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Abstract. Many practical optimization problems are nonsmooth, and derivative-
type methods cannot be applied. To overcome this difficulty, there are different
concepts to replace the derivative of a function f : R® — R: interval slopes, sem-
igradients, generalized gradients, and slant derivatives are some examples. These
approaches generalize the success of convex analysis, and are effective in opti-
mization. However, with the exception of interval slopes, it is not clear how to
automatically compute these; having a general analogue to the chain rule, interval
slopes can be computed with automatic differentiation techniques. In this paper we
study the relationships among these approaches for nonsmooth Lipschitz optimiza-
tion problems in finite dimensional Euclidean spaces. Inclusion theorems concerning
the equivalence of these concepts when there exist one sided derivatives in one
dimension and in multidimensional cases are proved separately. Valid enclosures are
produced. Under containment set (cset) theory, for instance, the cset of the gradient
of a locally Lipschitz function f near z is included in its generalized gradient.

Keywords: generalized gradient, slope interval, semigradient, slant derivative, sub-
differential, subgradient, cset, symmetric slope interval, nonsmooth optimization
methods

1. Introduction

The purpose of this work is to delineate practical relationships among
five different generalizations to the derivative or gradient of functions
f: D C R" — R slope interval, generalized gradient, subdifferen-
tial (set of subgradients), semigradient, slant derivative, and cset. These
generalizations are used in the solution of nonsmooth constrained or
unconstrained optimization problems.

Different techniques have been developed for nonsmooth optimiza-
tion problems. For nonsmooth convex functions, the subdifferential
in the sense of convex analysis is introduced in [26], and the sta-
bility of the optimal solution with subdifferential is studied in [8].
For constrained optimization problems with locally Lipschitz function,
the generalized gradient is introduced in [3]. For unconstrained opti-

* Department of Mathematics, Southern University, P.O. Box 9440, Baton Rouge,
LA 70815

! Department of Mathematics, University of Louisiana at Lafayette, Box 4-1010,
Lafayette, LA 70504-1010

';:‘ © 2003 Kluwer Academic Publishers. Printed in the Netherlands.

sssg_kluwer.tex; 6/07/2003; 19:54; p.1



2 H. Munoz and B. Kearfott

mization with locally Lipschitz continuous objective function, bundle
methods are standard solution methods which provide interior ap-
proximations of the generalized gradient [12, 31]. In the French and
Russian literature are the works of [1, 4] who also worked with Lipschitz
functions. The first works on nonsmooth optimization using tools of
interval arithmetic were presented in [20]. A combination of bundle
methods and interval extensions (outer approximations) of the genera-
lized gradient, based in Goldstein’s approach and developed in [21] and
(33].

The following goals motivate generalization of gradients: 1) to gen-
eralize the clear success of convex analysis; 2) to be effective in opti-
mization; and 3) to be easy to compute, particularly in the composition
of functions with chain rules. Computing a slope interval is easy with
automatic slope computation, see Section 6.1 on [11] and [9, 24]. It is
not possible to compute sharp slopes, in general, but we can compute
enclosures for non-smooth functions easily enough, while computing
the other generalizations of the gradient seems hard. The other two
goals are achievable with all approaches.

In Section 2, basic notation of interval arithmetic as well as the
notation used in the rest of the paper are given. In Section 3, the slope
interval, directional slope, and symmetric interval slope are defined, and
some results related to these concepts are shown. Clarke’s generalized
gradient and the main relationships between slope intervals and genera-
lized gradients are established in Section 4. In Section 5, generalizations
of the Karush-Kuhn-Tucker optimality conditions are presented. The
semigradient and its relationships with slope intervals and symmetric
interval slopes are given in Section 6. Cset theory and some results
are given in Section 7. Section 8 deals with slant derivative and its
relationship with slope interval. Some general conclusions appear in
Section 9.

2. Notation

Real interval arithmetic, introduced in its modern form in [15], is based
on arithmetic within the set of real closed intervals. A real bounded and
closed interval is defined by

z = [z,z] := [inf &, sup 2] € [R,
where [R denotes the set of compact intervals. Ocasionally, in addition

to using boldface to denote intervals, we use uppercase boldface to
denote sets.
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Let Z and w(x) denote the midpoint and the width of x, respectively,
that is,
..zt _
T = , w(x) ;=2 — .
2
If S is a subset of R", co(S) denotes the convexr hull of S, and [IS
denotes the interval hull of S. The interval union or hull of two intervals
is defined by

aUy = [min{z,y}, max{Z, 7}],
where the bar under the union symbol means the convex hull. An n-
dimensional interval vector (also called boz) is defined by

L= (mla:B?a"'awn)T € HRna

where @, @9, ..., @, are real intervals and IR" is the set of real interval
vectors. An interval matriz A = (a;j) is a matrix all of whose entries
a;j are intervals. For interval vectors z € IR", the midpoint Z, the
width w(z), and the hull operation are defined componentwise. We
use w(z) in the context of |[w(z)| = ||w(®)|w. The basic interval
operations (+, —, -, /) and elementary interval functions can be defined
operationally [11], [18], [23],[16].
Let f: R — R be a function, and z a given real value. We denote

fl@)” :=limf(y) and f()*:=1lim f(y).
ytz ylz

Let R* be the set of extended real numbers consisting of the reals
augmented with —oo and +o00. £00 are always accepted as values of
the lim-operators.

3. Slope Interval

Although there are different ways of defining slope intervals [13], [14],
[7], [5], we will limit ourselves to the following.

DEFINITION 3.1 (Interval slope matrix, [11], p. 27). Let f : R* - R
and let & be an interval vector. A set S of vectors in R" is said to be a
slope set for f over x and centered on the interval vector & (usually, &
is a point or a very small box) if, for every x € x, and & € &,

fz) = f(@)

Any smallest such slope set will be denoted by S*(f,x, &). The smallest
interval vector that contains S*(f, @, &) is called the slope interval of f
over x, and it is denoted by [S*(f, x, &).

sT . (x—&) for some s € S.
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EXAMPLE 3.1. Let f : R — R be the continuous function f(x) =
129, and & = (1,1). Then

fz) = (&) = (L) - (& = &) = (22,1) - (2 — &).

Thus, (1,z1) is a slope of f at &, and so is (x2,1). Hence the slope is
not unique.

Note. It is not necessary that f be differentiable to obtain [S*(f, z, &).

Interval Newton iteration with slope intervals has potential in global
optimization and nonlinear systems solvers, especially when the deriva-
tives of the objective function f have jump discontinuities, such as when
f contains terms involving || - || or max, [9], [10], [25], [29].

LEMMA 3.1. Let f : R — R, and let  be an interval vector containing
Z. Then the limiting slope interval is given by

F) = 1@) Lo @) - f@)]

lim [S*(f,z,&) = |liminf a
T—E Tr — T Tr—2x

w(x)—0
Proof. By definition, S*(f, «, ) is the smallest set such that

{a: f(z) — (%) =a(x — &),z € m,z # &} C S*(f, x, &).

Thus, any a € S*(f, @, Z) satisfies

IO =@ @) = @)
f:if x— TEX r—x
THE£E
and
S, 0,3) = lzf f(xi:é(m)’i%) (EENE

Since  — % is equivalent to w(x) — 0, the result holds. O

EXAMPLE 3.2. Let f: R — R be the continuous function defined by

_ (r—1)% z>1,
f(x)_{l—a;2, <1,

and x=10,2], £ =1. Then
SH(f,@,#) =[-2,~11U[0,1], and [S°(f,z,%) = [-2,1].
EXAMPLE 3.3. Let f:R? — R be the function defined by

flz,y) = |z —2|—y? = ([1,3], [0,2])T, and & = (2,1).
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In this particular example, we can compute a partial slope enclosure
with respect to one variable by substituting point values for the other
variable, treating the other variable as constant. Thus, the first compo-
nent of the slope vector is computed by

Sy =S¥z —2|,[1,3],2) = {—1,1}.
Similarly, the second component of the slope vector is
So = 8*(—y?,[0,2],1) = [-3,—1].
Thus,
SH(f,2,#) =S = ({~1, 1}, [-3,-1))",
and

Dsﬁ(fa wvi') = ([_17 1]7 [_37 _1])T'

DEFINITION 3.2 (Directional Slope). Let f : R* — R, let z be a
vector in R™, and v be any other vector in R™ with ||v|| = 1 (with the
Euclidean norm in R™ ). The directional slope for f at = in the direction
v with step size t is defined by

fla+ ) = f(z)
t

S'U(f’t7$) =

THEOREM 3.1. Let v be any unitary vector in R™, i.e. ||v|| =1 and
let t > 0, and let & be an interval vector containing x and x + tv, and
let S'(f,x,x) be any minimal slope set for f at & over x. Then there
exists some s € S*(f, @, ) such that

S,(f.t,z) = s’ -w. (1)

(s will be denoted by s,(t), and it is not necessarily unique).

Proof. Let v be any unitary vector in R" and let £ be small enough
to have y = z 4 tv € x. By the definition of S*(f,,z), there exists
some s € S¥(f, a, ) such that

tSU(fatam) = f(y) —f(ﬂi) = ST' (y—a:) = ST'tU.
Dividing by ¢, we get (1). O

DEFINITION 3.3 (Directional Derivative). Let f : R* — R. The usual
(one-sided) directional derivative of f at x in the direction v € R" is

ooy e J@ ) — f(z)
f(x,v)—ltlfgl ,

when this limit exists.
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6 H. Mufioz and B. Kearfott
Note. Observe that f'(z;v) = limy g S, (f, t, z), when this limit exists.
EXAMPLE 3.4. Let f : R*> — R be the function defined by
fzy,290) = z120, x=([1.5,2],[0.5,1.5])T, and z = (1,1).
Then for any v = (v1,v2) we have

F@+t0) — f(&) (1+tv)(1 +tvg) — 1

t t
= v1 + v9 + tv1ve

=1 +to, )T v = (1,1 +tw)T -0,

50 s,(t) = (1 + tw, 1)1 or s,(t) = (1,1 + tvo)?. Thus, s,(t) is not
necessarily unique. However, the directional slope

S'U(fatwf) = S’U(t) v
s unique. Taking the limit when t ] 0, we get

F(@5v) = HmSu(f,4,2) = v +v2 = (1,17 - 0.

We introduce a new concept of slope, Symmetric Interval Slope, which
is an extension of the slope interval for discontinuous functions. The
symmetric slope interval is calculated considering slopes with respect
to both points (&,limyg f(Z + te;)) and (&, limgyo f(% + te;)), where
e, 4=1,...,n is the i-th coordinate vector.

DEFINITION 3.4. Let f : R* — R. The vector SS is said to be a
symmetric slope set for f over @ and centered on the interval vector &
if, for each coordinate vector e;, ¢ €  and T € &,

f(z) — 1ti%1f(§; +te;) = S4 - (z — &)

and
f(@) =lim f (@ + te)) = S - (@ = 2),

for some S;1,S;2 €SS, i=1,...,n. Any smallest such set of vectors
satisfying this condition will be denoted by SS*(f,®,&). The small-
est interval vector that contains SS*(f,x, &), ISSH(f,x, &), is called
symmetric slope interval of f over a.

In the one-dimensional case, the symmetric slope interval is cal-
culated considering slopes with respect to both points (&, f(£)~) and
(#, f(Z)T). Note that the symmetric slope interval is the same as the
slope interval for continuous functions at &.
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LEMMA 3.2. Let f : R — R, and let  be an interval vector containing
Z. Then the limiting symmetric slope interval is given by

limy(a) 0 [SS*(f, 2, &) = [min {lim infomss IO liminf,,, [ESET } ’
— ()" 4. z)—f(z)T
max 4 limsup,_, ; %Jlmsnpﬁi 4 )szae( : }]

= [s,9].
Proof. The proof is analogous to the proof of Lemma 3.1. [

EXAMPLE 3.5. Let f: R — R be the function defined by

for={5%, 750

z—1, >0,
and let x be any interval centered at £ = 0. Then

lim [S*(f, z, &) = [—o0, —1], lim [SS*(f,, &) = [—o0, 1].

w(x)—0 w(x)—0
Thus, this example illustrates that for discontinuous functions we have

lim [S*(f,® &) C lim [SS*(f,,%).

w(x)—0 w(x)—0

4. Generalized gradient

This section presents an alternate construction, the generalized gradi-
ent, of locally Lipschitz functions f : R” — R. The generalized gradient
is originally defined for Banach spaces X ( See [3] or [34]) and it has
been studied to obtain generalized versions of the classical Hamiltonian
and Euler-Lagrange equations of the calculus of variations so as to
encompass problems in optimal control [27] and to show Lipschitz—
type stability in nonsmooth convex problems [8]. In this work, we
concentrate our attention on the case X = R”.

DEFINITION 4.1. f:R" — R is Lipschitz of rank K near z € R" (or
f is locally Lipschitz at x € R") if K > 0 and there is an € > 0 such
that

|f(") = f(a")| < K|l2" —=2'||  Va",2" € z +eB, (2)
where B is the unit ball in R™.

DEFINITION 4.2 (Generalized Directional Derivative [3], p. 25). Let
f be Lipschitz near a given point x, and let v be any other vector in
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8 H. Munoz and B. Kearfott

R™. The generalized directional derivative of f at x in the direction v,
denoted f°(x;v), is defined as follows:

£°(a0) = lim sup fly +tv) = f(y)

y—a t
t10

; 3)

where y € R® and t is a positive scalar.

It is clear that f°(z;0) = 0. This definition does not presuppose the
existence of any limit, since it involves an upper limit only.

DEFINITION 4.3. A function f : x — R is positively homogeneous on
z if f(Ax) = Af(z) for all A\ >0 and z € @

PROPOSITION 4.1 ([3], p- 25). Let f be Lipschitz of rank K near z.
Then

(a) The function v — f°(x;v) is finite, positively homogeneous, and
subadditive on R, and satisfies

1/ (z; 0)|| < Kllv]].

(b) f°(z;v) is upper semicontinuous as a function of (z,v) and, as
a function of v alone, is Lipschitz of rank K on R".

(c) [°(z;—v) = (=f)°(x;v).

Under the conditions of Proposition 4.1 and the Hahn-Banach Theorem
there is at least one linear functional ( : R® — R such that, for all v
in R, one has f°(z;v) > ((v). ¢ is bounded, so it belongs to the dual
space (R™)* of continuous linear functionals on R™. In finite dimensional
spaces, a space and its dual have the same dimension. Hence, they
are isomorphic and homeomorphic, and the strong topology (generated
at the original space) and the weak topology (generated at the dual
space) are identified. So weak compactness is the same as compactness.
Henceforth, we identify (R")* with R", and we adopt the convention

of (¢, v) = (v,¢) = ¢(v).

DEFINITION 4.4 ( Generalized Gradient[3], p. 27).
The generalized gradient of f at x, denoted Of (x), is the subset of R"
given by

Of (z) ={C € R" : f*(x;0) = (C,v), Vv e R} (4)

The following proposition summarizes some properties of the gene-
ralized gradient in R™.
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PROPOSITION 4.2 ([3], p- 27). Let f be Lipschitz of rank K near z,

and consider the norm in R™ defined by

[¢]] = sup{{(¢,v) : v € R", ||v|| < 1}.
Then

(a) Of (x) is a nonempty, convex, compact subset of R* and
ISl < K for every ¢ in Of (x).

(b) For every v in R", one has

fo (5 0) = max{(C,v) : ¢ € Of (x)}. ()

From (4) and (5) it is equivalent to know the set 0f(z) or the function
f°(z;.); each is obtainable from the other. The next proposition relates
the generalized gradient and the subdifferential of a convex function.

PROPOSITION 4.3 ([3], p. 36). Let D be an open convex subset of R".
When f is convex on D and Lipschitz near x, then Of (x) coincides with
the subdifferential at z in the sense of convex analysis, and f°(x;v) co-
incides with the directional derivative f'(x;v) for each v. The elements
of the subdifferential Of (x) are called subgradients of f at x.

EXAMPLE 4.1 ([3], p- 28 ). Let f : R — R defined by f(z) = |z|, and
& = 0. Since ||z| — ||| < |z — | for all z,2" € R, f is Lipschitz at
any ¢ with K = 1. Using slope sets on the interval x whose midpoint
is &, we know that

lim [S*(f,z,0) = [-1,1].

w(x)—0
Now, we compute f°(0;v) and df(0).

t —
£2(0:) = limsup L=
y—0 t
tl0

For v > 0 we have the following three cases:
y>0,y+tv>0 — yi;’*y:v
y<0,y+tv>0 — —y+tz}+y = 273/ +v = [—o0,v] p = f°(0;v) = v.
y<0,y+tv<0 — ;@ﬁm)ﬂ/ = —v

Similarly, for v < 0 we have the following three cases:

y<0,y+tv<0 — ;wﬁfu)ﬂ/ = —wv
y>0,y+tv>0 — y"'t#:v
y>0y+tv<0 — w:—%—v—ﬂ—w,—v]
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10 H. Mufioz and B. Kearfott

This implies f°(0;v) = —v. Hence, f°(0;v) = |v|, and
9F(0) = {C € R: Jo] > Co} = [1,1].

Thus, in this example we have

0f(0) = lim 1S%(f.2.0) = [-1.1].

EXAMPLE 4.2. Let f be the function defined by f(—z) = f(x) for all
z € R, let « be any interval containing £ =0, and

.’L'—%, %Sxéla
50 %§I<l,
f(.’L‘): :117’ §<$<Z’
2 Zl 22(21 1) 2(2k)§$<2(2k 1),k_23
T+ Yk, 2(2171)’ 2(2k+1) Sz < 2(2k)’k =2,3,...
1
0.8 -

T axis

Figure 1. Graph of f(z) in Example 4.2

The graph of f as x > 0 is shown in Figure 1. Since f is linear
in each interval with slopes either 1 or —1, f is Lipschitz near & = 0.
Taking the sequence of points x; = %, we have f'(z;) = (=1)"*1 and
of(0) = [—1,1]. Also, the upper and lowelr bounds for the slopes occur

at members of the sequence x = zy = 5. The points corresponding

to the upper bound on the slope are on the straight line y = %(m + %)

sssg_kluwer.tex; 6/07/2003; 19:54; p.10




Slope and Comparisons 11

and the points corresponding to the lower bound on the slope are in the

straight line y = —%(.’E — %) Thus, in this example we have

im f o111 _ = 7
Jim 189 20) = |3, 5] L1 = 01(2)

This example is not typical, but it shows that for f Lipschitz near &
not always is true that

of(&) C lim [S*(f, =, ).

w(x)—0

Fundamental relationships between the concepts directional slope
and generalized directional derivative imply inclusion relationships be-
tween slope sets and generalized gradients. Within the following class
of functions, these inclusions become equalities.

DEFINITION 4.5. f s said to be regular at & provided

(a) For all v, the usual one-sided directional derivative

vy e J(E ) — f(E)
f(:v.v)—ltlg ,

= lgg)lsv(fat7$)a
exists.
(b) For all v, f'(i:v) = f°(&;v).

In [2] f'(i : v) is denoted by §* f(#;v). We recall Rademacher’s The-
orem, which states that a function which is locally Lipschitz on an
open subset of R is differentiable almost everywhere (a.e.) (in the sense
of Lebesgue measure) on that subset. The set of points where f is
not differentiable is denoted by ;. If f is locally Lipschitz near Z, f
is Lipschitz in a delta neighbourhood B of #. This implies that f is
absolutely continuous in B and for any x in B we have that

fa) = 1@ = [ Wy,

Examples 4.1 and 4.2 illustrate the following result that characte-
rizes the relationship between generalized gradient and slope interval
in one dimension.

THEOREM 4.1. Let f : R = R be Lipschitz near & and let x be any
interval centered at &. Then

lim [S*(f, z, &) C Of (&). (6)

w(x)—0

If f is regqular at &, then equality holds.
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12 H. Munoz and B. Kearfott

Proof. Let 6 > 0 be so small that f is Lipschitz in the open set
Bs ={z:0 < |z —2| <d,}. Then QN B; has Lebesgue measure 0.
For x € Bs and z > & we have that

flz)—f(z 1 z 1 z
D=IDy— 2 [Tpgpay < 2 [T s fey
r— Ji & ye]

T— T— 2)-Q;

since from Rademacher’s theorem f' exist a.e on (&, z). Similar inequa-
lity holds for z < &. From (5), for any € > 0, there is a § > 0 such that

z € By and
f(z) — f(£)
T—I
Since € is arbitrary, we obtain
lim sup 7f($) — “f(x)v < f(z;v).
T—T r—T

From Lemma 3.1, this implies that

vlimsupxﬁﬁw, v>0, [ouM, v>0,
|l vm, v<O.

fo(#;0) 2{

vliminf, .5 !

fo(Z;v) > mo, and f°(i;v) > Mo, forall velRR
Therefore m, M € df(&). Since Of(Z) is a convex set, we have

(111)n 0Dsﬁ(f, x,¥) = [m,M] C 9f(%),

so (6) holds. If f is regular at &, then we have

ofv. N _ JOM, v>0,
! (m’v)_{vm, v <0,

and since m < M, we obtain

of (%) {CeR: f(z;v) > (v forall veR}
={(eR:Mv>Cv, v>0}N{¢E€R:mv>Cv, v<O0}
= [—OO,M] n [’I’I’L, +OO]
= [va]
= hm’w(w)%ﬂ Dsﬁ(f7 T, j)

Thus, (6) holds with equality. O

The next theorem gives us the relationship between gradients and
generalized gradients of Lipschitz functions.
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THEOREM 4.2 ([3], p. 63). Let f : R* — R be locally Lipschitz near
z, and suppose S is any set of Lebesgue measure 0 in R". Then

0f(x) = co{imV f(x;) : x; = =, x ¢ SUQ;}.
COROLLARY 4.1 ([3], p. 64).

fo(@50) = limsg% (Vi) -v:ygSuQy}.

The only way we presently know to obtain a relationship between
generalized gradient and slope interval in multiple dimensions is to
consider the relationship between the projections of these two concepts.
Let £ =@ X ... X @,, where x;, ..., x, are intervals in R.

DEFINITION 4.6. Let f : ®# C R* — R be Lipschitz near . For
i =1,...,n, the i-th projection lim,,z) o mIS*(f, ®, &) is defined as the
set

lim co{s; e R:3s e R", f(z)— f(&) =s-(z—%I), for x € &,z # i},

w(x)—0

and the i-th projection of the generalized gradient of f at &, m;0f (%) is
defined by

mi0f(£) = {z; € R: Jz = (z1,...,%4,...,2y) € Of (£)}.

LEMMA 4.1. Let f : ®« C R* — R be Lipschitz of rank K near &.
Then for any v € R, limsup, o Sy(f,t,%) is bounded and

limsup S, (f,t,2) < f°(2;0).
t10

Proof. Let v any vector in R". By Proposition 4.1, we have

—K||v|| < limsupS,(f,t,%) = limsup f(& 4 tv) — f(&)
L0 £10 t

< timsup LUHV =IO oy < k.
tl,Ov

The second inequality holds since the set {y : y — %} contains {i},
and by a monotonicity property of limsup. [

LEMMA 4.2. Let f : « C R* — R be Lipschitz of rank K near &.
Then
lim  ml8* (f, @ &) C mof (&).

w(x)—0

If f is regqular at &, then equality holds.
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14 H. Munoz and B. Kearfott

Proof. Considering t = w(x), and vectors v € R" with [|v|| = 1, we
get

lim S%(f,2,7) = lIimS'(f,4)

w(xz)—0

= ltlﬁ)l{sv(o :Su(f, (@) = SU(C)T 0;0< (<t Vu e ]Rn}-

Since lim supy g {sv(t)T . v} is bounded for all v € R" by Lemma 4.1,
then lim; o {s,(¢)} is bounded.

Suppose there exists an s; € limy g i SH(f, x, %) and s; ¢ mof ().
Then there exists an unitary vector v € R” and s = limy o s, (t) such
that

. i . > : — ..
selgf(r)lS(f,w,m), s¢ df(&), and lgf(r)lsvi(t) Si-

This means that

fo(#;v) < sT-v=limsups,(t)! - v < limsupS,(f,t,%).
£10 t10

This contradicts Lemma 4.1. Thus,
lim mlS*(f, x, &) C mdf (&).
Conversely, if f is regular at &, and s; € m;0f(Z), there exists an s €
Of (%) with s = (s1,--+, 84, "+, Sn), and Yo € R", we have
sTov < fO(&v) = lim S, (f, 1, 7).

By Theorem 3.1, for any v € R" there exist s,(t) € S*(f,#,Z) such
that S,(f,t,#) = s,(t)" - v. Then we have

T . T
v <1 t)” -w.
s v_tlfglsv() v

If v = v;e;, for all v; € R we have reduced the problem to the
one-dimensional case. Since

. . li st t)vi, v; >
$;v; < lim sy, (t)vs < limsup sy, (¢)vi < }m .supw(m)_,o il f (f, m,fc)v vi 20
t10 w(@)L0 lim inf,,(z)—0 mllS (f,z &)vi, v <O,

then  s; € limy, (40 mISH(f, @, &). O

For f regular at z = (x1,z2), is shown in [3] that

Of (x1,22) C O1Lf (w1, x2) X Dof (x1,22). (7)
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THEOREM 4.3. Let f : @ C R* — R be locally Lipschitz near & and
reqular at . Then

lim S*(f,z,&) COf(&) Cmdf(£) x --- x m,df (&) = lim [S*(f, =, %).
w(xe)—0 w(xe)—0

Proof. The second inclusion follows by extending (7) to dimension
n, and applying Lemma 4.2. For the first inclusion suppose there exists
s such that s € lim, ;)0 S*(f,x,Z), and s ¢ Of(Z). Then for some
unitary vector v € R”, and t = w(x), s = limy g s,(t) and

Fo(E;0) < sT -0 =lims,(t)T - v < limsup S,(f,t,Z).
t}0 tl0

This contradicts Lemma 4.1. [
The next example illustrates this theorem.
EXAMPLE 4.3. Consider the function f : R?> — R, defined by
f(z,y) = max{min{z, —y},y — z}.
Taking R? = C; U Cy U C3, with
Oy ={(@,y): y<2 and y<—a},

Co={(z,y):y<z/2 and y> -z},
03:{(:E,y)y22x or yzx/z}a

z, ($7y) € Cla
f(may) = —-Y, ($7y) € CZa
Yy—x, ($,y) € 03-

we have

(a) Let & = (0,0). f is Lipschitz near & since it is linear in each
region of R?. However, f is not reqular at %. In fact,

fo(#;v) = limsup{(0,—1) - v, (1,0) - v,(=1,1) -v: v € R?}
—v2, v € (C,
= { U1, v € Oy,
vy —v1, v € Cs,

and
f(E 4 tv) — f(&)
10 t
U1, IS Cl,
= { —va, v E 02,

ve — vy, v € Cj,

exists for all v € R?, but f'(Z;v) # f°(&;v).
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16 H. Muifioz and B. Kearfott

(b) The set S = 0C, U 0C, U 0C3 = Qy, has Lebesgue measure 0.
If (:Euy) ¢ S: then Vf(:r,y) € {(1a0)a (Oa _1)7 (_1a 1)}
By Theorem 4.2, 0f (%) = co{(1,0),(0,—-1),(—1,1)}, which is the
triangle with these three vertices. Taking partial generalized gradi-
ents, we have

f(.’L‘,O) = maX{O, _:E} - 8:1:f(j) = [_170]7

f(0,y) = max{0,y}  — 9,f(%) =0,1],

mof (&) = [-1,1],

m0f (&) = [-1,1].

So, we have
Ouf (£) X Oy f (&) £ Of (&) £ Ouf(E) X Oy f ().
(¢) Let & be any box centered at & = (0,0).

Y
0:f (%) x 0,1 (%)
(_17 1)
7
Lo
X
of (@)
(0: 71)

lilnu.(w)ﬂo uS”(f, z, j:)

Figure 2. 0 f(&) x 0y f(&),0f(Z), and lim,,(»)—0 IS*(f, ®, &) for Example 4.3

Letting © = (x1,x2), f(&) =0, we consider the slope sets.

ze(Cy: f(fll'):fll'l ( s )(5171’372) _>3:(170)Tv
ze(Cy: f($) = —T2 = ( - )(wlax2)T — Ss= (Oa_l)T’
zeCy: f(x) =z —z = (-1,1)(z1,22)" = s=(-1,1)7.
Thus,
(hggos (fa z, :E) - {(1 0) (07 _1)T7 (_1’ 1)T}’
and

(lilgn 0Usﬁ(f, o, %) = [-1,1] x [-1,1].
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Clearly, the sharpest slope set is easily obtainable and

Of (%) C mdf () x mdf (&) = w(l;?ioﬂsﬁ(f, xF) =[-1,1] x [-1,1].

Here, the interval hull of Of (&) is

li : 7).
w(;ggoﬂs (f,z %)

These relationships for Example 4.3 are illustrated in Figure 2.

5. Optimality conditions

This section contains generalizations of the Karush-Kuhn-Tucker opti-
mality conditions for nonsmooth constrained optimization problems.

Let f:R* = R, g : R* = R, (1 =1,2,...,k), and h; : R* = R,
( = 1,2,...,m) be continuous functions in a convex set D C R". Let
x C D, and consider the constrained optimization problem

minimize f(x)

subject to
gi(x) <0, i=1,2,...,k, (8)
h](ﬂi) :0, j: 1,2,...,m,

TET

If all functions are Lipschitz functions near Z, the generalized gradients
yield a generalization of the Karush-Kuhn-Tucker neccesary conditions
of optlmahty [3],[34]. In fact, if & is a solution of (8) there exist A; > 0,
t=1,...,m,and u; >0, 5 =1,2,...,k satisfying

{0 eaf(.f)+zl 1)\8%( )+2, 1 #jOh; (), 9)
Xigi(#) =0, i=1,...,m,

In [22], [6], and [30] are introduced interval techniques used in the
solution of (8) and based in inclusions of the generalized gradients.
The next theorem shows that interval slopes also yield a practical
generalization of the Karush-Kuhn-Tucker conditions.

THEOREM 5.1. If & is a solution of (8)there exist \; > 0, i =
L...,m, and pu; >0, 5 =1,2,...,k satisfying

0 € limw )—0 US (fa L, j;) + Z:il Ai lirnw(at:)—)O Usﬂ(gia , j;)

+ Z] 1 H’J hmw )—0 I:Isn(h]a T, :E) (10)
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18 H. Muifioz and B. Kearfott

Proof. If all functions are Lipschitz functions near Z and regular at
%, Theorem 4.3 and (9) prove (10).

In [20] is shown that interval methods have no dificulties in handling
nonsmooth problems, because neither the construction of inclusion
functions nor the application of monotonicity tests depends on the
smoothness of the objective function. [

6. Semigradient

The semigradient is a generalization of the concept of generalized gra-
dient to arbitrary not necessarily continuous functions. This extension
to arbitrary functions f : R” — R* was introduced in [17].

In [3], Of(z) is defined for extended-valued functions f : R* — R*,
as long as f is finite at z. The generalized gradient is characterized
geometrically in terms of normals to the epigraph of f at the point
(z, f(z)), which is denoted and defined by

epif = {(z.r) € R : f(2) <
Tepis(@, f(z)) = epif”(z;-),
Nepif(e, () = {C H(Gv) < 0 forall vin Tepif(x’f(x))} ’

0f (@) = {C: (¢, —1) € Nepif(w, f(2))}
where Tepif(a;, f(z)) and Nepif(mv f(x)) are the tangent cone and nor-
mal cone to the epif at (z, f(x)) respectively. In the non-Lipschitz
case, the direct characterization of f° involves some complicated limits
for which the following notion due to Rockafellar [26] is in order. The

expression (y, ) |y « shall mean that (y,«) € epif,y = z,a — f(z).
The function f°(z;.) : R* — R* is defined as follows

tw) —
f°(z;v) =limlimsup inf M.
€l0 (y,a)l g wEv+eB t
tlo
If f is lower semicontinuous at «, then f°(z; v) is given by the slightly
simpler expression

tw) —
f°(z;v) = limlimsup inf fly+tw) — f(y)
€l0 ylya wev+eB t
£40

)

where y | « signifies that y and f(y) converge to = and f(z) respec-
tively. The following result shows that the extended f° plays the same
role vis-a-vis Jf as it did in the Lipschitz case.
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COROLLARY 6.1 (Rockafellar [26]). One has 0f (z) = 0 iff

f°(z;0) = —oo. Otherwise, one has

Of (z) ={¢ € R" : f*(x;0) = ((,v), Vo eR"}

and

f(@;0) = sup{((,v) : ¢ € Of (x)}.

If f is discontinuous and finite at =, Of(x) only incorporates infor-
mation of the epigraph of f near to the point (z, f(z)), and in some
cases Of (x) discards the behavior of f near x. The semigradient takes
into account the behavior of f near x.

The following proposition, due to Moreau [17], provides an alterna-
tive characterization of f°(z;v).

PROPOSITION 6.1 ([17]). f°(z;v) is given by

f°(z;v) = max {lim sup (i +tiv) = f(2:)

i—00 t;

YV, = x, ti¢0},
where the mazimum is obtained over all sequences {z;};2, in R con-
verging to x and {t;};°, in (0,00) converging to 0.

DEFINITION 6.1 ([17]). Assume an arbitrary function f : R* — R*.
Let z,v € R*. Let x € R". The semigradient of f at z, denoted SG f(x),
is a subset of R" defined by

SGf(z) ={¢ € R" : f(z;0) 2 ((,v), Vv €ER"},
where f° 4s as in Definition 4.2.

SGf(z) is as df (z) a closed convex set, possibly empty. The next
theorem relates these two concepts.

THEOREM 6.1 ([17]). Let z € R™. For arbitrary functions f : R" —
R*, the following inclusion holds:

Of (z) € 8Gf(x).

In the particular case that f : R* — R is locally Lipschitz, this inclusion
reduces to

0f () = SG (x).
The relationships between symmetric slope intervals and semigradients

in this section extend the results presented in the previous section to
arbitrary functions.
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20 H. Muifioz and B. Kearfott

THEOREM 6.2. Let f : R — R be an arbitrary function and let x be
any interval centered at &. Then

SGf(Z) = lim [SS*(f,x, &). (11)
w(x)—0
Proof. From Proposition 6.1 we get

f°(Z;v) = max {lim sup [z + tiv) — f(x;)

i—00 t;

Vo, — &, tlJ,O}

since x; — ¢ and ¢; | 0, y; = ©; + t;uv — &. Then we have

fo(a;v) = max{limsup MU Vo, —> &, 10, yi=uwx +tiv}
> max {lim sup 7f(yl) — fv(i‘)_ v, lim sup 7f(yl) — fv(i‘)+v Vy, — Ic}
> max {lim sup w% limsgp Wu}

T—T

—f@) —f@*
{ v max {um sup, , LO=IO" jimgup M} L 00,

r—
vmin {liminf, s LO2L0 fiminf, |, LO2HB0L 0y <o,

. vS, v >0,
] ws, v<0,
where s and S are given in Lemma 3.2. Thus, f°(Z;v) > sv and
f°(Z;v) > Svforallv € R, this implies that s and S belong to SG f ().
Since SGf(Z) is a closed convex set, we get

(lign Ol]SS”(f, x, ) = [5,5] C SGf(Z).

In the other hand, let ( € SGf(%), and
fo(#;v) = max {lim sup Fly) = f(@i)

v:Ve; =%, 10, yi=ux+tv
_ vlimsup,_, w, v >0,
= [wi)=iGo) o, <.

v lim inf;
PO Ty —wy

From definition of SGf(Z), we have f°(z;v) > (v, Vv € R. Thus,
flyi) — flz) flyi) — flz)

lim inf < (¢ < limsup ———=, Vuz;,y; = &.
1—00 Yi — T4 i—00 Yi — T4

Lemma 3.2 and the previous inequalities imply that, s < ¢ < S, and
we obtain

SGf(i) C[s,8] = lim [SS*(f,=, ).

w(x)—0
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This completes the proof of (11). O

The following examples illustrate this result.

EXAMPLE 6.1. Let f : R — R be the function in the Example 3.5
defined by
—x, x<0,
f(x)_{m—l, x>0,
and x is any interval centered at & = 0. Note that f is upper semi-

f(z)
epif

af(0)

Figure 8. Graph of epif near (0,0) and 9f(0) in Example 5.1

continuous at & = 0 and has a local infimum (which is actually global)
at & see Figure 3. The Clarke generalized gradient of f only incorpo-
rates information of the epigraph of f near (0,0) and thus discards
the behavior of f for x > 0, which is crucial for f to have an infi-
mum or not. Therefore, although this function has an infimum at I,
0 ¢ 0f(0) = [—o0,—1]. On the other hand, 0 € SGf(0) = [—o0,1] =
limy,(z)—s0 1SS*(f, @, &). Thus, for this ezample we have

(lilgn 0Dsﬁ(f, x, ) = 0f(0) C SGf(0) = (lign 0Ussﬁ(f, @, 7).

EXAMPLE 6.2. Consider the function f: R — R defined by

| =z, z <0,
f(x)_{—x—l, x>0,

and x is any interval centered at £ = 0. Note that f s lower semi-
continuous at & = 0 and has a local supremum (which is actually
global) at & see Figure 4. The Clarke generalized gradient of f only
incorporates information of the epigraph of f near (0,—1) and thus
discards the behavior of f for x < 0, which is crucial for f to have a
supremum or not. Therefore, although this function has a supremum at
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22 H. Munoz and B. Kearfott

fl@)
epif

~—

of(0)

Figure 4. Graph of epif near (0, —1) and 9f(0) in Example 5.2

f(z)

Figure 5. Graph of f(z) in Example 5.3

%,0¢ 0f(0) = [—o0, —1]. On the other hand, 0 € SGf(0) = [—o0, 1] =
limy, ()0 1SS*(f, @, &). Thus, for this ezample we have

lim [S%(f,z,&) = 0f(0) C SGf(0) = lim [SS*(f,x, ).

w(x)—0 w(x)—0
EXAMPLE 6.3. Consider the function f: R — R defined by

) = ?+z+1, z >0,
Tl —(z+1)2+3, 20,

and x is any interval centered at & = 0. The function f is upper
semicontinuous at & and has a local infimum (which is actually global)
at &, which s illustrated in Figure 5, and one verifies easily that

Jim SH(f, @, 8) = [-00,~2] C SGf (%) = [0, 1].
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f(z)

Figure 6. Graph of f(z) = —4/|z| with £ = 0 in Example 5.4

Since [ is neither conver nor Lipschitz at %, Of (%) = (. Observe that
f is not reqular at &, and the symmetric slope interval is
lim [SS*(f,®, &) = [—oo, 1].
w(x)—0

EXAMPLE 6.4. Consider the function f : R — R defined by f(x) =
—/|z[, and let @ be any interval centered at & = 0. Figure 6 shows that
f has a local mazimum (which is actually global) at & = 0, and one
verifies easily that 0 € R* = SGf(%) = limy (g0 0S*(f, x, ). Since
f is meither convex nor Lipschitz at %, 0f (%) = 0. Observe that f is
regular at & with f°(i;v) =00 Vv eR

In multiple dimensions, the next theorem extends Theorem 4.3 to

arbitrary functions.

THEOREM 6.3. Let f : x CR" = R be an arbitrary function that is
reqular at &. Then

lim S*(f,®, %) C SGf(&) C lim [S*(f,=,%). (12)
w(x)—0 w(x)—0
Proof. Considering w(z) = t, and vectors v € R" with [|v|| = 1, we

have
. ﬂ -« _ . n -
w(I;:I)ILOS (f,:v,m) - ltlﬁ’)ls (f,$,£13)
= lim {,(0) : S,(£,¢.2) = :,(0) 10 < S 1. Vw € R"}

llmsv(ht,ﬂi)— ’ (.’L’,U).

Let s € limy(g)-o S¥(f,®,%). From Theorem 3.1, for some unitary
vector v € R", we have

s-v :lgfglsv(f,t,x) = f°(z;v),
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and it follows that s € SGf(z).

On the other hand, suppose that there exists s € R" such that
s € SGf(%) and s ¢ limy, g [S*(f,x, #). Then, for some unitary
vector v € R", we get

50> lgg)lsv(t) S = ltlfélsu(f,t,x) = f(z;v),
which contradicts that s € SGf(&£), and (12) is hold. O

Example 4.3 illustrates this Theorem. In fact, f is Lipschitz near &,
then

SGf(&) = 0f () = co{(1,0),(0,-1),(=1,1)},

which is the triangle with these three vertices, and

SGf (&) C (mgn OUSﬂ(f, @, @) = [-1,1] x [-1,1].

7. Containment-set of f

The containment-set or cset of a function was introduced in [35].

DEFINITION 7.1 ([35]). Let f: (R*)™ = R be an arbitrary function.
The containment-set of f at a point a = (ay,...,a,) € (R*)" is the set
of all possible limits of values of f(x;) where the vectors z; converge
to a as i — oo. The containment-set (or cset) is formally denoted

cset(f,a).

Arithmetic with the interval hull of csets is termed cset-based in-
terval arithmetic, or extended interval arithmetic because it uses the
extended real number system R*. The cset of f' = Vf at & is defined
componentwise. The next two results relate the generalized gradient
and semigradient to the cset of f’. Basic elements of this technique can
be found in [21].

THEOREM 7.1. For a locally Lipschitz function f : (R*)" — R near
Z we have

cset(f', &) C Of (2) = co(cset(f',2)) C leset(f',2) =[0f (%),
where the third relation is an equality when n = 1.

Proof. 1t follows from Theorem 4.2 and Definition 6.1. All equalities
hold when f is differentiable at &. When n = 1, [lcset(f’, %), and 9f (%)
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are equal to the interval constructed from the lower and upper bounds
of the derivatives near to %, i.e.,

0 (z) = leset(f', &) = (&), F (£)],

~—

where
F(2) = limsup f'(z), and f'(#) =liminf f'(z). O

T—E =T

The next examples illustrate this theorem.

EXAMPLE 7.1. Consider the function f in the Example 4.3, and
= (0,0). We have

{( 0),(0,-1), (=1, 1)}

OF (&) = colcset(V £, 1)) = co{(1,0), (0, ~1), (~L, 1)}
loset(V £, ) = [—1,1] x [~1,1] = [9f(2)
hmw (z)—0 Is* (f,z,7)

cset(Vf, &)

IIOOII

EXAMPLE 7.2. Consider the function f in the Example 4.2, & = 0,
and x is any interval centered at ©. We have

cset(f,2) = {-1,1} C 9f (&) = leset(f', 2) = [-1,1],

and

(111)11 0Dsﬁ(f, x,7) = [~1/3,1/3] Cleset(f', Z).

When f is an arbitrary function, the first inclusion of Theorem 7.1
can be generalized with the semigradient, and we have the following
result.

THEOREM 7.2. Let f an arbitrary function, and & is in its domain,
we have

leset(f', &) € SGf(Z).

EXAMPLE 7.3. Let x be any interval centered at & = 0. Consider the
following Riemann function defined by

1, if x is rational,
0, if = is irrational.

flo) = {
Since this function is not differentiable in any real value, then

leset(f', %) = 0
C SG(#) = limyg) 018 (/, 2, 7) = [0, 5]
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EXAMPLE 7.4. Consider the function in the Ezxample 6.3, and x is
any interval centered at & = 0. The derivative, f'(z), is defined by

1o |2z +1, z >0,
f(x)_{—Q(a;—l—l), x <0,

then
cset(f’, &)

= {-2,1}
C leset(f', &) = [—2,1]
C

SG f (&) = lity(a) 0 0SS*(f, 2, %) = [o0, 1].

EXAMPLE 7.5. Consider the function in the Ezample 6.2, and x is
any interval centered at & = 0. The derivative, f'(z), is defined by

, [ -1, z>0,
fo ={ 1" 020

then
cset(f', &)

{__1’1}
leset(f', &) = [—1,1]

SG(#) = limy(g) 008 (f, &, #) = [~o0, 1].

NNl

8. Slant differentiability

The definition of slant differentiability is introduced in [2]. This concept
is an extension of Clarke’s generalized derivative for locally Lipschitz
functions in finite dimensional Euclidean spaces to infinite dimensional
spaces. We present relationships between slant derivatives and slope
sets for Lipschitzian functions in finite dimensional Euclidean spaces.
Let X and Y be Banach spaces, and let D be an open domain in X.
L(X,Y) denotes the set of all bounded linear operators on X into Y.

DEFINITION 8.1 ([2]). A function f: D C X — Y is said to be B-
differentiable at the point x if it is one-sided directionally differentiable

at x, and
L fla ) = () = [ h)

=0.
h—0 Al

In this case, we call f'(x;.) the B-derivative of [ at x.

DEFINITION 8.2 ([2]). A function f: D C X =Y is said to be slantly
differentiable at © € D if there exists a mapping f° : D — L(X,Y)
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such that the family {f°(z +h):h € X,z +h € D} of bounded linear
operators is uniformly bounded in the operator norm for h sufficiently
small, and R

o Tl h) = () — fola+ )b

h—0 7] =0

The function fo is called a slanting function for f at x.

In finite dimensional Euclidean spaces, Shapiro [28] showed that a
locally Lipschitz function f is B-differentiable at = if and only if it is
directionally (Gateaux) differentiable at .

DEFINITION 8.3 ([2]). Suppose that f°: D — L(X,Y) is a slanting
function for f at x € D. We call the set

0s(x) = { lim_fo(s1)}

the slant derivative of f associated with f" at x € D. The limit is taken
for any sequence {z} C D such that v, — = and the limit exists. (Note

that f°(z) € dsf(x), so Ds f(z) is always nonempty.)

When f is locally Lipschitz and regular at z, there exists a relationship
between the generalized directional derivative f°(z;v) and the slant
derivative f°(z). Indeed, we have

f(z;v) = l}glf"(:ﬁ + tv)v.

EXAMPLE 8.1. Let X =Y =R and f(x) = max(0,z). Let 0 be a real
number. Then the function

X 1 >0
fe(x)=< 6 =0
0 z<0,

s a slanting function for f in X. The slant derivative of f for x € X
18

1 x>0
8Sf($) = {07671} z=0
0 z < 0.

In this example we get

dsf(0) ={0,0,1} Z [0,1] = 8f(0) = SGf(0) = lim 0usﬂ(f, x,0),

w(x)—

for any © C X, centered at & =0, and § ¢ [0,1].
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DEFINITION 8.4 ([2]). We say that f is semismooth at x if there is a

slanting function f° for f in a neighborhood N, of =, such that fo and
the associated derivative satisfy the following two conditions.

(a) lim,_,o+ f°(z + th)h ezists for every h € X and

Ll folz +th)h — fo(z + h)h

1 =0.
||| —0 1A

(b)

fo(x 4+ th)h — Vh =o(||h|) for all V eosf(x+h).

In finite dimensional spaces, Qi and Sun [19] showed that f is
semismooth at x if and only if f is B-differentiable at z.

THEOREM 8.1 ([2]). f is slantly differentiable at x if and only if f is
Lipschitz continuous at x.

Remark 1([2]) For a locally Lipschitz function f : R* — R™, if
f is semismooth at z, then any single-valued selection of the Clarke
Jacobian is a slanting function of f at z. Then, the slant derivative
Osf(x) of f associated with f° at x satisfies

9sf(x) € Of (x).

COROLLARY 8.1 ([2] Mean Value Theorem). Suppose that f : D C
X — Y is slantly differentiable at x. Then for any h # 0 such that
x4+ h € D, there exists a slanting function f° for f at © such that

flx+h)— f(z) = fo(x + h)h.

THEOREM 8.2. Let f: D C R* — R™ be Lipschitz continuous at .
Let © and & be interval boxes in D such that £ € & C x. Then there
exists a slanting function fo for f at &, such that the slant derivative
Osf(x) of f associated with fo at x satisfies

Osf(@) € lim IS5 (f, 2, 5)

Proof. Since f is Lipschitz continuous at &, from Theorem 6.5 there
exists a slanting function f ° for f at & and its associated slant derivative
Osf(z). Let y € Osf(&), then there is a sequence of points {zx} C D
such that z;, — % and fo(:vk) — y. There is a K such that z; € z for
all £ > K. From Corollary 6.6. we have

~

flzr) — () = fo(ar) (o — T).
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Thus, fo(xk) e [S¥(f, x, &), for all k > K. Since the slope interval is
compact, we have

y e lim 0Dsﬁ(f, xF). O

w(x)—

9. Conclusions

Let f: D C R* — R be an arbitrary function. The results presented
above lead to the following inclusions. These inclusions are satisfied
except on a set of measure zero. Since these concepts are generalizations
of the gradient, all relations are equations when f is differentiable at
#; in that case, all quantities are equal to the singleton set {f'()}.

(a) From Theorems 4.1, 6.2 and 8.2 for n = 1, we can choose any
particular value of lim,z)—o [S*(f, x, &) as slanting function of f
at &, and we get

dsf(#) C lim [S*(f, @ &) COf(#) C lim [SS*(f,x, &) = SGf(&).

w(xz)—0  w(z)—0

Equality holds in the last two inclusions when f is locally Lipschitz
and regular at .

(b) From Theorems 4.3, 6.1, 6.3, and 8.2, for n > 1 and f regular at &,
we get

O0sf(#) COf(#) CSGf(#) C lim [S*(f,z,%) C (nr)noﬂssﬁ(f,w,a:»-

~ w(x)—0

The first inclusion is obtained if any-single value of df (%) is chosen
to define the slanting function associated to ds f(&). Equality holds
in the second and the fourth inclusions when f is locally Lipschitz
near Z.

(c) From Theorem 7.1, for f locally Lipschitz, we get
cset(f', &) C Of (&) = co(cset(f', %)) C leset(f', %) =00f (%),
where the third equality holds when n = 1.
(d) From Theorem 7.2, for n > 1, we get
leset(f', %) C SGf(&).

Equality holds when f is differentiable at Z.
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(e) From Theorems 4.1 and 7.1, for n = 1 and f locally Lipschitz, we
get
lim [S*(f,, &) C leset(f', ).

w(x)—0

Equality holds when f is regular at .

Other important result in this work is Theorem 5.1, which shows that
interval slopes yield a practical generalization of the Karush-Kuhn-
Tucker conditions in constrained optimization.
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