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Abstract
Interval analysis is a broad field in which rigorous mathematics is as-

sociated with with scientific computing. A number of researchers world-
wide have produced a voluminous literature on the subject. This article
introduces interval arithmetic and its interaction with established math-
ematical theory. The article provides pointers to traditional literature
collections, as well as electronic resources. Some successful scientific and
engineering applications are listed.

1 What is Interval Arithmetic, and Why is it
Considered?

Interval arithmetic is an arithmetic defined on sets of intervals, rather than
sets of real numbers. A form of interval arithmetic perhaps first appeared in
1924 and 1931 in [8, 104], then later in [98]. Modern development of interval
arithmetic began with R. E. Moore’s dissertation [64]. Since then, thousands of
research articles and numerous books have appeared on the subject. Periodic
conferences, as well as special meetings, are held on the subject. There is
an increasing amount of software support for interval computations, and more
resources concerning interval computations are becoming available through the
Internet.

In this paper, boldface will denote intervals, lower case will denote scalar
quantities, and upper case will denote vectors and matrices. Brackets “[·]” will
delimit intervals while parentheses “(·)” will delimit vectors and matrices. Un-
derscores will denote lower bounds of intervals and overscores will denote upper
bounds of intervals. Corresponding lower case letters will denote components
of vectors. The set of real intervals will be denoted by IR. Interval vectors will
also be called boxes.
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If x = [x, x] and y = [y, y], then the four elementary operations for idealized
interval arithmetic obey

x op y = {x op y | x ∈ x and y ∈ y} for op ∈ {+,−,×,÷} (1)

Thus, the image of each of the four basic interval operations is the exact range
of the corresponding real operation. Although Equation (1) characterizes these
operations mathematically, interval arithmetic’s usefulness is due to the opera-
tional definitions. For example,

x + y = [x + y, x + y], (2)

x− y = [x− y, x− y], (3)

x× y = [min{xy, xy, xy, xy}, max{xy, xy, xy, xy}] (4)
1
x

= [1/x, 1/x] if x > 0 or x < 0 (5)

x÷ y = x× 1/y (6)

The ranges of the four elementary interval arithmetic operations are exactly
the ranges of the corresponding real operations. If such operations are com-
posed, bounds on the ranges of real functions can be obtained. For example,
if

f(x) = x(x− 1), (7)

then
f([0, 1]) = [0, 1]

(

[0, 1]− 1
)

= [0, 1][−1, 0] = [−1, 0],

which contains the exact range [−1/4, 0]. (This is necessarily so.)
Such bounds on ranges can be used throughout mathematical computations

in place of Lipschitz constants. In fact, bounds from interval arithmetic often
are sharper, and are simpler to derive than bounds from other techniques. For
example, if f is as in Equation (7), then the mean value theorem gives f(x) ∈
f(0.5)+f ′(ξ)(x−0.5) for some unknown ξ between 0.5 and x. If x ∈ [0, 1], then
ξ may be replaced by the interval [0, 1] to obtain f ′(ξ) ∈ 2[0, 1] − 1 = [−1, 1].
This leads to a second set of bounds on the range of f :

f(x) ∈ −0.25 + [−1, 1][−0.5, 0.5] = [−0.75, 0.25]

for x ∈ [0, 1].
The power of interval arithmetic lies in its implementation on computers.

In particular, outwardly rounded interval arithmetic allows rigorous enclosures
for the ranges of operations and functions. This makes a qualitative difference
in scientific computations, since the results are now intervals in which the exact
result must lie. It also enables use of computations for automated theorem
proving.
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Directed rounding proceeds as follows. Much modern computing equip-
ment (including machines that support IEEE standard arithmetic [96], such
as most PC’s and workstations) allows the result of an arithmetic operation to
be rounded down to the nearest machine number less than the mathematically
correct result, rounded up to the nearest machine number greater than or equal
to the mathematically correct result, or rounded to the machine number nearest
to the mathematically correct result. For example, take x+y = [x+y, x+y]. If
x + y is rounded down after computation and x + y is rounded up after compu-
tation, then the resulting interval z = [z, z] that is represented in the machine
must contain the exact range of x + y for x ∈ x and y ∈ y.

Good enclosures for the ranges of transcendental functions such as “exp”
and “sin” can be computed. Thus, interval arithmetic can be carried out for
virtually any expression that can be evaluated with floating point arithmetic.
However, since interval arithmetic is only subdistributive, expressions that are
equivalent in real arithmetic differ in interval arithmetic. In particular, compu-
tations should be arranged so that overestimation of ranges is minimized. The
fact that naively arranged computations do not always give adequately narrow
bounds on the range has been the source of controversy, but there have been
advances in recent years in the astute use of interval arithmetic.

The sets of theory and tools are too extensive to be fully described here.
Additional introductory and advanced details and explanations of interval arith-
metic can be found in the books [1, 2, 3, 6, 27, 28, 45, 66, 73, 83, 84], and soon
in the book [40]. A World-Wide-Web entry point for interval computations is

http://cs.utep.edu/interval-comp/main.html

More references are cited below.

2 Interval Computations and Mathematical
Proofs

A powerful aspect of interval computations is tied to the Brouwer fixed point
theorem:

Theorem 1 (Brouwer fixed point theorem, [7]) Let D be homeomorphic to the
closed unit ball in Rn, and suppose P is a continuous mapping such that the
range P u(D) ⊂ D. Then P has a fixed point, i.e. there is an X ∈ D such that
P (X) = X.

The Brouwer fixed point theorem combined with interval arithmetic enables nu-
merical computations to prove existence of solutions to linear and nonlinear sys-
tems. The simplest context in which this can be explained is the one-dimensional
interval Newton method.

Suppose f : x = [x, x] → R has a continuous first derivative on x, suppose
x̌ ∈ x, and suppose f ′(x) is a set that contains the range of f ′ over x (such as

3



when f ′ is evaluated at x with interval arithmetic). Then the operator

N(f ; x, x̌) = x̌− f(x̌)/f ′(x) (8)

is termed the univariate interval Newton method. (Note: The derivative en-
closure f ′(x) may be replaced by a slope enclosure; see [40] or [73] for further
information and references.) Applying the Brouwer fixed point theorem in the
context of the univariate interval Newton method leads to:

Theorem 2 If N(f ; x, x̌) ⊂ x, then there exists a unique solution of f(x) = 0
in x.

Existence in Theorem 2 follows from Miranda’s theorem, a corollary of the
Brouwer fixed point theorem. For details and references, see [40] or [73]. Unique-
ness is as follows: Suppose there were two solutions x ∈ x and x̃ ∈ x. Then
f(x) = 0 = f(x̃), so there is a ξ ∈ x with f(x) = f(x̃) + f ′(ξ)(x − x̃) =
f ′(ξ)(x− x̃) = 0. However, since N(f ; x, x̌) ⊂ x, f ′(ξ) cannot contain zero, so
0 6∈ f ′(x)(x− x̃). But this contradicts 0 = f ′(ξ)(x− x̃) ∈ f ′(x)(x− x̃).

Existence theory for multivariate interval Newton methods is similar. Unique-
ness theory proceeds by proving that the interval derivative matrix or interval
slope matrix is regular. There are various ways of doing this computationally.
For example, if a preconditioned interval version of Gaussian elimination com-
pletes without pivots that contain zero, then the interval matrix cannot contain
any singular matrices.

This computational existence-uniqueness theory has wide use, from con-
structing narrow bounds around approximate solutions to linear systems, within
which an actual solution must lie, to proving existence and uniqueness of solu-
tions to operator equations.

For a thorough and careful treatment of this theory, see [73]. For an alternate
presentation, with an elementary, intuitive introduction and various examples,
see [40]. Both [73] and [40] contain numerous historical and research references.

3 Interval Computations and Scientific Com-
puting

Besides computational existence and uniqueness, interval arithmetic provides
several other elementary but powerful tools. The most prominent, already men-
tioned, is bounding the ranges of functions. For example, bounds on the range
of an objective function are extremely useful in global optimization algorithms.
The second, with wide use in scientific computing, is bounding the error term in
Taylor’s Theorem (and other approximations with similar error terms). Finally,
in some calculations, interval arithmetic (with directed roundings) can be used
to bound the effects of roundoff error. However, direct use of interval arithmetic
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merely to bound roundoff error must be implemented carefully, and cannot be
applied naively or, at present, universally.

Although algorithms differ from point (i.e. non-interval) algorithms, interval
computations can be used in most of the areas studied in a first course in
numerical analysis.

3.1 Linear Systems

Bounding the solution set of an interval linear system is as fundamental in
interval computations as in traditional point computations. An interval linear
system is a system of the form

AX = B, (9)

where A ∈ IRn×n and B ∈ IRn. The united solution set of the interval linear
system (9) is that set Σ(A, B) ⊆ Rn such that, if X ∈ Σ(A,B), there exists an
A ∈ A and a B ∈ B such that AX = B.

Computation of the actual solution set Σ(A, B) is an NP-complete prob-
lem, but it is a routine matter to compute interval vectors that bound Σ(A,B),
and whose overestimation decreases as the widths of the entries in A and B
decrease. For example, interval versions of Gaussian elimination or the Gauss–
Seidel method provide such bounds. However, these interval algorithms differ
significantly from corresponding point algorithms; for instance, Equation (9)
must first be preconditioned with a point matrix for the algorithms to be ef-
fective. A good recent introduction to these algorithms appears in [28], while
a recent detailed study of the properties, with literature citations, appears in
[73]. An up-to-date introduction will also appear in [40].

On the practical side, Korn and Ullrich [51] have shown how approximate
solutions to point linear systems AX = B can be computed with existing soft-
ware libraries such as LINPACK or LAPACK, then be used to obtain tight
bounds within which an exact solution is known to exist. The rigorous bounds
on the exact solution are not too much wider than those obtained with condition
number estimators, and, in some cases, can be obtained far less expensively [50].

Schwandt [90, 91, 92] considers using high-performance computers to bound
the solution sets of linear interval systems of equations arising from discretiza-
tion of linear and nonlinear elliptic partial differential equations.

3.2 Nonlinear Systems/Optimization

Because of interval arithmetic’s power to bound ranges of functions, interval
arithmetic has arguably been most successful in solution of nonlinear systems
and global optimization. In global search algorithms for nonlinear systems of
the form

F (X) = (f1(X), . . . , fn(X))T = 0, F : Rn → Rn,
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if 0 6∈ f i(X), that is, if an interval evaluation of one of the components reveals
that it is non-zero, then the box X need not be considered further. Similarly,
in global optimization problems of the form

minimize φ(X)
subject to ci(X) = 0, i = 1, . . . , m,

xij
≤ xij , j = 1, . . . q − µ,

xij ≤ xij , j = µ + 1, . . . q,

a box X can be removed from consideration if the lower bound of an interval
evaluation φ(X) is greater than some previously computed point value φ(X̌),
or if an interval value 0 6∈ ci reveals that a constraint cannot be satisfied within
X.

In both nonlinear systems and global optimization, interval Newton methods
are invaluable. Besides providing computational existence/uniqueness proofs
that are sharper than, say, the Kantorovich theorem, interval Newton methods
provide a quadratically convergent iteration of the form

X ← N(F ;X, X̌) ∩X.

Such iteration is valuable because any solutions of F (X) = 0 within X must
also be within N(F ;X, X̌).

When interval methods solve nonlinear systems or global optimization prob-
lems, their output differs qualitatively from that of point algorithms in the
following sense: The output of interval algorithms consists of

1. a list R such that each box X ∈ R has been verified to contain a unique
solution, and

2. a list U , each of whose boxes has relative diameter of size less than an
input tolerance, such that all solutions within the original search region
and not in boxes in R are in boxes in U .

Typically, the list R will contain boxes with narrow coordinate widths, corre-
sponding to solutions or global optima at which the Jacobi matrix or Hessian
matrix is well-conditioned, and the list U will contain one or more boxes corre-
sponding to each of the other solutions.

Despite the qualitative advantages of the solutions given by interval methods,
interval methods can be faster than point methods (such as homotopy methods,
Monte Carlo methods, genetic algorithms) for finding all solutions or global
optima, even when the underlying interval arithmetic is not implemented with
optimal efficiency.

For details, see (in chronological order): [84], [73], and [28]. The book [27]
describes some PASCAL-XSC software. Soon, the book [40] will both introduce
the theory and techniques and describe publicly available Fortran 90 software.
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Interval constraint propagation [32, 57, 100, 101] is closely tied to global op-
timization and nonlinear systems of equations, but is also related to core subject
areas in computer science. The technique involves explicitly using the interrela-
tionships among intermediate quantities in evaluation of algebraic expressions
in nonlinear systems, objective functions, and constraints. The associated iter-
ation processes seem to have been rediscovered several times [4, 9, 14, 38].

3.3 Quadrature

Adaptive quadrature is another area in which interval methods have much to
offer. This is because, due to the form of the error term, meaningful interval
enclosures for the actual integral can easily be computed. Replacing heuristic
error estimates by these rigorous enclosures results in a quadrature algorithm
that produces guaranteed bounds on the actual integral. In particular, quadra-
ture formulas are of the form

L(f) = Q(f) + R(F ), R(f) = Chn+1 dnf
dxn , (10)

where L is the integral of f , Q is the quadrature formula to approximate L,
R(f) is the local error term, and h is the distance between sample points, for
some n and C independent of f . For example, in Simpson’s rule,

L(f) =
∫ h

−h

f(x)dx, Q(f) =
h
3

{

f(−h) + 4f(0) + f(h)
}

, R(f) = − 1
90

h5f (4)(ξ),

for some ξ ∈ [−h, h]. The interval version of this is
∫ h

−h

f(x)dx ∈ h
3

{

f(−h) + 4f(0) + f(h)
}

− 1
90

h5f(4)([−h, h]).

A more common interval algorithm, however, is to integrate high-order Taylor
polynomial approximations to f [13]. For an illustrative example, to integrate
cos x from x = −0.1 to x = 0.1, we could take the Taylor polynomial with
remainder term:

cos(x) = 1− x2

2
+

x4

24
cos(ξ) ∈ 1− x2

2
+

x4

24
[0.9, 1].

The integral becomes
∫ .1

−.1
cos(x)dx ∈ 2

(

0.1− 0.13

6
+

0.15

120
[0.9, 1.1]

)

∈ [0.199666817, 0.199666834]

In actual verified adaptive quadrature codes, automatic differentiation soft-
ware enables use of high and variable degree Taylor approximations. See [13,
44, 97].
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Figure 1: The wrapping effect

3.4 Initial Value Problems

Consider the initial value problem

u′ = f(t, u), u(t0) = u0, with u ∈ Rn. (11)

Interval techniques for (11) provide enclosures for errors in the initial values,
mathematical truncation, and roundoff errors, so that, for each time point ti,
intervals are produced that contain the actual solution to (11). However, inter-
val techniques for initial value problems in ordinary differential equations are
among the most demanding for algorithm designers. This is due partially to a
phenomenon, intrinsic to interval computations, called the wrapping effect . The
wrapping effect is due to the fact that the image of an interval vector under a
map is not an interval vector, and there is thus overestimation in enclosing the
image with an interval vector; see Figure 3.4. In Figure 3.4, the interval enclo-
sure has an area that is

√
2 times larger than the area of the actual image set. If

the algorithm does not take account of the wrapping effect, the overestimation
in the solution increases exponentially from time step to time step.

The wrapping effect can be ameliorated with changes of variables and other
techniques, as in Lohner’s software AWA [59, 60]. (Also see [74] for a survey and
a novel technique.) Nonetheless, interval algorithms for initial value problems
tend to be significantly slower than corresponding point algorithms. Further-
more, depending on the stability properties of the system, variable precision
arithmetic, along with restarting the iterations, is sometimes used.

Corliss has provided a tutorial [12] on guaranteed error bounds for ordinary
differential equations.

3.5 Boundary Value Problems and PDE

Partial differential equations are perhaps the most challenging class of problems
for rigorous computation, due to the size of the problems resulting from dis-
cretization and due to questions associated with discretization error. As with
point methods, systems of PDE’s can, in principle, be converted to systems of
ordinary differential equations or linear or nonlinear algebraic systems. Con-
siderations such as utilization of structure in the resulting linear or nonlinear
interval systems are similar to considerations for point systems. Unique to inter-
val systems is the necessity to rigorously bound the discretization error, so any
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computational proofs will apply to the original system of differential equations,
not just its discretization.

Nonetheless, the discretization error can be taken into account. Kaucher
and Miranker [37] develop an arithmetic on functional spaces and correspond-
ing theory for the purpose of computing solutions to function space problems.
Kaucher et al. have applied these techniques, e.g. [34].

Lohner has applied AWA, described above, to many boundary value prob-
lems in ordinary differential equations. Plum has done extensive work in com-
putational existence and uniqueness proofs, as well as rigorous error bounds for
linear and nonlinear elliptic boundary value problems [21, 77, 78, 79, 80, 81].
Nakao [70] has proven existence and uniqueness of solutions to nonlinear ellip-
tic boundary value problems with the aid of finite element discretizations and
explicit error bounds.

The book [16] (in Russian) also considers interval techniques for ordinary
and partial differential equations.

3.6 Integral Equations

Solution of integral equations combines considerations, as with boundary value
problems, of bounding the discretization error for infinite-dimensional problems,
with techniques of verified quadrature. In many cases, integral equation formu-
lations are somewhat more tractable than differential equation formulations.
See, for example, [15].

4 Some Successful Scientific and Engineering
Applications

Widespread application of interval arithmetic has been inhibited in the past by
lack of hardware and software. Nonetheless, more real-world applications have
appeared in recent years. A relatively early commentary on the use of interval
methods in real-world problems is [11]. Since then, use of interval methods has
blossomed. More recent, the proceedings [41] contains descriptions of appli-
cations in manufacturing quality control, economics, quantum mechanics, and
artificial intelligence, as well as fundamental ideas likely to be important in ap-
plications. A brief selection of Additional applications are outlined below. The
author of this paper wishes to be informed of other successful applications not
listed here.

4.1 Chemical Engineering

Technology is currently available to rigorously find all solutions to moderately-
sized nonlinear systems of equations [39, 42], an important problem in process
design and flowsheeting. Balaji and Seader have used this general technology
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effectively [5], while Schnepper [87] and Schnepper and Stadtherr [88] have taken
advantage of system structure to solve somewhat larger problems.

4.2 Computer Graphics and Computer-Aided Design

Interval computations are well-suited to certain computer graphics applications.
Operations such as surface intersection and hidden line removal require robust-
ness in nonlinear equation solvers that can be provided by interval computations.
Furthermore, the low-degree polynomial systems and constraints that arise in
such operations are easy for interval solvers.

Early, Mudur and Koparkar [69] provide a review of interval analysis tech-
niques that can be useful in computational geometry. Maekawa [61] uses interval-
based techniques to robustly solve shape interrogation problems in computa-
tional geometry; such solutions are important in automated manufacturing of
free-form objects. Others, such as [43, 89, 93], have also shown success in this
area.

In a somewhat different application, Enger [17] has shown how to use interval
ray tracing to greatly speed up ray tracing algorithms without sacrificing image
quality. The basic idea is to take care of regions in the image having nearly
constant intensity with a single interval ray, rather than with many point rays.

Snyder [94] has provided a relatively recent overview of applications of in-
terval computations to computer graphics.

4.3 Electrical Engineering

Okumura [76] shows that an interval method, besides providing validated re-
sults, is hundreds of times faster than a Monte Carlo method for solving AC
network equations. Krischuk et al. [52] apply interval computations in quality
control in the manufacture of radioelectronic devices.

4.4 Dynamical Systems and Chaos

Grebogi, Hammel, Sauer, and Yorke [10, 22, 26, 86] use techniques related to
interval arithmetic to verify, among other things, that computed numerical so-
lutions to chaotic dynamical systems are close to actual solutions with initial
conditions that are near the initial condition of the numerical solution.

Neumaier and Rage [75, 82] use interval computations to verify that chaotic
behavior occurs in a molecular model. Spreuer and Adams [95] use Lohner’s
ODE software (see §3.4) to verify existence of homoclinic and heteroclinic orbits
of the origin for the Lorenz equations. Mrozek [68] uses interval techniques to
determine the qualitative behavior of dynamical systems.
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4.5 Control theory

Gross [23], Rohn [85], and others use interval linear algebra to analyze Hurwitz
stability, etc. in control theory applications.

4.6 Remote Sensing and Geographic Information Systems

Hager [25] uses interval methods to take account of bounded errors in the data
in decisions based on remote sensing. Lodwick [58] uses interval methods in
sensitivity analyses in geographic information systems.

4.7 Expert Systems

Kohout et al. [47, 48] develop interval-valued inference handle different logical
properties of knowledge representations from different medical specialist fields.
They apply interval-valued inference to CLINAID, a general medical diagnosis
expert system.

4.8 Economics

Jerrell [33] uses classical results in linear interval systems to determine, ex-
actly, the effects of uncertainties in input parameters on the economic output
of Coconino County Arizona. Matthews and Broadwater [62] use interval com-
putations to include the effects of forecast uncertainties in break-even analyses
for electric utilities.

4.9 Quality Control

Hadjihassan et al. [24] show how to use interval methods for quality control
in manufacturing processes in which the factors fluctuate within bounds. They
apply the techniques to a realistic model of a temperature controller.

4.10 Correcting Statistical Tables

Wang and Kennedy [102] use interval techniques to discover errors, in some
cases in the first or second significant digit of many significant digits printed,
in tables of common statistical distributions. They use interval methods to
produce tables that are verified to be accurate to many printed digits.

4.11 Computer-Assisted Proofs in Mathematical Physics

Lanford [54, 55, 56] presents a computer-assisted proof of the Feigenbaum con-
jecture; Koch, Shenkel, and Wittwer [46] review this and give a further analysis.
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Fefferman and Seco [18] use interval computations in a computer-assisted
proof of an asymptotic formula for the ground-state energy of a nonrelativistic
atom.

4.12 Computation of Physical Constants

Holzmann et al. use interval arithmetic to identify critical values whose measure-
ment tolerances must be reduced to determine Newton’s gravitational constant
G more accurately.

4.13 Minimal Surfaces

Hass [29] uses interval computations in a computer-assisted proof of the solution
of a classical variational problem. Namely, he shows that the unique surface of
smallest area that encloses two equal volumes is the double bubble, made of two
pieces of round spheres separated by a disk, meeting along a single circle at an
angle of 120◦.

4.14 Fluid Mechanics

Kaucher shows how interval techniques can be used to partially validate some
solutions to the incompressible Navier-Stokes equations [34]. More recent, not-
yet-published work of Kaucher et al., as well as work of Nakao, Yamamoto and
Watanabe [71, 103], contains computational results.

5 Brief Guide to Resources

5.1 Internet Resources

5.1.1 General Internet Pages

A primary entry point to items concerning interval computations is the page:

http://cs.utep.edu/interval-comp/main.html

This page contains pointers to much of the information in this article: Namely,
it provides an elementary description of interval computations, programming
languages for interval computations, home pages of interval computations re-
searchers, information about the journal Reliable Computing , bibliographies,
etc. This page is maintained by Vladik Kreinovich and Misha Koshelev at the
University of Texas at El Paso.

Arnold Neumaier maintains a home page for global optimization (including
interval computations) at:

http://solon.cma.univie.ac.at/∼neum/glopt.html
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5.1.2 Bibliographies

• Bohlender has a bibliography, in LaTEX, that contains approximately 1000
entries in BibTEX format, at

http://ma70.rz.uni-karlsruhe.de/∼ae15/litlist.html
Although not comprehensive, this list contains references related to the
work at the University of Karlsruhe, as well as other interesting references.

• Nelson Beebe and Jon Rokne maintain a BibTEX bibliography at:

ftp://ftp.math.utah.edu/pub/tex/bib/intarith.bib

and (the TEX DVI file):

ftp://ftp.math.utah.edu/pub/tex/bib/intarith.dvi

This bibliography is based upon but extends a two-thousand entry bibli-
ography previously published in the Freiburger Intervallberichte [19, 20].

• The Freiburger Intervallberichte bibliography itself is available at:

http://solon.cma.univie.ac.at/∼neum/intlib

5.1.3 Software

Software, as follows, is available free of charge over the Internet.

PROFIL/BIAS is a C/C++ package, developed by Jansson and Knüppel at Ham-
burg, that implements an interval data type. It also has substantial sup-
port for linear algebra operations, and is notably fast. It is available at:

http://www.ti3.tu-harburg.de/indexEnglisch.html

INTLIB is a library of FORTRAN 77 routines for interval arithmetic operations
and interval values of standard functions, available at:

ftp://interval.usl.edu/pub/interval math/intlib/

INTLIB 90 is a Fortran 90 module that defines an interval data type. It is
available at:

ftp://interval.usl.edu/pub/interval math/Fortran 90 software/

C-XSC is one of the well-known “XSC” languages developed under the direction
of Prof. Dr. Kulisch at Universität Karlsruhe. The version of the entire
package is available free of charge for the Borland C++ compiler version
4.x. For details, see:

http://www-iam.mathematik.uni-karlsruhe.de/html/language

Additional software is available through other distribution channels or for a
price. For further information, consult:

http://cs.utep.edu/interval-comp/main.html
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5.1.4 Mailing List (Discussion Group)

There is an interval mailing list. This amiable discussion group is managed auto-
matically by the “majordomo” software. The list presently consists of roughly
450 subscribers across the world. Items such as conference announcements,
problems and solutions, announcements of book publications, and similar infor-
mation typically are posted here. To send a message to the entire list, send the
message to:

reliable computing@interval.usl.edu

To subscribe to the mailing list, send a message to:
majordomo@interval.usl.edu

The body of the message should consist of the line:

subscribe reliable computing

Persons may just as easily remove themselves from the list or obtain the email
addresses on the list. Details are sent upon subscription to the list.

5.2 Journals

The journal Interval Computations started as a joint Soviet-Western enterprise
in 1991, and continues as the journal Reliable Computing.

Besides that, Computing commonly publishes material related to interval
computations, as well as the journal Global Optimization. Traditional numer-
ical analysis journals, such as BIT, the SIAM Journal on Numerical Analysis,
the SIAM Journal on Scientific and Statistical Computing, the Mathematics of
Computation, and the ACM Transactions on Mathematical Software contain
articles on interval computations.

5.3 Books

General books on the subject include [1], [2], [3], [6], [16], [27], [28], [37], [45],
[65], [66], [73], [83], and [84], soon [40], and others.

Some recent conference proceedings include [30], [35], [36], [41], [53], [63],
[67], and [99]. Collections of papers presented at other conferences have ap-
peared in special issues of Computing and Interval Computations/Reliable Com-
puting .

5.4 Conferences

Numerous conferences on the subject have been held. Perhaps the most well-
known of these are the “SCAN” (Society for Computer Arithmetic and Numer-
ics) meetings, generally held biennially in the Fall in Europe, and sponsored by
IMACS and GAMM. (The last two have been SCAN’93 in Vienna and SCAN’95
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in Wuppertal.) R. E. Moore held a meeting in Columbus, Ohio in 1987. IN-
TERVAL’92 was held in St. Petersburg, Russia, INTERVAL’94 was held in
Moscow, and INTERVAL’96 will be held in Würzburg in September, 1996. S.
Markov organized conferences on mathematical modeling and scientific comput-
ing, heavily featuring interval computations, in Albena, Bulgaria in 1991 and in
Sozopol, Bulgaria in 1993. The conference on Numerical Analysis with Auto-
matic Result Verification was held in Lafayette, Louisiana in 1993. A workshop
on interval arithmetic will take place in Recife, Brazil in August, 1996. Details
of the upcoming conferences can be found from the home page:

http://cs.utep.edu/interval-comp/main.html

6 Researchers and Research Centers

Home pages of various researchers can be found from:

http://cs.utep.edu/interval-comp/main.html

Researchers not mentioned there should contact Prof. Vladik Kreinovich at:

vladik@cs.utep.edu

7 Summary

This paper has briefly introduced the subject of interval computations, and
has guided the reader to electronic and printed material for further study and
research.
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