategy to include uncertainty in modeling based on

ODEs, through the application of interval arithmetic, structural identifiabil-

ity analysis, and local sensitivity analysis. Further, we take into account the

available information, knowledge, and understanding of the phenomenon under365

study. To the best of our knowledge, this is the first study in which a

strategy to select parameters and initial conditions that should be considered

uncertain based on the results of structural identifiability analysis and local

sensitivity analysis is introduced.

To illustrate the performance of these analyses jointly we considered as an370

example a model of seven state variables and nine model parameters that sim-

ulates the transmission of dengue diseases (see Eq (6)). In [24], we showed

through several analyses how reliable is this model to simulate dengue

transmission.

Previous studies have incorporated uncertainty in epidemiological models via375

fuzzy and stochastic modeling [37, 38, 39], and to a lesser extent through the
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application of interval analysis in [14]. However, few studies have assessed the

relation between the available data and the model formulation to decide which

is the best option to consider the uncertainty in the modeling process [4, 3]. In

this work, we represented uncertain values by intervals, since available informa-380

tion is not enough to determine the probability distribution that measurement

errors follow. Also, we do not have enough information to define an appropriate

membership function for model parameters and initial conditions in the fuzzy

context.

To define initial intervals for parameters and initial conditions for model (6)385

with biological meaning, we had (a) results from experimental assays with local

mosquito populations for each municipality; (b) the average time for transition

from exposed to infectious (mosquitoes and humans); (c) the average time of

recovery rate in humans; official information of new dengue cases per week;

and (d) the size of human population for each municipality (see Tables 2–3).390

Nevertheless, it is important to take into account that experimental assays under

laboratory conditions did not consider the mortality rate due to external factors.

In this way, these results do not always correspond to the life of the vector in

the wild. For this reason, it is necessary to consider uncertainty in models that

include the development features of the vector.395

Here, we extended the range for mosquito mortality rate (µm) to include

external causes that increase it (see Table 2). In addition, for Ae. aegypti popu-

lations from Itagǘı and Neiva, we observed significant differences between values

for mortality rate and recruitment rate in simulations. For Neiva, the values of

these parameters were higher than for Itagǘı. These results were consistent with400

climatic characteristics and control strategies used in each municipality [40].

We showed that model (6) can successfully simulate dengue outbreaks that

occurred in Itagǘı and Neiva during 2016, based on biologically significant pa-

rameters and initial conditions without considering uncertainty in them (see Fig-

ure 1). An important expression for outbreak characterization is R0. This num-405

ber gives us information about the average number of secondary cases that a

single case can produce if it is introduced into a susceptible population and
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regarding whether an outbreak will occur [30].In this way, to determine which

parameters have more influence in the output of epidemiological models we can

perform local sensitivity analysis on R0 instead of the model. According to410

this, for model (6), we found that the occurrence of new dengue cases was more

sensitive to transmission rate from human to mosquito (βm), transmission rate

from mosquito to human (βh), the recovery rate in humans (γh), and mortality

rate in mosquitoes (µm) (see Table 4). These results coincide with the results

shown in [41]. It is worth pointing out that, as mentioned in [42], frequently,415

transmission rates determine the occurrence or not of an outbreak. However, for

ethical reasons it is not possible to obtain measures for these parameters through

experimental assays. In this manner, the parameter values of transmission rates

contain a significant amount of uncertainty.

The results of locally structurally identifiability analysis for model (6) (see420

Section 4.3) suggest that is necessary to collect information about the mosquito

population for the model (6) to be structurally identifiable. However, collecting

this information for long periods can be expensive and unreliable.

This suggests that considering uncertainty in mosquito initial conditions

through interval arithmetic is a good way to determine how an outbreak would425

be in the presence of larger populations (see Figs 8–9). Under this assumption,

it is possible to define the frequency, the intensity, and the duration of more

efficient and robust control strategies. This result is important since, at present,

the only way to mitigate dengue outbreaks efficiently is by controlling the vector

population [43]. Finally, we consider uncertain values in human initial conditions430

since according to [36], the number of reported new dengue cases per week does

not correspond to the total number of cases that occurred in a period. For

the above reasons, from the biological point of view it makes sense to consider

the four scenarios described in Section 4.4. In these scenarios, we defined the

uncertainty ranges for each parameter and initial condition in such a manner435

that the number of dengue cases will increase. Thus, we evaluated what could

be the worst possible outbreak when parameters and initial conditions change.

In this manner, it is possible to plan control strategies in consideration of under-
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reported cases.

In general, we considered wider intervals for Neiva than for Itagǘı for all440

four scenarios (see Figures 2–11), because the interval of integration for Neiva

was shorter than for Itagǘı, i.e., the number of steps for error propagation was

smaller for Neiva. We proceeded by cases. In the first scenario, we limit the

level of uncertainty that can be considered for each parameter to avoid blow up

of solutions. For both municipalities, we found that for βh, it was possible to445

consider wider intervals than for the other parameters. Additionally, in Table 5

we can see that at the final step of integration when we considered uncertainty

in recruitment rate (Λ) the solution started to blow up. This is an indicator

that we will not obtain verified enclosures after this integration step. Possible

solutions to this drawback are to split the range of uncertainty and then join450

the solutions (as we did in scenario four), to increase the order of Taylor Model

or increase the order of ITS (Interval Taylor Series) or to split the integration

range into smaller sub-boxes [44].

For the second scenario, we evaluated if it was possible considering at the

same time all the most important parameters in the production of secondary455

cases. To achieve this goal we have to reduce the uncertainty considered in

the first scenario for βm, βh and γh to obtain guaranteed enclosures and not

change the specifications of VSPODE. This scenario allows us to work with

different sources of uncertainty, and as we mentioned before, for the parameters

considered here we did not have reliable measures.460

In the third scenario, we evaluated how the output model changed when we

considered uncertainty in initial conditions. Figures 8–9 show that the human

initial conditions have more impact on the number of dengue cases per week

than mosquito initial conditions. These results make sense since there exist

cities with large mosquito population where the number of dengue cases is low465

and some cities with a significant number of dengue cases where the presence

of mosquitoes is not significant [45]. This relation can be explained by vector

capacity of the vector [46].

Finally, in the fourth scenario, we evaluated the performance of the method
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implemented in VSPODE when we considered uncertainty in parameters and470

initial conditions at the same time. However, we just can consider uncertainty

in two human initial conditions (He(0) and Hi(0)) and one parameter (θm) at

the same time to have guaranteed enclosures of trajectories of the model (see

Figures 10 and 11), even when we split the integration box into smaller sub-

boxes to avoid blow up of the solution. In addition, we have to increase the475

order of Taylor Model for Itagǘı. A possible explanation for this might be

that VSPODE considers the Taylor model dependent on initial conditions and

parameters at the same time.

In contrast to traditional numerical methods, the results obtained from inter-

val numerical methods are guaranteed mathematically and computationally [15].480

However, due to overestimation from the dependency problem, the wrapping ef-

fect and the curse of dimensionality, it was not possible to consider uncertainty

in a larger number of parameters and initial conditions at the same time. For

these reasons, it is important to consider alternative strategies to select the

parameters and initial conditions that should be considered uncertain. In our485

case we considered the results of locally structural identifiability analysis, the

results of local sensitivity analysis, the available information and the knowledge

of study phenomenon. In this way, we can reduce the dimension of our problem

and successfully apply interval methods to find guaranteed enclosures for all

trajectories of the model.490

However, it is worth noting that although the algorithm used in this paper

attempts to manage overestimation and envelopment at each integration step,

further research could explore a way to improve these techniques or formulate

new strategies to manage these problems with integrating for longer time inter-

vals without the solutions exploding. Furthermore, future studies should try to495

weaken the requirement for differentiability and continuity in the vector field to

apply interval arithmetic algorithms to a larger number of systems.

A final aspect that should be mentioned is that the strategy presented here to

select and subsequently incorporate uncertainty can be extrapolated to models

that simulate other phenomena of different application areas, and models that500
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can incorporate uncertainty in other ways. In summary, the methodology raised

in this work represents a pioneering effort (1) to select uncertain parameters and

initial conditions with biological meaning and (2) to propagate uncertainty using

interval arithmetic, taking into account the available information. In this way,

we will have a broader picture, in which we consider the worst and the best505

cases of the studied phenomenon.

6. Conclusions

We present a methodology to consider uncertainty through interval analysis

in models based on ODEs that simulate real phenomena, such as the transmis-

sion of infectious diseases. We include the uncertainty in a way that is consistent510

with the type of information that is usually available on the biological parame-

ters and initial conditions of the study phenomenon. We use the interval method

developed in [22] to compute mathematically and computationally guaranteed

enclosures for trajectories of state variables . We achieved a better computa-

tional performance by applying a methodology based on sensitivity analysis,515

structural identifiability analysis, available information, and the parameters’ bi-

ological meanings. The results of these analyses allowed us to choose which

parameters and initial conditions should be considered as uncertain values. Fi-

nally, to illustrate the performance of this methodology, we have formulated a

dengue transmission model (Eq (6)) and apply the aforementioned analysis to520

several scenarios. Additionally, we contrast the results obtained from the model

with actual dengue case data for the Colombian cities of Itagǘı and Neiva.
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Table 1: Parameters used to define the recruitment rate (Λ) range. We extend inter-

vals for mortality rate (µm) since these ranges were calculated under experimental conditions

and did not consider external factors (as fumigation) that can increase it.

Param. Meaning Itagǘı Neiva

Rang./day Rang./week Rang./day Rang./week

ρ Effective per capita oviposition rate [12, 60] [12, 240] [14, 29] [14, 128]

C Carrying capacity of the environment [6400, 95000] [6400, 95000] [6400, 95000] [6400, 95000]

γm Transition rate from the aquatic [0.11, 0.13] [0.77, 0.88] [0.11, 0.13] [0.77, 0.88]

phase to the adult phase

µa Mortality rate in the aquatic phase [0.001, 0.027] [0.008, 0.19] [0.015, 0.028] [0.11, 0.19]

f Fraction of female mosquitoes [0.39, 0.51] [0.39, 0.51] [0.32, 0.45] [0.32, 0.45]

hatched from all eggs

µm Mortality rate in the adult phase [0.011, 0.016] [0.008, 0.25] [0.02, 0.027] [0.14, 0.45]

Λ Recruitment rate [273, 6297] [1779, 42612] [223, 5550] [1454, 37529]

Table 2: Parameters used in the simulations of model (6) for Itagǘı and Neiva,

their biological descriptions, and their values range.

Param. Meaning Itagǘı Neiva

Rang./day Rang./week Rang./day Rang./week

Λ Recruitment rate [273, 6297] [1779, 42612] [223, 5550] [1454, 37529]

H Size of human population 248036 248036 324466 324466

µm Mortality rate in [0.011, 0.016] [0.008, 0.25] [0.02, 0.027] [0.14, 0.45]

the adult phase

µh Birth and death rate of 0.000032 0.00023 0.000015 0.00011

the human population

βm Transmission rate from [0, 4] [0, 4] [0, 4] [0, 4]

human to mosquito

βh Transmission rate from [0, 4] [0, 4] [0, 4] [0, 4]

mosquito to human

θm Transition rate from exposed [0.08, 0.13] [0.58, 0.88] [0.08, 0.13] [0.58, 0.88]

to infected mosquito

θh Transition rate from exposed [0.1, 0.25] [0.7, 1.75] [0.1, 0.25] [0.7, 1.75]

to infected human

γh Recovery rate [0.07, 0.25] [0.5, 1.75] [0.07, 0.25] [0.5, 1.75]



Table 3: Initial conditions used in the simulations of model (6) for Neiva and Itagǘı,

their biological descriptions, and their values ranges.

Initial condition Meaning Itagǘı Neiva

Ms(0) For susceptible mosquitoes [0, 5000000] [0, 5000000]

Me(0) For exposed mosquitoes [0, 200] [0, 200]

Mi(0) For infectious mosquitoes [0, 200] [0, 200]

Hs(0) For susceptible humans [198429, 247912] [259573, 324294]

He(0) For exposed humans [21, 84] [27, 108]

Hi(0) For infectious humans [10, 40] [16, 64]

Hr(0) For recovered humans [0, 49576] [0, 64850]

Table 4: Elasticity of R0 for Neiva and Itagǘı taking parameter values from Fig 1.

Elasticity Itagǘı Neiva

εR0

βm
0.5 0.5

εR0

βh
0.5 0.5

εR0

θm
0.134 0.167

εR0

θh
8.8× 10−5 4.2× 10−5

εR0
µm

−0.634 −0.667

εR0
γh

−0.5 −0.5



Table 5: Results on model (6), showing upper bound, lower bound, and width of

these enclosures at different times for scenarios 1, 2, and 3 for Itagǘı municipality.

Uncertain values Epidemiological weeks t

1 10 20 30 40 50 60

S
c
e
n

a
ri

o
1

Sup 11.761 38.548 115.888 165.067 112.207 62.855 34.315

βm Inf 11.749 32.979 80.647 93.126 50.953 22.914 9.966

Width 0.012 5.569 35.241 71.941 61.254 39.941 24.348

Sup 11.991 36.057 92.789 112.843 65.175 31.018 14.447

βh Inf 11.7492 32.9785 80.6475 93.1356 50.9797 22.9754 10.0339

Width 0.2414 3.079 12.142 19.707 14.195 8.043 4.414

Sup 11.749 32.994 81.409 97.631 55.520 25.73 11.595

µm Inf 11.749 32.979 80.648 93.135 50.980 22.980 10.098

Width 0.0 0.016 0.762 4.496 4.540 2.750 1.497

Sup 12.032 34.452 86.341 102.432 57.705 26.778 12.113

γh Inf 11.749 32.979 80.648 93.136 50.980 22.981 10.098

Width 0.283 1.473 5.693 9.296 6.725 3.797 2.014

Sup 11.749 33.046 81.980 97.931 54.384 24.651 13.281

Λ Inf 11.749 32.979 80.648 93.136 50.980 22.879 7.598

Width 0.0 0.067 1.332 4.795 3.404 1.772 5.683

S
c
e
n

a
ri

o
2

Sup 11.914 36.972 100.601 129.509 79.466 40.931 27.182

βm, βh Inf 11.749 32.901 79.978 91.469 49.227 20.929 1.846

Width 0.165 4.071 20.623 38.040 30.239 20.002 25.336

Sup 11.832 34.937 90.925 115.121 69.343 34.570 18.846

βm, βh, µm Inf 11.749 32.959 80.444 92.350 49.972 21.687 6.991

Width 0.083 1.978 10.481 22.771 19.371 12.883 11.855

Sup 11.888 35.244 92.181 117.345 71.051 35.451 19.166

βm, βh, µm, γh Inf 11.749 32.948 80.361 92.109 49.753 21.674 7.144

Width 0.139 2.296 11.820 25.236 21.298 13.777 12.022

S
c
e
n

a
ri

o
3

Sup 13.652 45.921 112.037 129.164 71.357 32.909 15.351

Mosquito initial Inf 11.244 29.458 73.881 89.996 49.399 21.384 8.411

conditions Width 2.408 16.463 38.156 39.168 21.958 11.525 6.940

Sup 35.308 49.040 125.575 151.516 86.668 41.208 23.689

Human initial Inf 11.745 32.472 78.516 89.978 48.351 21.071 4.317

conditions Width 23.563 16.568 47.059 61.538 38.317 20.137 19.372

Sup 20.759 47.320 121.232 146.477 83.930 39.592 18.213

All initial Inf 11.596 31.624 76.988 89.637 48.535 21.589 9.325

conditions Width 9.163 15.696 44.244 56.840 35.395 18.003 8.888



Table 6: Results on model (6), showing upper bound, lower bound, and width of

these enclosures at different times for scenarios 1, 2, and 3 for Neiva municipality.

Uncertain values Epidemiological weeks t

1 5 10 15 20 25 30

S
c
e
n

a
ri

o
1

Sup 16.174 33.859 64.821 65.392 38.764 19.893 9.984

βm Inf 16.122 29.811 46.241 37.155 17.144 6.774 2.604

Width 0.051 4.048 18.581 28.236 21.620 13.120 7.380

Sup 17.187 36.948 63.395 56.895 29.674 13.339 5.917

βh Inf 16.122 29.811 46.241 37.157 17.150 6.783 2.561

Width 1.064 7.138 17.155 19.739 12.524 6.556 3.356

Sup 16.123 29.874 47.833 42.820 22.232 9.789 4.380

µm Inf 16.122 29.811 46.239 37.125 17.040 6.564 2.249

Width 0.001 0.064 1.594 5.695 5.191 3.225 2.131

Sup 17.839 34.433 57.253 50.074 25.434 11.158 5.073

γh Inf 16.122 29.810 46.238 37.149 17.128 6.716 2.273

Width 1.717 4.623 11.016 12.926 8.306 4.441 2.800

Sup 16.124 29.979 47.927 40.654 19.219 7.663 3.209

Λ Inf 16.122 29.810 46.241 37.157 17.148 6.760 2.365

Width 0.002 0.169 1.686 3.497 2.071 0.903 0.844

S
c
e
n

a
ri

o
2

Sup 16.683 35.665 65.361 62.949 35.481 17.324 8.442

βm, βh Inf 16.121 29.642 45.166 35.128 15.290 5.442 1.588

Width 0.562 6.023 20.196 27.821 20.192 11.881 6.854

Sup 16.567 34.159 60.618 58.464 32.888 16.055 8.746

βm, βh, µm Inf 16.122 29.720 45.569 35.489 15.408 5.235 0.434

Width 0.445 4.439 15.049 22.975 17.480 10.820 8.313

Sup 17.176 34.286 59.366 55.984 30.771 14.565 7.516

βm, βh, µm, γh Inf 16.119 29.698 45.586 35.629 15.581 5.498 0.963

Width 1.057 4.588 13.781 20.355 15.190 9.067 6.553

S
c
e
n

a
ri

o
3

Sup 20.406 47.292 73.043 58.646 27.042 10.690 4.125

Mosquito initial Inf 15.036 24.960 40.620 35.347 16.876 6.718 2.598

conditions Width 5.370 22.332 32.423 23.299 10.167 3.971 1.527

Sup 49.036 44.165 70.251 57.261 26.852 10.803 4.244

Human initial Inf 16.118 29.626 45.794 36.658 16.846 6.635 2.551

conditions Width 32.918 14.538 24.457 20.604 10.005 4.168 1.693

Sup 53.435 62.252 98.763 81.077 38.464 15.589 6.171

All initial Inf 14.960 24.416 39.385 34.003 15.743 6.079 2.269

conditions Width 38.476 37.836 59.378 47.075 22.721 9.510 3.902
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(b) Model fitted to real biological data of Neiva

Figure 1: Enclosures computed using VSPODE to solve model (6) for the number of new

dengue cases per week (figures on the left) and for the cumulative number of dengue cases

(figures on the right) without considering uncertainty. The black points are the reported

dengue cases and the purple line is the model fit to real data: (a) Parameter and initial

condition values for Itagǘı: H = 248036, µh = 0.00023, θm = 0.6, θh = 1.3, Λ = 2000,

γh = 1.75, µm = 0.22, βh = 2.5, βm = 0.12, Ms(0) = 1800000, Me(0) = 50, Mi(0) = 40

Hs(0) = 223000, He(0) = 21, Hi(0) = 10 and Hr(0) = 25005. (b) Parameter and initial

condition values for Neiva: H = 324466, µh = 0.00011, θm = 0.8, θh = 1.3, Λ = 15000,

γh = 1.7, µm = 0.4, βh = 2.5, βm = 0.14, Ms(0) = 3000000, Me(0) = 100, Mi(0) = 50

Hs(0) = 315952, He(0) = 27, Hi(0) = 16, and Hr(0) = 8471.
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(c) Considering uncertainty in µm ∈ [0.217, 0.22]

Figure 2: Enclosures computed using VSPODE to solve the system (6) for the number of new

dengue cases per week (figures on the left) and for the cumulative number of dengue cases

(figures on the right) considering uncertainty in different parameters for Itagǘı municipality.

Initial conditions values used to obtain these enclosures: Ms(0) = 1800000, Me(0) = 50,

Mi(0) = 40, Hs(0) = 223000, He(0) = 21, Hi(0) = 10, and Hr(0) = 25005. Parameter

values used to obtain these enclosures: (a) H = 248036, µh = 0.00023, θm = 0.6, θh = 1.3,

Λ = 2000, γh = 1.75, µm = 0.22, βh = 2.5, and βm ∈ [0.12, 0.15]. (b) H = 248036,

µh = 0.00023, θm = 0.6, θh = 1.3, Λ = 2000, γh = 1.75, µm = 0.22, βm = 0.12, and

βh ∈ [2.5, 2.65]. (c) H = 248036, µh = 0.00023, θm = 0.6, θh = 1.3, Λ = 2000, γh = 1.75,

βm = 0.12, βh = 2.5, and µm ∈ [0.217, 0.22].
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(b) Considering uncertainty in Λ ∈ [1850, 2000]

Figure 3: Enclosures computed using VSPODE to solve the system (6) for the number of new

dengue cases per week (figures on the left) and for the cumulative number of dengue cases

(figures on the right) considering uncertainty in different parameters for Itagǘı municipality.

Initial conditions values used to obtain these enclosures: Ms(0) = 1800000, Me(0) = 50,

Mi(0) = 40, Hs(0) = 223000, He(0) = 21, Hi(0) = 10, and Hr(0) = 25005. Parameter values

used to obtain these enclosures: (a) H = 248036, µh = 0.00023, θm = 0.6, θh = 1.3, µm =

0.22, βm = 0.12, βh = 2.5, Λ = 2000, and γh ∈ [1.7, 1.75]. (b) H = 248036, µh = 0.00023,

θm = 0.6, θh = 1.3, µm = 0.22, βm = 0.12, βh = 2.5, γh = 1.75, and Λ ∈ [1850, 2000].
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(a) Considering uncertainty in βm ∈ [0.14, 0.2].
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(c) Considering uncertainty in µm ∈ [0.38, 0.4].

Figure 4: Enclosures computed using VSPODE to solve the system (6) for the number of new

dengue cases per week (figures on the left) and for the cumulative number of dengue cases

(figures on the right) considering uncertainty in different parameters for Neiva municipality.

Initial conditions values used to obtain these enclosures: Ms(0) = 3000000, Me(0) = 100,

Mi(0) = 50, Hs(0) = 315952, He(0) = 27, Hi(0) = 16, and Hr(0) = 8471. Parameter

values used to obtain these enclosures: (a) H = 324466, µh = 0.00011, θm = 0.8, θh = 1.3,

Λ = 15000, γh = 1.7, µm = 0.4, βh = 2.5, and βm ∈ [0.14, 0.2]. (b) H = 324466, µh =

0.00011, θm = 0.8, θh = 1.3, Λ = 15000, γh = 1.7, µm = 0.4, βm = 0.14, and βh ∈ [2.5, 3.0].

(c) H = 324466, µh = 0.00011, θm = 0.8, θh = 1.3, Λ = 15000, γh = 1.7, βh = 2.5, βm = 0.14,

and µm ∈ [0.38, 0.4].
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(a) Considering uncertainty in γh ∈ [1.5, 1.7].
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(b) Considering uncertainty in Λ ∈ [13000, 15000].

Figure 5: Enclosures computed using VSPODE to solve the system (6) for the number of new

dengue cases per week (figures on the left) and for the cumulative number of dengue cases

(figures on the right) considering uncertainty in different parameters for Neiva municipality.

Initial conditions values used to obtain these enclosures: Ms(0) = 3000000, Me(0) = 100,

Mi(0) = 50, Hs(0) = 315952, He(0) = 27, Hi(0) = 16, and Hr(0) = 8471. Parameter values

used to obtain these enclosures: (a) H = 324466, µh = 0.00011, θm = 0.8, θh = 1.3, µm = 0.4,

βh = 2.5, βm = 0.14, Λ = 15000, and γh ∈ [1.5, 1.7]. (b)H = 324466, µh = 0.00011, θm = 0.8,

θh = 1.3, µm = 0.4, βh = 2.5, βm = 0.14, γh = 1.7, and Λ ∈ [13000, 15000].
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(a) Considering uncertainty in βm and βh.
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(b) Considering uncertainty in βm, βh, and µm.
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(c) Considering uncertainty in βm, βh, µm, and γh.

Figure 6: Enclosures computed using VSPODE to solve the system (6) for the number of new

dengue cases per week (figures on the left) and for the cumulative number of dengue cases

(figures on the right) considering uncertainty in different parameters for Itagǘı municipality.

Initial conditions values used to obtain these enclosures: Ms(0) = 1800000, Me(0) = 50,

Mi(0) = 40, Hs(0) = 223000, He(0) = 21, Hi(0) = 10, and Hr(0) = 25005. Parameter

values used to obtain these enclosures: (a) H = 248036, µh = 0.00023, θm = 0.6, θh = 1.3,

Λ = 2000, γh = 1.75, µm = 0.22, βm ∈ [0.12, 0.13], and βh ∈ [2.5, 2.6]. (b) H = 248036,

µh = 0.00023, θm = 0.6, θh = 1.3, Λ = 2000, γh = 1.75, βm ∈ [0.12, 0.125], βh ∈ [2.5, 2.55],

and µm ∈ [0.217, 0.22]. (c) H = 248036, µh = 0.00023, θm = 0.6, θh = 1.3, Λ = 2000,

γh = 1.75, βm ∈ [0.12, 0.125], βh ∈ [2.5, 2.55], µm ∈ [0.217, 0.22], and γh ∈ [1.74, 1.75].
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(a) Considering uncertainty in βm, βh.
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(b) Considering uncertainty in βm, βh and µm.
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(c) Considering uncertainty in βm, βh, µm and γh.

Figure 7: Enclosures computed using VSPODE to solve the system (6) for the number of new

dengue cases per week (figures on the left) and for the cumulative number of dengue cases

(figures on the right) considering uncertainty in different parameters for Neiva municipality.

Initial conditions values used to obtain these enclosures: Ms(0) = 3000000, Me(0) = 100,

Mi(0) = 50, Hs(0) = 315952, He(0) = 27, Hi(0) = 16, and Hr(0) = 8471. Parameter

values used to obtain these enclosures: (a) H = 324466, µh = 0.00011, θm = 0.8, θh = 1.3,

Λ = 15000, γh = 1.7, µm = 0.4, βm ∈ [0.14, 0.17], and βh ∈ [2.5, 2.75]. (b) H = 324466,

µh = 0.00011, θm = 0.8, θh = 1.3, Λ = 15000, γh = 1.7, βm ∈ [0.14, 0.16], βh ∈ [2.5, 2.7],

and µm ∈ [0.39, 0.4]. (c) H = 324466, µh = 0.00011, θm = 0.8, θh = 1.3, Λ = 15000,

βm ∈ [0.14, 0.16], βh ∈ [2.5, 2.7], µm ∈ [0.39, 0.4], and γh ∈ [1.6, 1.7].
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(a) Considering uncertainty in mosquito initial conditions: Ms(0),Me(0), and Mi(0).
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(b) Considering uncertainty in human initial conditions: Hs(0), He(0), Hi(0) and Hr(0).
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(c) Considering uncertainty in all initial conditions of model (6).

Figure 8: Enclosures computed using VSPODE to solve the system (6) for the number of new

dengue cases per week (figures on the left) and for the cumulative number of dengue cases

(figures on the right) considering uncertainty in different parameters for Itagǘı municipality.

Parameter values used to obtain these enclosures: H = 248036, µh = 0.00023, θm = 0.6,

θh = 1.3, Λ = 2000, γh = 1.75, µm = 0.22, βm = 0.12, and βh = 2.5. Initial conditions used

to obtain these enclosures: (a) Ms(0) ∈ [1800000, 2000000], Me(0) ∈ [50, 70], Mi(0) ∈ [40, 60],

Hs(0) = 223000, He(0) = 21, Hi(0) = 10, and Hr(0) = 25005. (b) Ms(0) = 1800000,

Me(0) = 50, Mi(0) = 40, Hs(0) ∈ [223000, 235634], He(0) ∈ [21, 84], Hi(0) ∈ [10, 40], and

Hr(0) ∈ [12340, 25005]. (c) Ms(0) ∈ [1800000, 1850000], Me(0) ∈ [50, 60], Mi(0) ∈ [40, 50],

Hs(0) ∈ [223000, 235634], He(0) ∈ [21, 42], Hi(0) ∈ [10, 20], and Hr(0) ∈ [12340, 25005].
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(a) Uncertainty in mosquito initial conditions.
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(b) Uncertainty in human initial conditions.
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(c) Uncertainty in all initial conditions.

Figure 9: Enclosures computed using VSPODE to solve the system (6) for the number of new

dengue cases per week (figures on the left) and for the cumulative number of dengue cases

(figures on the right) considering uncertainty in different parameters for Neiva municipality.

Parameter values used to obtain these enclosures: H = 324466, µh = 0.00011, θm = 0.8,

θh = 1.3, Λ = 15000, γh = 1.7, µm = 0.4, βh = 2.5, and βm = 0.14. Initial conditions used to

obtain these enclosures: (a)Ms(0) ∈ [3000000, 3500000], Me(0) ∈ [100, 150], Mi(0) ∈ [50, 100],

Hs(0) = 315952, He(0) = 27, Hi(0) = 16, and Hr(0) = 8471. (b) Ms(0) = 3000000,

Me(0) = 100, Mi(0) = 50, Hs(0) ∈ [315952, 324294], He(0) ∈ [27, 108], Hi(0) ∈ [16, 64], and

Hr(0) ∈ [0, 8471]. (c) Ms(0) ∈ [3000000, 3500000], Me(0) ∈ [100, 150], Mi(0) ∈ [50, 100],

Hs(0) ∈ [315952, 324294], He(0) ∈ [27, 108], Hi(0) ∈ [16, 64], and Hr(0) ∈ [0, 8471].
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(a) Considering uncertainty in θm ∈ [0.58, 0.88].
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(b) Considering uncertainty in θm, He(0), and Hi(0).

Figure 10: Enclosures computed using VSPODE to solve the system (6) for the number of

new dengue cases per week (figures on the left) and for the cumulative number of dengue cases

(figures on the right) considering uncertainty in different parameters for Itagǘı municipality.

Parameter values used to obtain these enclosures: H = 248036, µh = 0.00023, θh = 1.3, Λ =

2000, γh = 1.75, µm = 0.22, βm = 0.12, and βh = 2.5. Initial conditions used to obtain these

enclosures: Ms(0) = 1800000, Me(0) = 50, Mi(0) = 40, Hs(0) = 223000, and Hr(0) = 25005.

In (a) we consider He(0) = 21, Hi(0) = 10 and uncertainty in θm ∈ [0.58, 0.88]. In (b) we

consider uncertainty in θm ∈ [0.58, 0.88], He(0) ∈ [21, 61], and Hi(0) ∈ [10, 30]. The curves

shown in this figure are upper and lower bounds, obtained by dividing into sub-intervals of

four and two width [21, 61] and [10, 30] respectively, to guarantee verified solutions.
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(a) Uncertainty in θm.
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(b) Uncertainty in θm, He(0), and Hi(0).

Figure 11: Enclosures computed using VSPODE to solve the model (6) for the number of new

dengue cases per week (figures on the left) and for the cumulative number of dengue cases

(figures on the right) considering uncertainty in different parameters for Neiva municipality.

Parameter values used to obtain these enclosures: H = 324466, µh = 0.00011, θm = 0.8,

θh = 1.3, Λ = 15000, γh = 1.7, µm = 0.4, βh = 2.5, and βm = 0.14. Initial conditions used

to obtain these enclosures: Ms(0) = 3000000, Me(0) = 100, Mi(0) = 50 Hs(0) = 315952, and

Hr(0) = 8471. In (a) we consider He(0) = 21, Hi(0) = 10 and uncertainty in θm ∈ [0.58, 0.88].

In (b) we consider uncertainty in θm ∈ [0.58, 0.88], He(0) ∈ [32, 82], and Hi(0) ∈ [16, 49].

The curves shown in these figures are upper and lower bounds, obtained by dividing into

sub-intervals of three ([32, 82]) and five ([16, 49]) width respectively, to guarantee verified

solutions.


	Introduction
	Background
	Interval analysis
	Taylor models

	Materials and methods
	Solution procedure
	First stage
	Second stage

	Mathematical model: Dengue transmission
	Basic Reproductive Number
	Structural Identifiability Analysis
	Data and Parameter values

	Results
	Mathematical model: Dengue transmission
	Local sensitivity analysis of R0
	Structural Identifiability
	Numerical Simulations

	Discussion
	Conclusions

