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VALIDATED LINEAR RELAXATIONS AND PREPROCESSING:
SOME EXPERIMENTS∗

R. BAKER KEARFOTT† AND SIRIPORN HONGTHONG†

Abstract. Based on work originating in the early 1970s, a number of recent global optimization
algorithms have relied on replacing an original nonconvex nonlinear program by convex or linear
relaxations. Such linear relaxations can be generated automatically through an automatic differ-
entiation process. This process decomposes the objective and constraints (if any) into convex and
nonconvex unary and binary operations. The convex operations can be approximated arbitrarily well
by appending additional constraints, while the domain must somehow be subdivided (in an overall
branch-and-bound process or in some other local process) to handle nonconvex constraints. In gen-
eral, a problem can be hard if even a single nonconvex term appears. However, certain nonconvex
terms lead to easier-to-solve problems than others. Recently, Neumaier, Lebbah, Michel, ourselves,
and others have paved the way to utilizing such techniques in a validated context.

In this paper, we present a symbolic preprocessing step that provides a measure of the intrinsic
difficulty of a problem. Based on this step, one of two methods can be chosen to relax nonconvex
terms. This preprocessing step is similar to a method previously proposed by Epperly and Pis-
tikopoulos [J. Global Optim., 11 (1997), pp. 287–311] for determining subspaces in which to branch,
but we present it from a different point of view that is amenable to simplification of the problem
presented to the linear programming solver, and within a validated context. Besides an illustrative
example, we have implemented general relaxations in a validated context, as well as the preprocessing
technique, and we present experiments on a standard test set. Finally, we present conclusions.
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1. Introduction.

1.1. The general global optimization problem. Our general global opti-
mization problem can be stated as

minimize ϕ(x)
subject to ci(x) = 0, i = 1, . . . ,m1,

gi(x) ≤ 0, i = 1, . . . ,m2,
where ϕ : x → R and ci, gi : x → R, and where x ⊂ R

n is
the hyperrectangle (box) defined by

xi ≤ xi ≤ xi, 1 ≤ i ≤ n,
where the xi and xi are constant bounds.

(1.1)

We will call this problem a general nonlinear programming problem, abbreviated
“general NLP” or “NLP.”

1.2. Deterministic branch-and-bound methods. In deterministic branch-
and-bound methods for finding global minima, an initial region x(0) is adaptively
subdivided into subregions x of the form in (1.1), while an upper bound ϕ to the
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global optimum of ϕ is maintained (say, by evaluating ϕ at a succession of feasible
points). A lower bound ϕ(x) on the optimum of ϕ over the subregion x is then
computed. If ϕ(x) > ϕ, then x is rejected; otherwise, other techniques are used to
reduce, eliminate, or subdivide x. The original explanation for this technique appears
in [4, 22], while a relatively early didactic explanation appears in [19]. For more
recent explanations in which convex underestimators are employed, see, for example,
[5], [23]. For explanations focusing on validation but restricted to traditional interval
arithmetic-based techniques, see [8] or [10, Chapter 5].

The effectiveness of the above technique depends on the quality of the upper
bound ϕ and the lower bound ϕ(x). The upper bound ϕ may be obtained by various
techniques, such as by locating a feasible point (or local optimum) x̌, then evaluating
ϕ at x̌. A naive way of obtaining ϕ(x) is to simply evaluate ϕ with interval arithmetic
over x, and use the lower bound of the value ϕ(x). However, ϕ(x) so obtained takes
no account of the constraints, and (since the feasible portion of x, although possibly
nonempty, may be much smaller than x itself) the lower bound ϕ(x) may not be
sharp enough to be of use. More effective techniques appear to be those that solve
coupled systems that take account of both objective and constraints. Convex and
linear underestimators are used in a common variant of such techniques.

1.3. Convex underestimators and overestimators. Convex underestima-
tors and overestimators are a primary tool to replace problem (1.1) by a simpler
problem, the global optimum of which is less than or equal to the global optimum of
(1.1). For example, if ϕ is replaced by a quadratic or piecewise linear function ϕ(�)

such that ϕ(�)(x) ≤ ϕ(x) for x ∈ x, then the resulting problem has global optimum
that underestimates the global optimum of (1.1). Similarly, if m1 = 0 (i.e., if there are
no equality constraints) and, in addition to replacing ϕ by ϕ(q), each gi is replaced by

a linear function g
(�)
i such that g

(�)
i (x) ≤ gi(x) for x ∈ x, then the resulting quadratic

or linear program, termed a relaxation of (1.1), has optimum that is less than or
equal to the optimum of (1.1). (If there are equality constraints, then each equality
constraint can be replaced, at least in principle, by two linear inequality constraints.)

1.3.1. An arithmetic on underestimators and overestimators. Constraints
or objective functions that represent simple binary operations (addition, subtraction,
multiplication, and division) or unary operations (standard functions such as y = ex

or y = xn) can be bounded below or above on a particular interval by linear relations.
For instance, if g

1
is a linear underestimator for g1 and g

2
is a linear underestimator

for g2, then a linear underestimator for g1 + g2 is g
1

+ g
2
. Thus, addition of two

linear underestimators can be defined simply by addition of the corresponding linear
coefficients. Similarly, if g

1
is a linear underestimator for g1 and −g

2
is a linear un-

derestimator for −g2, then g
1

+ −g
2

is a linear underestimator for g1 − g2. Linear
underestimators for multiplication are somewhat more involved but can similarly be
obtained operationally. For convex functions such as eg, for g ∈ [a, b], a linear under-
estimator is the tangent line at any point c ∈ [a, b], while for concave functions g, the
best possible linear underestimator is the secant line connecting (a, g(a)) (b, g(b)). If
[a, b] is too wide to get sharp underestimators and overestimators, then [a, b] may be
subdivided, and linear underestimators can be supplied for each subinterval.

In actually generating a linear program whose solution underestimates the so-
lution of (1.1), we replace an expression g by a new intermediate variable v for the
underestimator wherever the expression g occurs; we then append the constraint v ≥ g
for the linear underestimator to the set of constraints. In case multiple linear con-
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Fig. 1.1. Our four stages in analyzing a linear relaxation of an NLP.

straints are used for more accuracy, we introduce multiple variables vi and wi and
corresponding multiple constraints.

An arithmetic can be used to automatically compute underestimators given by
expressions or computer programs. The original idea for such an arithmetic predates
the groundbreaking work of McCormick [15], [16]. Such an arithmetic may employ
operator overloading or similar technology, such as explained, say, in [20], [10, section
1.4], or in the proceedings [1], [2], or [7]. A framework for such automatic computation
is given in [23, section 4.1]. In such an arithmetic, given underestimators for expres-
sions g1 and g2, formulas are implemented for computing underestimators of g1 + g2,
g1 ∗ g2, and g1/g2, as well as for computing underestimators of powers, exponentials,
logarithms, and other such functions encountered in practice.

Many of the ideas for such an arithmetic appear in the work of McCormick [15],
[16], and [17]. Significant portions of the books [5] and [23] are devoted to techniques
for deriving underestimators and overestimators as we have just described, and for
implementing automatic computation of these. For example, [23, Chapter 3] contains
techniques for computing underestimators of sums of products, and [23, Chapter 4]
summarizes rules for automatic computation of underestimators, based on convex
envelopes and linear underestimations. The techniques in [23] are embodied in the
highly successful software package BARON.

Lastly, Gatzke, Tolsma, and Barton [6] have implemented automated generation
of both linear underestimating techniques as in [23] and convex underestimating tech-
niques as in [5] in their DAEPACK system.

1.4. Our view of the process. In this work, to aid our analysis of the difficulty
of particular problems, we view the process slightly differently. In particular, we first
generate a list of operations (known as a code list or tape among experts in automatic
differentiation), and we assign an equality constraint to each operation, leading to an
equivalent expanded NLP. We may then analyze each such equality constraint in the
equivalent expanded NLP to determine if we may replace the equality constraint by
a “≤” constraint or a “≥” constraint, to obtain an equivalent relaxed expanded NLP.

In a third step, we replace the nonlinear operations in the constraints in the
equivalent relaxed expanded NLP by linear underestimators or linear overestimators.
For nonlinear operations and equality constraints, both underestimators and overes-
timators are required, while only underestimators are required for “≤” constraints,
and only overestimators are required for “≥” constraints. We call the resulting linear
program a linear underestimating relaxation. This four stage scheme is diagrammed
in Figure 1.1.
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For underestimators of convex operations or overestimators of concave operations,
additional constraints can be appended in the linear underestimating relaxation to
sharpen the approximation. However, in overestimations of convex operations or
underestimations of concave operations, the linear underestimating relaxation cannot
be made to more sharply underestimate the original problem by appending additional
linear constraints; in these cases, in general, the domain must be subdivided, and
a linear underestimating relaxation must be solved over each subproblem. In our
procedure, we will explicitly identify those operations requiring solution of linear
underestimating relaxations over subregions to obtain increased accuracy. We will
also identify which (and how many) variables to subdivide to achieve the increased
accuracy. The number of such variables gives the dimension of the subspace in which
tessellation must occur, and thus gives a measure of how much effort needs to be
expended to accurately approximate a solution.

Epperly and Pistikopoulos [3] proposed a method for subspace analysis that gives
subspaces similar to ours; they also illustrated its effectiveness on various problems.
However, their view of the process is different from the above, and they did not
implement the process in a validated context.

1.5. Organization of this work. In section 2, we give a simple example that
is used throughout the rest of the paper to illustrate the concepts. In section 3, we
define and illustrate our concept of expanded NLP and equivalent relaxed expanded
NLP, and we give a theorem that shows how we may replace equality constraints by
inequality constraints in the expanded NLP to obtain an equivalent relaxed expanded
NLP. In section 4 we give details on refining convex and concave constraints, while in
section 5, we describe our algorithm structure for an automatic analysis. The results
of an automatic analysis appears in section 6. We give conclusions and a brief outline
of ongoing work in section 8.

2. An illustrative example. Example 1. Minimize

ϕ(x) = (x1 + x2 − 1)
2 −

(
x2

1 + x2
2 − 1

)2

for x1 ∈ [−1, 1] and x2 ∈ [−1, 1].

Table 2.1

A code list, interval enclosures, and expanded NLP for Example 1.

� Operation Enclosures Constraints Convexity
1 v3 ← x1 + x2 [−2, 2] x1 + x2 − v3 = 0 linear
2 v4 ← v3 − 1 [−3, 1] v3 − 1 − v4 = 0 linear

3 v5 ← v2
4 [0, 9] v2

4 − v5 ≤ 0 convex

4 v6 ← x2
1 [0, 1] v2

1 − v6 = 0 both

5 v7 ← x2
2 [0, 1] v2

2 − v7 = 0 both
6 v8 ← v6 + v7 [0, 2] v6 + v7 − v8 = 0 linear
7 v9 ← v8 − 1 [−1, 1] v8 − 1 − v9 = 0 linear

8 v10 ← −v2
9 [−1, 0] −v2

9 − v10 ≤ 0 nonconvex
9 v11 ← v5 + v10 [−1, 9] v5 + v10 − v11 ≤ 0 linear

Example 1, a small unconstrained problem except for bound constraints, is easily
solved by GlobSol [11], a traditional interval branch-and-bound method. However,
it is nonconvex, and can be used to illustrate underlying concepts in this work. To
generate a linear relaxation of this problem, we first assign intermediate variables
to intermediate operations, thus generating a code list. (This can be done within a
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compiler or by operator overloading.) Such a code list is seen in the second column
of Table 2.1.

The third column of Table 2.1 contains enclosures for the corresponding inter-
mediate variables, based on x1 ∈ [−1, 1] and x2 ∈ [−1, 1]. (Here, we obtained these
enclosures with traditional interval evaluations of the corresponding operations.) For
example, the enclosure [−1, 9] in the last row represents bounds on the objective for
x1 ∈ [−1, 1] and x2 ∈ [−1, 1].

We explain the fourth and fifth columns of Table 2.1 below.

3. The expanded NLP and the equivalent relaxed expanded NLP. If we
replace each operation in the code list by an equality constraint, we obtain an equiv-
alent NLP, in the sense that the optimum and optimizing values of the independent
variables for the resulting NLP are the same as the optimum and optimizing values
of the original NLP.

Definition 3.1. Given the original NLP (1.1), the expanded NLP is that NLP
obtained by replacing the objective and constraints by corresponding intermediate vari-
ables for the individual operations and assigning equality constraints to the interme-
diate variables.

In Example 1, an expanded NLP can be defined from the operations in Table 2.1,
to obtain

minimize v11

subject to v1 + v2 − v3 = 0,
v3 − 1 − v4 = 0
v2
4 − v5 = 0
v2
1 − v6 = 0
v2
2 − v7 = 0
v6 + v7 − v8 = 0
v8 − 1 − v9 = 0
−v2

9 − v10 = 0
v5 + v10 − v11 = 0
v1 ∈ [−1, 1], v2 ∈ [−1, 1].

(3.1)

As an intermediate step in producing a linear relaxation of the original NLP,
we replace as many of the equality constraints as possible in the expanded NLP by
inequality constraints subject to the resulting problem being equivalent to the original
one. We do this according to the following definition and theorem.

Definition 3.2. Suppose we have an expanded NLP as in Definition 3.1, and
we replace as many of the equality constraints as possible in the expanded NLP by
inequality constraints, according to the following rules.

1. Unless the objective consists of an independent variable only, the top-level
operation ϕ = vk = f(vq, vr) or ϕ = f(vq) (corresponding to the bottom of
the code list and evaluation of the objective) may be replaced by an inequality
constraint of the form f ≤ vk. (In Table 2.1, ϕ corresponds to v11, and
f(vq, vr) = v5 + v10.)

2. In constrained problems, operations corresponding to ci(x) = 0 or gi(x) ≤ 0
are placed unaltered into the constraint set. For example, if gi were defined
by intermediate variable vk in the code list, then the constraint vk ≤ 0 would
be placed into the set of constraints.

3. (Recursive conditions) If a binary operation vi = fi(v�, vm) or a unary op-
eration vi = f(v�) computes a value vi that enters only as an argument to
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operations vj = fj(vi, ·) or vj = fj(vi), such that for every j, fj is monotonic
in vi, then
(a) if, for those j for which fj is monotonically increasing with respect to vi,

operation fj corresponds to an inequality constraint of the form fj ≤ vj,
and, for those j for which fj is monotonically decreasing with respect
to vi, operation fj corresponds to an inequality constraint of the form
fj ≥ vj, then vi may correspond to an inequality constraint of the form
fi ≤ vi;

(b) if, for those j, for which fj is monotonically increasing with respect to vi,
operation fj corresponds to an inequality constraint of the form fj ≥ vj,
and, for those j for which fj is monotonically decreasing with respect
to vi, operation fj corresponds to an inequality constraint of the form
fj ≤ vj, then vi may correspond to an inequality constraint of the form
fi ≥ vi.

4. All other operations correspond to equality constraints.

Then the resulting NLP is called an equivalent relaxed expanded NLP for the original
NLP (1.1).

The fourth column of Table 2.1 shows the constraints corresponding to the equiv-
alent relaxed expanded NLP corresponding to the code list in the second column of
Table 2.1.

Theorem 3.3. The equivalent relaxed expanded NLP of Definition 3.2 is equiv-
alent to the expanded NLP of Definition 3.1 in the sense that

1. the optimum of the equivalent relaxed expanded NLP is the same as the opti-
mum of the expanded NLP;

2. the set of optimizing points of the equivalent relaxed expanded NLP contains
the set of optimizing points of the expanded NLP;

3. under a “strict monotonicity” condition described in the proof of this theorem,
the sets of optimizing points of the equivalent relaxed expanded NLP and of
the expanded NLP are the same.

Thus, since the expanded NLP is equivalent to the original NLP, the equivalent relaxed
expanded NLP is equivalent to the original NLP in the same sense.

Before we prove Theorem 3.3, we use Example 1 to illustrate the process defined in
Definition 3.2. Although a computer can easily label each operation as corresponding
to equality or inequality by a backwards traversal of the code list, we illustrate the
process with a computational graph. The computational graph corresponding to the
code list in Table 2.1 appears in Figure 3.1. To label each node in the graph, we
traverse the graph from the bottom up. The bottom node is labelled as “≤.” We then
check the nodes immediately above nodes already checked to see if they satisfy the
recursive condition 3 of Definition 3.2. Any node that fails to satisfy the recursive
condition is labelled an equality constraint, and all nodes above that node in the
computational graph are labelled equality constraints. Figure 3.1 illustrates the result
of this process.

We have actually implemented this automatic labeling process in a Fortran 95
module, and have used it in the experiments below. The Fortran 95 module is available
from the authors upon request.

Using Definition 3.2 (and comparing with Figure 3.1 and to the fourth column of
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Fig. 3.1. The computational graph corresponding to the code list in Table 2.1.

Table 2.1), the equivalent relaxed expanded NLP for Example 1 is

minimize v11

subject to v1 + v2 − v3 = 0,
v3 − 1 − v4 = 0
v2
4 − v5 ≤ 0
v2
1 − v6 = 0
v2
2 − v7 = 0
v6 + v7 − v8 = 0
v8 − 1 − v9 = 0
−v2

9 − v10 ≤ 0
v5 + v10 − v11 ≤ 0
v1 ∈ [−1, 1], v2 ∈ [−1, 1].

(3.2)

Similarly, the proof of Theorem 3.3 proceeds by induction on the nodes of the
computational graph, starting at the bottom.

Proof of Theorem 3.3. Assume first that the only change made to the expanded
NLP is replacement of the equality constraint vfinal = f by an inequality constraint
f ≤ vfinal according to rule 1, and suppose that the resulting NLP is not equivalent
to the original expanded NLP. Then, since the resulting NLP is a relaxation of the
original NLP, the resulting NLP must have an optimizer that is not in the feasible set
of the original NLP. However, the only way this can be is if the inequality constraint
f ≤ vfinal is strict. However, we may then reduce vfinal and remain in the feasible set,
contradicting the assumption that vfinal represented an optimum.

Now suppose that we start with a problem P that is equivalent to the expanded
NLP from application of some of the rules in Definition 3.2, and suppose we obtain a
new problem Pnew from P by applying rule 3(a) to P, that is, by replacing fi = vi
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by fi ≤ vi. Then, arguing as above, any optimizer of Pnew that is not an optimizer
of P would need to correspond to the strict inequality fi < vi. But then, we could
decrease vi until vi = fi, and each constraint in which vi occurred would remain
feasible. Thus, the optimum of Pnew would have to correspond to the optimum of
P, and the optimizing points of P are optimizing points of Pnew.

For the stronger assertion about the optimizing sets, suppose that each fj related
to any fi that occurs in rule 3(a) or rule 3(b) either strictly increasing or strictly
decreasing, and that each intermediate computation is part of either the objective
or a constraint. (By this last condition, we mean that there are no “dead ends” in
the computation, i.e., there are no bottom nodes in the computational graph that
correspond neither to an objective nor a constraint.) Then, by decreasing vi, each fj
either decreases or increases, and we can decrease or increase the corresponding vj ’s
without affecting the feasibility of the problem. We can, in turn, decrease or increase
variables depending on those vj ’s that we have so adjusted, until we adjust a variable
vk upon which no other variables depend. Due to the “no dead ends” assumption,
this variable vk represents, without loss of generality, either the objective value ϕ or a
constraint value or g. (It cannot represent an equality constraint c = 0, since then the
constraint we have relaxed could not have been replaced by an inequality in the first
place.) If this variable vk represents the objective: vk ≤ ϕ, then ϕ can be decreased;
this would, however, contradict the assumption that we started with an optimizer of
Pnew. On the other hand, if vk represented a constraint g ≤ 0, then our adjustments
will have decreased g, which means the adjusted point is further inside the interior of
the feasible region of g; in turn, this means that the point must have been feasible for
P, contradicting our assumption.

A similar argument holds if we start with a problem P that is equivalent to
the expanded NLP from application of some of the rules in Definition 3.2, and we
obtain a new problem Pnew from P by applying rule 3(b) to P. This proves the
theorem.

NLPs whose code list generates many equality constraints corresponding to non-
linear operations are more difficult to solve, in a sense to be made explicit below. This
is because, to relax a nonlinear equality constraint, we obtain both a convex opera-
tion and a concave (nonconvex) operation, and a more expensive kind of branching
appears necessary for nonconvex operations.

The actual solution to the original NLP of Example 1 (as bounded by GlobSol) is
x1, x2 ∈ [0.269593, 0.269595], ϕ(x) ∈ [−0.51805866866,−0.51805866865]. When the
approximate solver IPOPT [24] is given the equivalent relaxed expanded NLP (3.2),
IPOPT happens to return values within these bounds.

4. Relaxations. We may replace each convex and nonconvex constraint in an
expanded NLP by a linear relaxation. In validated computations, we also generally
replace each linear equality constraint by a pair of linear inequality constraints that
tightly contain the linear constraint but take account of roundoff error in computing
the coefficients. In both validated and nonvalidated computations, we replace each
nonlinear equality constraint by a pair of inequality constraints; in this case, if the
original nonlinear equality constraint was convex, we obtain both a convex and a
concave constraint.

Table 4.1 illustrates a possible set of relaxations for the expanded NLP of Ta-
ble 2.1.

In the fourth column of Table 4.1, the underestimates for the convex terms v2
4 ,

x2
1, and x2

2 correspond to the tangent lines to the operations at the midpoint of the
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Table 4.1

A linear relaxation corresponding to the expanded NLP in Table 1.

� Operation Enclosures Under/over estimators Convexity
1 v3 ← x1 + x2 [−2, 2] x1 + x2 − v3 = 0 linear
2 v4 ← v3 − 1 [−3, 1] v3 − 1 − v4 = 0 linear

3 v5 ← v2
4 [0, 9] (4.5)2 + 9(v4 − 4.5) − v5 ≤ 0 convex

4 v6 ← x2
1 [0, 1] (0.5)2 + 1(v1 − 0.5) − v6 ≤ 0 convex

v1 − v6 ≥ 0 nonconvex

5 v7 ← x2
2 [0, 1] (0.5)2 + 1(v2 − 0.5) − v7 ≤ 0 convex

v2 − v7 ≥ 0 nonconvex
6 v8 ← v6 + v7 [0, 2] v6 + v7 − v8 = 0 linear
7 v9 ← v8 − 1 [−1, 1] v8 − 1 − v9 = 0 linear

8 v10 ← −v2
9 [−1, 0] −1 − v10 ≤ 0 nonconvex

9 v11 ← v5 + v10 [−1, 9] v5 + v10 − v11 ≤ 0 linear

enclosure interval; for example, the expression (4.5)2 + 9(v4 − 4.5) in the third row
corresponds to the tangent line to v2

4 at v4 = 4.5. The nonconvex operations (−v2
9 ,

−v2
1 , and −v2

2) are underestimated by the secant line connecting the endpoints of the
graph. If the expanded NLP is replaced by “minimize v11 subject to x1 ∈ [−1, 1],
x2 ∈ [−1, 1], and subject to each of the constraints in column 4,” then the solution
to the resulting linear program, which we call an expanded LP, underestimates the
solution to the original NLP. When we gave IPOPT the expanded LP corresponding
to Table 4.1, IPOPT obtained (x1, x2) ≈ (0.3894, 0.3894), ϕ = −1, an underestimator
that is no better than the traditional interval evaluation of the objective over the box.

4.1. Refining convex constraints. As explained in [23, section 4.2] and else-
where, the nonlinear convex operations can be approximated more closely in the linear
relaxation by appending more constraints corresponding to additional tangent lines.
For example, in the nonlinear convex operation v5 ← v2

4 in Example 1, in addition to
the constraint v5 ≥ (4.5)2+9(v4−4.5) (corresponding to the tangent line at v4 = 4.5),
we may add the constraint v5 ≥ (2.25)2 +4.5(v4−2.25) (corresponding to the tangent
line at v4 = 2.25) and the constraint v5 ≥ (6.75)2 + 13.5(v4 − 6.75) (corresponding to
the tangent line at v4 = 6.755), and any other similar tangent line. By spacing the
tangent lines sufficiently close together, the corresponding convex constraint can be
approximated arbitrary closely.

If there were no nonconvex operations in the code list, then all convex opera-
tions could be approximated arbitrarily closely by spacing tangent lines sufficiently
close together. This process involves subdivision in a single variable for each convex
nonlinear constraint, so the number of constraints in a linear programming relaxation
whose solution approximated the solution to the original nonlinear program to a given
accuracy would seem to be, essentially, linear in the number of operations in the code
list.

Note that, with this univariate approximation technique, it is not necessary to
branch on the variables corresponding to convex functions. That is, by using a number
of linear outer approximations for each convex variable, accuracy is achieved without
branching on those variables.

4.2. Refining nonconvex constraints. However, the relaxations for noncon-
vex operations cannot be refined by appending additional constraints in the same way.
Two possibilities come to mind:
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• We may subdivide the original variables x1 and x2 to reduce the width of
the enclosure for the domain of the operation corresponding to the noncon-
vex constraint, and thus reduce the slack in the linear underestimator for the
nonconvex constraint. For example, if we bisected both x1 and x2, for Exam-
ple 1, we would obtain four subdomains. We would obtain underestimates for
the solution of the original problem over the subdomains as underestimates
to the corresponding linear relaxations; an underestimate for the original
problem over the original domain would consist of the minimum of the four
underestimates over the subdomains.

• Alternately, we may subdivide the domain of the operation corresponding
to the nonconvex constraint directly into two or more subintervals (or sub-
boxes in the case of multiplication), and form relaxations corresponding to
each of these subintervals or subboxes. For example, we could subdivide v9

in Table 4.1 into [−1, 0] and [0, 1]. We then underestimate −v2
9 over each

separate subinterval by its secant line. If we use this secant line, along with
the original bounds x1 ∈ [−1, 1], x2 ∈ [−1, 1], we obtain a relaxation of the
problem we would get by restricting x1 and x2 to those values leading to
a range of v9 in the selected subinterval (such as one of [−1, 0] or [0, 1]).
Thus, the minimum of the solutions to the relaxations so obtained will be an
underestimate to the solution of the original nonlinear programming problem.

For example, consider, for the purpose of examining a single nonconvex operation, us-
ing the exact constraints in the expanded NLP of Table 2.1 except for that correspond-
ing to operation 8, which we maintain as −1−v10 ≤ 0 as in Table 4.1. IPOPT gives an
approximate solution (x1, x2) ≈ (0.5, 0.5), ϕ ≈ −1 to this problem. We now subdivide
v9 into v9 ∈ [−1, 0] and v9 ∈ [0, 1]. The relaxation of v10 ≥ −v2

9 over [−1, 0] corre-
sponding to the secant line through the endpoints is v10 ≥ v9. Replacing v10 ≥ −1
(valid over [−1, 1]) by this and using a corresponding bound constraint on v9, but
otherwise keeping the same convex program, IPOPT gives an approximate solution
(x1, x2) ≈ (0.3333, 0.3333), ϕ ≈ −0.6667. Now replacing v10 ≥ −v2

9 over [0, 1] by the
relaxation corresponding to the secant line through the endpoints, namely v10 ≥ −v9,
and using a corresponding bound constraint on v9, IPOPT gives (x1, x2) ≈ (1, 0.6823),
ϕ ≈ 9 × 10−5. Thus, an underestimate for the solution to the original NLP, based
on these linear relaxations, is approximately min

{
−0.6667, 9 × 10−5

}
= −0.6667, a

tighter estimate than that obtained by solving only a single problem, but obtained
by subdividing in one variable only. A similar phenomenon would be seen if, instead
of using exact inequalities for the convex operations, we used a sufficient number of
linear underestimators.

5. Our preprocessing algorithms. If there are only one or two nonconvex op-
erations in the code list, but these nonconvex operations depend on many, if not all,
of the dependent variables, then it is probably advantageous to use the second sub-
division process (subdividing directly on the intermediate variables entering the non-
convex constraints). However, if there are many nonconvex constraints, all depending
on the same small number of independent variables, then it is probably advantageous
to do a traditional branch-and-bound within the subspace of independent variables
corresponding to the nonconvex constraints. The problem will be “hard” if there are
both a large number of nonconvex constraints and a large number of independent vari-
ables enter into these nonconvex constraints; otherwise, the problem is easily solvable
by either branching and bounding directly on the intermediate variables entering the
few convex constraints or by branching and bounding the few independent variables
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entering the nonconvex constraints.
With these considerations in mind, we have structured our preprocessing algo-

rithms in the following order:
1. We first create the code list.
2. Evaluate the code list with interval arithmetic to obtain bounds on the inter-

mediate variables1.
3. Using Theorem 3.3 and the bounds from Step 2, start at the bottom of

the computational graph to label each node in the computational graph as
corresponding to an inequality or an equality constraint.

4. Using the ranges from Step 2, the labellings from Step 3, and considerations
from section 4 (e.g., whether the function is convex or concave and whether an
overestimate, underestimate, or both is required), label each node as requiring
solution of problems on subdomains to obtain tighter approximations via
linear programs or as requiring only the appending of additional constraints
to a single problem over the original domain.

5. For those nodes in the computational graph requiring solution of problems
over subdomains, trace up the computational graph to identify upon which
independent variables the result depends.

Implementation of Steps 3 and 4 require a case-by-case consideration of the individual
operations (exponential, odd, even, or real powers, etc.).

6. An example experiment. We have programmed each of the steps in section
5 within the GlobSol module structure, testing our programs with Example 1 and
various other small problems with certain properties. For a reasonably simple but
realistic test problem, we have tried the following problem, originally from [25].

Example 2. Minimize

max
1≤i≤m

‖fi(x)‖ , where

fi(x) = x1e
x3ti + x2e

x4ti − 1

1 + ti
,

ti = −0.5 + (i− 1)/(m− 1), 1 ≤ i ≤ m.

We transformed this nonsmooth problem to a smooth problem with Lemaréchal’s
conditions [14] to obtain

minimize v

subject to fi(x) − v ≤ 0, 1 ≤ i ≤ m

−fi(x) − v ≤ 0, 1 ≤ i ≤ m.

To test the preprocessing, we took m = 21, xi ∈ [−5, 5] for 1 ≤ i ≤ 4, and v ∈
[−100, 100]. The resulting output had 221 blocks, each of the form
Row. no., OP, CONSTRAINT_TYPE, NEEDS_SUBPROBLEM

1 A_X EQUAL_V F

2 EXP EQUAL_V T

3 X_TIMES_Y EQUAL_V T

4 A_X EQUAL_V F

5 EXP EQUAL_V T

1Constraint propagation may be used at this point.
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6 X_TIMES_Y EQUAL_V T

7 X_PLUS_Y EQUAL_V F

8 X_PLUS_B EQUAL_V F

9 X_MINUS_Y LESS_OR_EQ_V F

10 MINUS_X LESS_OR_EQ_V F

11 X_MINUS_Y LESS_OR_EQ_V F

Row. no., corresponding independent variables:

2 3

3 1 3

5 4

6 2 4

In rows 2 and 5 (and corresponding rows in the remaining 20 blocks), the dependence
was only on variables 3 and 4. In rows 3 and 6 (and corresponding rows in the remain-
ing 20 blocks), the binary operation is a multiplication. However (cf., e.g., [5, p. 45
ff.]), a multiplication can be both underestimated and overestimated arbitrarily closely
by subdividing in only one of the two variables. Hence, this analysis reveals that we
only need subdivide in variables 3 and 4 to obtain linear programs that approximate
the original NLP arbitrarily closely. This can be interpreted to mean that, with a
branch-and-bound algorithm based on linear underestimators and overestimators, the
problem is inherently two-dimensional rather than four-dimensional.

In this case, the alternative would be to subdivide each of the intermediate vari-
ables corresponding to code list rows 2, 3, 5, 6, etc. Since this would result in subdi-
vision in an 84-dimensional space, this alternative is clearly not appropriate for this
problem.

6.1. Results within our branch-and-bound algorithm. We implemented
subdivision in the subspace, as we describe in section 7 below, within the search
process that uses validated linear relaxations as we describe in [12].

7. Some systematic comparisons. In [9], we detail some of the techniques
we have used to provide machine-representable relaxations that are mathematically
rigorous, while in [12] we describe our implementation of linear relaxations within
GlobSol, and we give experimental results comparing use of linear relaxations within
GlobSol to GlobSol without linear relaxations. However, in the experiments in [12], we
worked in the full space and not in the subspace. In this section, we compare algorithm
performance using branching only in the subspace to algorithm performance of the
algorithm when we subdivide only along coordinate direction in the subspace.

We implemented the subspace analysis within GlobSol’s overall search algorithm.
In particular, we provided an option within GlobSol to apply the subspace analy-
sis to each box processed in the branch-and-bound algorithm, and only coordinates
corresponding to the identified subspaces were selected for further bisection2.

We used essentially the same test set as in [12], namely, the “tiny” problems from
Library 1 in the Neumaier test set [18]. The results appear in Table 7.1. We carried
out the experiments in Table 7.1 on a dual 2.8 GHz processor3 AMD Opteron machine
running Linux (SuSe distribution 9.1), with 4 gigabytes of memory. We compiled the

2There is an advantage to doing the preprocessing to each box, since the labels on the com-
putational graph depend on the ranges of the intermediate variables, and graphs may be more
advantageously labelled over subdomains.

3The actual computations were not done in parallel, but the system load was such that, at all
times, the GlobSol program had total resources of at least one processor.
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Table 7.1

Results with and without subspace analysis.

Problem n / nr m1 m2 Success? # boxes (f/r) CPU sec.(f/r) Ratio n − nr

dispatch 4 / 3 1 1 Y / Y 13 / 13 0.5 / 0.49 1.0 1
ex14 1 1 3 / 2 0 4 N / Y 100000 / 1791 3569 / 102.4 0.0 1
ex14 1 2 6 / 3 1 8 N / N 43202 / 35488 3600 / 3600 1.0 3
ex14 1 3 3 / 2 0 4 Y / Y 568 / 564 3.87 / 3.9 1.0 1
ex14 1 5 6 / 4 4 2 Y / Y 101 / 100 2.99 / 2.86 1.0 2
ex14 1 9 2 / 1 0 2 Y / Y 57 / 102 0.49 / 0.81 1.7 1
ex14 2 1 5 / 4 1 6 N / N 33864 / 32949 3600 / 3600 1.0 1
ex14 2 2 4 / 3 1 4 Y / Y 1667 / 2220 106.7 / 116.6 1.1 1
ex14 2 3 6 / 5 1 8 N / N 18265 / 24816 3601 / 3601 1.0 1
ex14 2 5 4 / 3 1 4 Y / Y 1846 / 1890 97.96 / 100.1 1.0 1
ex2 1 1 5 / 5 0 1 Y / Y 234 / 234 0.96 / 0.96 1.0 0
ex2 1 2 6 / 5 0 2 Y / Y 173 / 173 0.56 / 0.56 1.0 1
ex2 1 4 6 / 1 0 4 Y / Y 222 / 222 2.18 / 2.21 1.0 5
ex3 1 1 8 / 5 0 6 N / N 61525 / 60871 3603 / 3603 1.0 3
ex3 1 2 5 / 4 0 6 Y / Y 78 / 78 0.45 / 0.43 1.0 1
ex3 1 3 6 / 6 0 6 Y / Y 253 / 253 0.5 / 0.5 1.0 0
ex4 1 2 1 / 1 0 0 Y / Y 6 / 6 0.28 / 0.27 1.0 0
ex4 1 4 1 / 1 0 0 Y / Y 7 / 7 0.01 / 0.01 1.0 0
ex4 1 5 2 / 1 0 0 Y / Y 39 / 39 0.09 / 0.09 1.0 1
ex4 1 6 1 / 1 0 0 Y / Y 5 / 5 0.01 / 0.01 1.0 0
ex4 1 7 1 / 1 0 0 Y / Y 4 / 4 0 / 0 0
ex4 1 8 2 / 1 1 0 Y / Y 5 / 5 0.01 / 0.01 1.0 1
ex4 1 9 2 / 1 0 2 Y / Y 38 / 38 0.13 / 0.13 1.0 1
ex5 4 2 8 / 5 0 6 Y / Y 550 / 511 23.16 / 19.32 0.8 3
ex6 1 1 8 / 8 6 0 N / N 19741 / 19170 3601 / 3601 1.0 0
ex6 1 2 4 / 4 3 0 Y / Y 122 / 122 2.65 / 2.66 1.0 0
ex6 1 4 6 / 3 4 0 Y / Y 623 / 600 37.82 / 38.39 1.0 3
ex7 2 1 7 / 7 0 14 N / N 7301 / 7267 3601 / 3601 1.0 0
ex7 2 2 6 / 2 4 1 Y / Y 101 / 101 4.47 / 4.68 1.0 4
ex7 2 5 5 / 5 0 6 Y / Y 153 / 153 3.1 / 3.23 1.0 0
ex7 2 6 3 / 3 0 1 Y / Y 36 / 36 0.13 / 0.14 1.1 0
ex7 3 3 5 / 1 2 6 N / Y 81771 / 55 3600 / 1.65 0.0 4
ex8 1 3 2 / 2 0 0 N / N 100000 / 100000 2414 / 2662 1.1 0
ex8 1 4 2 / 1 0 0 Y / Y 28 / 28 0.08 / 0.09 1.1 1
ex8 1 5 2 / 2 0 0 Y / Y 131 / 131 0.81 / 0.82 1.0 0
ex8 1 6 2 / 2 0 0 Y / Y 36 / 36 0.34 / 0.35 1.0 0
ex8 1 7 5 / 3 1 4 N / N 100000 / 100000 3169 / 3488 1.1 2
ex8 1 8 6 / 2 4 1 Y / Y 101 / 101 4.55 / 4.52 1.0 4
ex9 2 4 8 / 4 7 0 N / N 100000 / 100000 3237 / 3284 1.0 4
ex9 2 5 8 / 5 7 0 N / N 44233 / 43768 3606 / 3606 1.0 3
ex9 2 8 3 / 0 2 0 Y / Y 8 / 8 0 / 0 3

house 8 / 3 4 4 N / N 82533 / 31269 3602 / 3602 1.0 5
least 3 / 2 0 0 Y / Y 1440 / 1440 61.42 / 60.78 1.0 1

mhw4d 5 / 3 3 0 Y / Y 393 / 240 7.47 / 4.29 0.6 2
nemhaus 5 / 0 0 0 Y / Y 0 / 0 0 / 0 5

rbrock 2 / 1 0 0 Y / Y 4 / 4 0.01 / 0 0.0 1
sample 4 / 0 0 2 Y / Y 29 / 187 2.64 / 6.65 2.5 4

wall 6 / 0 6 0 Y / Y 117 / 117 2.51 / 2.54 1.0 6

experimental version of GlobSol with the NAG Fortran 95 compiler, release 5.0. The
first column of Table 7.1 gives the problem name4 from the Library 1 set in [18]. The
second column of Table 7.1 gives the dimension n followed by the dimension nr of
the last reduced space computed. (The reduced space dimension depends on the box
x and thus varies throughout the computation process.) Columns 3 and 4 give the
number of equality constraints and inequality constraints, respectively.

As in [12], we used adaptive approximation of convex functions, with a relative
tolerance εLP = 10−1.

We allowed GlobSol to consider no more than 100,000 subboxes, and we allowed

4These problems include problems of dimension 10 or less from the Library 1 set in [18], exclud-
ing those for which translation from AMPL format within the COCONUT [18] did not succeed in
producing Fortran input that could be compiled. These problems are to be fixed in a future version
of the COCONUT environment.
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no more than 3,600 seconds of execution (CPU) time. Column 5, labelled “success?”
gives, first, whether or not the search process without the subspace analysis succeeded
within these bounds and, second, whether or not the search process with the sub-
space analysis succeeded within these allocated bounds. (“Y” signifies success, while
“N” signifies failure.) Subsequent columns, giving performance comparisons between
the search in the full space and the search in subspaces, are most meaningful when
both the full space algorithm and subspace algorithm succeeded: Column 6, labelled
“# boxes,” gives the total number of boxes processed for the full-space algorithm,
followed by the total number of boxes processed with the subspace algorithm; column
7, labelled “CPU sec.,” gives first the total processor time for the full-space algo-
rithm, then the total processor time for the subspace algorithm. The column labelled
“ratio” gives the ratio of processor times: {time for the subspace algorithm} / {time
for the full-space algorithm}. The last column, labelled n − nr, gives the difference
between the full-space dimension and the last computed subspace dimension (for easy
comparison with the performance ratio).

7.1. Conclusions. A perusal of Table 7.1 shows that, for most of the problems
in the test set, the subspace analysis has little effect on the practicality of the overall
algorithm. However, ex14 1 1 and ex7 3 3, in which the full-space algorithm fails
to complete but the subspace algorithm completes extremely efficiently, are notable
exceptions. Both of these problems are relatively simple, of a form similar to the
Lemaréchal formulation in section 6.

In addition to the extreme contrast between the search in the full space and search
in the subspace for ex14 1 1 and ex7 3 3, use of the subspace analysis resulted in
some improvement in ex5 4 2 and mhw4d, and the subspace analysis resulted in more
time spent in ex14 1 9 and sample. In “sample,” the reduced space had dimension
0, so no bisections were done: The additional boxes were an artifact of the box
complementation process.

During a review of our implementation, we have found very recently that the
subspace algorithm may be hampered by the way we are handling validation of the
variable bounds in the orthogonal complement of the space of variables being bisected,
and that considerably better performance of the subspace algorithm is possible. We
have ideas of how to improve our process, but this will take significant additional
development.

8. Summary and future work. In [9], we detail some of the techniques we have
used to provide machine-representable relaxations that are mathematically rigorous,
while in [12] we describe our implementation of linear relaxations within GlobSol,
and we give experimental results comparing use of linear relaxations within GlobSol
to GlobSol without linear relaxations. However, in the experiments in [12], we worked
in the full space, and not in the subspace.

Here, we have presented an analysis of nonlinear programming problems that
leads to a way of automatically determining a measure of difficulty for the problem.
This analysis leads to a method of determining a lower-dimensional subspace in which
to branch. This method appears to give similar subspaces to the method in [3], but we
have implemented the method from a different point of view. We have presented the
subspace analysis process on a particular problem we previously found to be difficult
within a validation context but without linear relaxations.

We also mention that the algorithm in Epperly and Pistikopoulos [3] solves the
problems presented in [3] more efficiently than our validated algorithm, but we suspect
that this is not due to the subspace selection method. Our current thinking is that
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we will see equivalent efficiency with better validated handling of the orthogonal
complement of the space of reduced variables, and we are currently developing this
idea. Evidence that an improved validated environment can be produced is in the
successful validated codes of Lebbah et al. [13].

We have used the subspace analysis technique in GlobSol’s validated branch-
and-bound algorithm, testing the technique on a published low-dimensional test set.
Those tests revealed that, for most problems, there was little difference, but a huge
advantage was revealed for two problems whose solution was impractical without the
subspace analysis method.

The tests, along with those in [12], reveal that GlobSol’s validated algorithm,
although more practical when validated linear relaxations are included, still does not
handle problems as quickly as the BARON package described in [23]. The subspace
analysis method described here, not implemented in BARON, does greatly help for
some problems, and additional tuning (i.e., the setting of heuristic parameters) may
further improve performance. However, these are not the entire answers to questions
concerning performance differences. Nonetheless, we are convinced that the perfor-
mance differences are not an inevitable consequence of insistence on validation, but
are a result of how techniques, which can be modified to be validated, are used and
combined in the overall algorithm, and how efficiently these techniques are imple-
mented.

For instance, which LP solver is used to solve the linear relaxations may have a
significant effect on the practicality of the overall branch-and-bound algorithm. Also,
the “probing” technique in BARON, first described in [21] and later in [23], may be
effective; we are presently developing a validated version of this technique.
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entiation of Algorithms: From Simulation to Optimization, Springer-Verlag, New York,
2000.

[3] T. G. W. Epperly and E. N. Pistikopoulos, A reduced space branch and bound algorithm
for global optimization, J. Global Optim., 11 (1997), pp. 287–311.

[4] J. E. Falk and R. M. Soland, An algorithm for separable nonconvex programming problems,
Management Sci., 11 (1968), pp. 550–569.

[5] C. A. Floudas, Deterministic Global Optimization: Theory, Methods, and Applications,
Kluwer, Dordrecht, The Netherlands, 2000.

[6] E. P. Gatzke, J. E. Tolsma, and P. I. Barton, Construction of convex relaxations using
automated code generation techniques, Optim. Eng., 3 (2002), pp. 305–326.

[7] A. Griewank and G. F. Corliss, Automatic Differentiation of Algorithms: Theory, Imple-
mentation, and Application, SIAM, Philadelphia, 1991.

[8] E. R. Hansen, Global Optimization Using Interval Analysis, Marcel Dekker, New York, 1992.
[9] S. Hongthong and R. B. Kearfott, Rigorous Linear Overestimators and Underestimators,

2004, preprint, http://interval.louisiana.edu/preprints/estimates of powers.pdf.



VALIDATED LINEAR RELAXATIONS AND PREPROCESSING 433

[10] R. B. Kearfott, Rigorous Global Search: Continuous Problems, Kluwer, Dordrecht, The
Netherlands, 1996.

[11] R. B. Kearfott, Globsol: History, composition, and advice on use, in Global Optimization
and Constraint Satisfaction, Lecture Notes in Comput. Sci. 2861, Springer-Verlag, New
York, 2003, pp. 17–31.

[12] R. B. Kearfott, Empirical comparisons of linear relaxations and alternate tech-
niques in validated deterministic global optimization, Optim. Methods Softw.,
2004, preprint, http://interval.louisiana.edu/preprints/validated global optimization
search comparisons.pdf.

[13] Y. Lebbah, C. Michel, M. Rueher, D. Daney, and J.-P. Merlet, Efficient and safe global
constraints for handling numerical constraint systems, SIAM J. Numer. Anal., 42 (2005),
pp. 2076–2097.
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