TWO ROOTS GOOD, ONE ROOT BETTER

R. Baker Kearfott

Department of Mathematics

University of Southwestern Louisiana

Lafayette, LA

email rbk@ucs.usl.edu

and Vladik Kreinovich Department of Computer Science University of Texas at El Paso El Paso, TX email vladik@cs.ep.utexas.edu

University of Texas at El Paso	Department of Computer Science

- it is harder to find a root if it is not unique

-it is harder to find a point where a function f

attains its maximum

• Two possible explanations:

- this is a drawback of the existing methods, so

for other methods, finding non-unique roots is

as easy as finding unique ones

- it actually, is harder to find a non-unique root

University of Texas at El Paso	Department of Computer Science

Newton's method works:

-faster and better if the root is in the middle of the domain, and

- *worse* if the root is close to the border
- Solution: Other methods found near-the-border
 - roots as easily as the roots in the middle of the
- domain

- . .

University of Texas at El Paso	Department of Computer Science

is applicable to an arbitrary computably constructive function f from a computable compact K to R that has a unique root, and returns that root. **THEOREM 2.** There exists an algorithm that is applicable to an arbitrary computably constructive function f from a computable compact K to

R that attains its maximum at exactly one point,

and returns that point.

Comment. We still need to define what we mean

by an algorithm, what is a computable functions,

etc. We will do that in a minute.

University of Texas at El Paso	Department of Computer Science

TTTTT JULULUIN

CASE 2: NON-UNIQUE

MAIN RESULT

THEOREM 3. No algorithm is possible that is applicable to any polynomial function f(x) with exactly two roots, and returns these two roots. **THEOREM 4.** No algorithm is possible that is

5

applicable to any polynomial function that attains

maximum at exactly two points, and returns these

two points.

University of Texas at El Paso	Department of Computer Science

BUT A NEW PROBLEM ARISES:

ORIGINAL PROBLEM

SO, WE HAVE SOLVED THE

• We have thus solved the original problem:

it is easier to find a unique root.

How easy is it?

• The algorithm that we describe is exp-time, so

it is not feasible in the following sense:

.

· · ·· ·

• New problem: Can we have a *feasible* algorithm

that finds all unique roots? (at least for polyno-

mial f)?

• Our answer: No.

-

.

Strictly speaking, no unless P=NP, i.e., unless all problems can be solved in feasible time by a

single algorithm.

•

- ·

.

.

--

University of Texas at El Paso Department of Computer Science

Comment. In other words, something that can be immediately programmed.

• An example of a *not yet* algorithm: Newton's method:

1) Take any x_1 (how?) 2) $x_{n+1} = x_n - f(x_n)/f'(x_n)$ 3) stop, e.g., when x_{n+1} is close to x_n (when exactly should we stop? what does this method guarantee?)

University of Texas at El Paso	Department of Computer Science

- We are interested in algorithms that work with

real numbers

- In the computer, we can only store an

approximation to a real number.

Definition.

- We say that an algorithm \mathcal{U} computes a real

number x if for every natural number k, it generates a rational number r_k such that

$$|r_k - x| \le 2^{-k}.$$

- We say that we have a *computable* real number

if we have an algorithm \mathcal{U} that computes it.

University of Texas at El Paso	Department of Computer Science

In reality, we can only have x_n such that |x_n-x| ≤ 2⁻ⁿ. So, we must know what n to choose.
Definitions.
We say that an algorithm V computes a function f : R → R if V includes calls to an (unspecified) algorithm U so that when we take as

 $\mathcal U$ an algorithm that computes a real number

 x, \mathcal{V} will compute a real number f(x).

-We say that we have a *computable* real func-

tion f(x) if we have an algorithm that com-

putes this function.

University of Texas at El Paso	Department of Computer Science

ates a rational number s_k such that

 $|s_k - f(x)| \leq 2^{-k}$. In course of computations,

it may generate an auxiliary number l, and ask

 \mathcal{U} for a value r_l that is 2^{-l} -close to x.

2. In a similar manner, one can define a construc-

tive function of n real variables: it just calls n

programs $\mathcal{U}_i, 1 \leq i \leq n$.

University of Texas at El Paso	Department of Computer Science

Constructive metric space

and constructive compact

• Constructive metric space:

 $X, d: X \times X \to R$

- - - -

• Constructive compact:

$K, d, U: n \to 2^{-n}$ -net for X.

1. .

University of Texas at El Paso	Department of Computer Science

Constructively continuous function

Definition. We say that a computable function $f: A \to B$ is constructively continuous on a metric space A if there exists an algorithm, that for every $\varepsilon > 0$, generates $\delta > 0$ such that if $d_A(x, y) \leq \delta$, then $d_B(f(x), f(y)) \leq \varepsilon.$

. - --

: .

:

University of Texas at El Paso	Department of Computer Science

Known properties of constructive functions • Supremum is computable

1) Find δ that corresponds to this ε ;

2) Find a δ -net $x_1, ..., x_n$. 3) Compute $f(x_1), ..., f(x_n)$. 4) Find $\max(f(x_1), ..., f(x_n))$. • Level sets: $\forall f \forall r > s > 0 \exists t \text{ such that}$ s < t < r and $\{x | f(x) \leq t\}$ is a constructive

compact. University of Texas at El Paso Department of Computer Science

•

• Main idea:

is equivalent to

where

. ...

$$g(x) = f(x) - \max_{y} f(y).$$

University of Texas at El Paso	Department of Computer Science

Known negative result that we will

use

Theorem. ¬∃ an algorithm that decides whether x = 0 or x ≠ 0.
Idea of the proof: else, we would be able to solve all mathematical problems.
Example: xⁿ + yⁿ = zⁿ
- x_k = 2^{-k} if ∃x, y, z, n > 2(xⁿ + yⁿ = zⁿ) and

$$-x_k = 2^{-\kappa}$$
 if $\exists x, y, z, n > 2(x^n + y^n = z^n)$ and $x_k = 0$ else.

-x = 0 iff Fermat's Last Theorem is true.

• Using Gödel's theorem completes the proof.

University of Texas at El Paso	Department of Computer Science

Proof that no algorithm is possible that finds a root if there are exactly two of them

18

1. For maximum, we take

$$f_{\alpha}(x) = -(x-1-\alpha^2)^2(x-1+\alpha^2)^2((x+1)^2+\alpha^2).$$

2. If the roots are separated, i.e., if we know

the lower bound for the distance between the

roots, then we can find them algorithmically.

University of Texas at El Paso	Department of Computer Science

Even for unique roots, finding the solution is as hard as NP-hard

• 3-CNF:

$$F = (x_1 \lor x_2 \lor \neg x_3) \& (...)$$

• $\tilde{F} = x_1 x_2 (1 - x_3) + (...) + ... = 0, x_i \in [0, 1].$
• Lemma F has a unique solution iff \tilde{F} has a

University of Texas at El Paso	Department of Computer Science

19