
TWO ROOTS GOOD,

ONE ROOT BETTER

R. B aker Kearfott

Department of Mathematics

University of Southwestern Louisiana

Lafayette, LA

email rbk@ucs.us1.edu

and Vladik Krez'novich

Department of Computer Science

University of Texas at El Paso

El Paso, TX

email v1adik@cs.ep.utexas.edu .

University of Texas at El Paso Department of Computer Science

Main objective of this talk:

0 to explain the following experimental facts:

— it is harder to nd a root if it is not unique

— it is harder to nd a point where a function f

attains its maximum

0 Two possible explanations:

— this is a drawback of the existing methods, so

for other methods, nding non—unique roots is

as easy as nding unique ones

— it actually, is harder to nd a non—unique root

University of Texas at El Paso Department of Computer Science

Example when a similar problem

turned out to be a method’s

drawback:

0 Problem:

Newton’s method works:

— faster and better if the root is in the middle of

the domain, and

—

worse if the root is Close to the border

0 Solution: Other methods found near-the—border

roots as easily as the roots in the middle of the

domain

University of Texas at El Paso Department of Computer Science

MAIN RESULT

CASE 1: UNIQUE SOLUTION

THEOREM 1. There exists an algorithm that

is applicable to an arbitrary computably construc—

tiue function f from a computable compact K to

R that has a unique root, and returns that root.

THEOREM 2. There exists an algorithm that

is applicable to an arbitrary computably construc—

tiue function f from a computable compact K to

R that attains its maximum at exactly one point,

and returns that point.

Comment. We still need to dene what we mean

by an algorithm, What is a computable functions,

etc. We Will do that in a minute.

University of Texas at El Paso Department of Computer Science

MAIN RESULT

CASE 2: NON-UNIQUE

SOLUTION

THEOREM 3. No algorithm is possible that is

applicable to any polynomial function with

exactly two roots, and returns these two roots.

THEOREM 4. No algorithm is possible that is

applicable to any polynomial function that attains

maximum at exactly two points, and returns these

two points.

University of Texas at El Paso
I

Department of Computer Science

SO, WE HAVE SOLVED THE

ORIGINAL PROBLEM

BUT A NEW PROBLEM ARISES:

0 We have thus solved the original problem:

it is easier to nd a unique root.

How easy is it?

o The algorithm that we describe is eXp —time, so

it is not feasible in the following sense:

For input of length n, it takes 2 2” computational

steps.

This is an exhaustive search.

For n z 3007 it takes longer than the lifetime of

the Universe.

University of Texas at El Paso Department of Computer Science

0 New problem: Can we have a feasible algorithm

that nds all unique roots? (at least for polyno—

mial f)?

0 Our answer: No.

Strictly speaking, no unless P=NP, i.e., unless

all problems can be solved in feasible time by a

single algorithm.

University of Texas at El Paso Department of Computer Science

First: What do we mean by an

algorithm?

0 An algorithm is a well-dened sequence ofprecz'se

steps.

Comment. In other words, something that can

be immediately programmed.

0 An example of a not yet algorithm:

Newton’s method:

1) Take any 5131 (how?)

2) 513n+1 : 33o
_

3) stop, e.g., when xn+1 is Close to an (when 6123-

aetly should we stop? what does this method

guarantee

University of Texas at El Paso Department of Computer Science

Computable real numbers

0 Problem:

— We are interested in algorithms that work with

real numbers

— In the computer, we can only store an

approximation to a real number.

Denition.

— We say that an algorithm 2/! computes a real

number a“ if for every natural number Is, it

generates a rational number m such that

[7%— SCI___ _2_k.

~ We say that we have a computable real number

if we have an algorithm 2/! that computes it.

University of Texas at El Paso Department of Computer Science

Computable functions

a Idea: f : R —-> R is computable if we can com—

pute f for any desired accuracy.

In reality, we can only have m such that lam—:13]g
2””. So, we must know what 71 to choose.

0 Denitions.

— We say that an algorithm V computes a func—

tion f : R ——+ R if V includes calls to an (un—

specied) algorithm Z/l so that when we take as

2/! an algorithm that computes a real number

:23, V will compute a real number f (

— We say that we have a computable real func—

tion f if we have an algorithm that com—

putes this function.

University of Texas at El Paso Department of Computer Science

0 Comments.

1. This algorithm V takes k as input, and gener—

ates a rational number 3k such that

13k— g 2—1“.In course of computations,

it may generate an auxiliary number I, and ask

2/! for a value 77 that is 2‘l—Close to .10.

2. In a similar manner, one can dene a construc-

tive function of 71 real variables: it just calls 71

programs Mi, 1 g 2' g 71.,

University of Texas at El Paso Department of Computer Science

Constructive metric space

and constructive compact

o Constructive metric space:

X,d:X>X,d:X>R

o Constructive compact:

K, d, U : n——>2_”—net for X.

University of Texas at El Paso Department of Computer Science

Constructively continuous function

Denition. We say that a computable function

f : A —> B is constructively continuous on a metric

space A if there exists an algorithm, that for every

5 > 0, generates (5 > 0 such that if dA(:13,y)S 6, then

dB(f(€U)7f(y)) S 6‘.

University of Texas at El Paso Department of Computer Science

Known properties of constructive

functions

I Supremum is computable

— f : K —> R

— K is a constructive compact

— f is constructively continuous

— To compute sup f with accuracy 5, we do the

following:

1) Find 6 that corresponds to this a;

2) Find a 6—net 51:1, ...,xn.

7 3) Compute f(a:1),...,f(xn).

4 Find maX(f(:I:1),

0 Level sets: Vf V7“ > 3 > 0 Elt such that

3 < t < 7“ and g t} is a constructive

compact.

University of Texas at El Paso Department of Computer Science

An algorithm that computes a

unique root

0 Ellajo(f(a:)= 0)

0 We want to compute 5130with accuracy 2—]?

0 El?" : THC“) < 7“ < 24‘: for which

K = 2 7”}is a constructive com—

pact.

0 Compute

5= inf [maX{|f($)lalf(y)l}lo
(:c,y)EK

° If maX{|fmaX{|fmaX{|f maX{|f|f(y)l} < 6, then 03W?!)< r

0 So, if < 6, then d(:z:,$0)< 7“ < 2"“.

0 So, we try all the points from all a—nets until we

get y for which < 6.

Comment. This is an exhaustive search.

University of Texas at El Paso Department of Computer Science

There exists an algorithm that

computes a unique maximum

location

0 Main idea:

is equivalent to

University of Texas at El Paso Department of Computer Science

Known negative result that we will

use

0 Theorem. -I3 an algorithm that decides whether

513:0 0T$750.

o Idea of the proof: else, WeWOuldbe able to

solve all mathematical problems.

— Example: :13”—l—y” = z”

—

ask : 2—]6if Elm,y,z,n > 2(513”—|—y" = z”) and

ask: 0 else.

—

x = 0 iff Fermat’s Last Theorem is true.

0 Using Godel’s theorem completes the proof.

University of Texas at El Paso Department of Computer Science

Proof that no algorithm is possible

that nds a root if there are exactly

two of them

° Take fa($) = (:2:—l—oz2)(a:—1+a2)((x+1)2+a2),
where oz is a constructive real number.

0 For every a, fa has exactly two roots:

—lfa=0, thenxzzl.

—Ifa750, thenxz 1:|:a2.

0 Comments.

1. For maximum, we take

fa(zc) = -(513—1—CE2)2(L£I§—1+042)2(($+1)2+Ct2).
2. If the roots are separated, i.e.7 if we know

the lower bound for the distance between the

roots, then we can nd them algorithmically.

University of Texas at El Paso Department of Computer Science

Even for unique roots, nding the

solution is as hard as NP-hard

o 3—CNF.’

F 2 (£131V £132V

o 13‘= 3:13:2(1— 5133)+ (...) + = 0,3216 [0,1].

0 Lemma. F has a, unique solution z'‘F has; a

unique mot.

University of Texas at El Paso , Department of Computer Science

