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Abstrat. Many pratial optimization problems are nonsmooth, and derivative-

type methods annot be applied. To overome this diÆulty, there are di�erent

onepts to replae the derivative of a funtion f : R

n

! R: interval slopes, sem-

igradients, generalized gradients, and slant derivatives are some examples. These

approahes generalize the suess of onvex analysis, and are e�etive in opti-

mization. However, with the exeption of interval slopes, it is not lear how to

automatially ompute these; having a general analogue to the hain rule, interval

slopes an be omputed with automati di�erentiation tehniques. In this paper we

study the relationships among these approahes for nonsmooth Lipshitz optimiza-

tion problems in �nite dimensional Eulidean spaes. Inlusion theorems onerning

the equivalene of these onepts when there exist one sided derivatives in one

dimension and in multidimensional ases are proved separately. Valid enlosures are

produed. Under ontainment set (set) theory, for instane, the set of the gradient

of a loally Lipshitz funtion f near x is inluded in its generalized gradient.

Keywords: generalized gradient, slope interval, semigradient, slant derivative, sub-

di�erential, subgradient, set, symmetri slope interval, nonsmooth optimization

methods

1. Introdution

The purpose of this work is to delineate pratial relationships among

�ve di�erent generalizations to the derivative or gradient of funtions

f : D � R

n

! R: slope interval, generalized gradient, subdi�eren-

tial (set of subgradients), semigradient, slant derivative, and set. These

generalizations are used in the solution of nonsmooth onstrained or

unonstrained optimization problems.

Di�erent tehniques have been developed for nonsmooth optimiza-

tion problems. For nonsmooth onvex funtions, the subdi�erential

in the sense of onvex analysis is introdued in [26℄, and the sta-

bility of the optimal solution with subdi�erential is studied in [8℄.

For onstrained optimization problems with loally Lipshitz funtion,

the generalized gradient is introdued in [3℄. For unonstrained opti-
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2 H. Mu~noz and B. Kearfott

mization with loally Lipshitz ontinuous objetive funtion, bundle

methods are standard solution methods whih provide interior ap-

proximations of the generalized gradient [12, 31℄. In the Frenh and

Russian literature are the works of [1, 4℄ who also worked with Lipshitz

funtions. The �rst works on nonsmooth optimization using tools of

interval arithmeti were presented in [20℄. A ombination of bundle

methods and interval extensions (outer approximations) of the genera-

lized gradient, based in Goldstein's approah and developed in [21℄ and

[33℄.

The following goals motivate generalization of gradients: 1) to gen-

eralize the lear suess of onvex analysis; 2) to be e�etive in opti-

mization; and 3) to be easy to ompute, partiularly in the omposition

of funtions with hain rules. Computing a slope interval is easy with

automati slope omputation, see Setion 6.1 on [11℄ and [9, 24℄. It is

not possible to ompute sharp slopes, in general, but we an ompute

enlosures for non-smooth funtions easily enough, while omputing

the other generalizations of the gradient seems hard. The other two

goals are ahievable with all approahes.

In Setion 2, basi notation of interval arithmeti as well as the

notation used in the rest of the paper are given. In Setion 3, the slope

interval, diretional slope, and symmetri interval slope are de�ned, and

some results related to these onepts are shown. Clarke's generalized

gradient and the main relationships between slope intervals and genera-

lized gradients are established in Setion 4. In Setion 5, generalizations

of the Karush-Kuhn-Tuker optimality onditions are presented. The

semigradient and its relationships with slope intervals and symmetri

interval slopes are given in Setion 6. Cset theory and some results

are given in Setion 7. Setion 8 deals with slant derivative and its

relationship with slope interval. Some general onlusions appear in

Setion 9.

2. Notation

Real interval arithmeti, introdued in its modern form in [15℄, is based

on arithmeti within the set of real losed intervals. A real bounded and

losed interval is de�ned by

x � [x; �x℄ := [inf x; supx℄ 2 IR;

where IR denotes the set of ompat intervals. Oasionally, in addition

to using boldfae to denote intervals, we use upperase boldfae to

denote sets.
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Slope and Comparisons 3

Let �x and w(x) denote the midpoint and the width of x, respetively,

that is,

�x :=

x+ �x

2

; w(x) := �x� x:

If S is a subset of R

n

, o(S) denotes the onvex hull of S, and S

denotes the interval hull of S. The interval union or hull of two intervals

is de�ned by

x[y := [minfx; yg;maxf�x; �yg℄;

where the bar under the union symbol means the onvex hull. An n-

dimensional interval vetor (also alled box) is de�ned by

x = (x

1

;x

2

; : : : ;x

n

)

T

2 IR

n

;

where x

1

;x

2

; : : : ;x

n

are real intervals and IR

n

is the set of real interval

vetors. An interval matrix A = (a

ij

) is a matrix all of whose entries

a

ij

are intervals. For interval vetors x 2 IR

n

, the midpoint �x, the

width w(x), and the hull operation are de�ned omponentwise. We

use w(x) in the ontext of kw(x)k = kw(x)k

1

. The basi interval

operations (+;�; �; =) and elementary interval funtions an be de�ned

operationally [11℄, [18℄, [23℄,[16℄.

Let f : R ! R be a funtion, and x a given real value. We denote

f(x)

�

:= lim

y"x

f(y) and f(x)

+

:= lim

y#x

f(y):

Let R

�

be the set of extended real numbers onsisting of the reals

augmented with �1 and +1. �1 are always aepted as values of

the lim-operators.

3. Slope Interval

Although there are di�erent ways of de�ning slope intervals [13℄, [14℄,

[7℄, [5℄, we will limit ourselves to the following.

DEFINITION 3.1 (Interval slope matrix, [11℄, p. 27). Let f : R

n

! R

and let x be an interval vetor. A set S of vetors in R

n

is said to be a

slope set for f over x and entered on the interval vetor �x (usually, �x

is a point or a very small box) if, for every x 2 x, and �x 2 �x,

f(x)� f(�x) = s

T

� (x� �x) for some s 2 S:

Any smallest suh slope set will be denoted by S

℄

(f;x; �x). The smallest

interval vetor that ontains S

℄

(f;x; �x) is alled the slope interval of f

over x, and it is denoted by S

℄

(f;x; �x).
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4 H. Mu~noz and B. Kearfott

EXAMPLE 3.1. Let f : R ! R be the ontinuous funtion f(x) =

x

1

x

2

, and �x = (1; 1). Then

f(x)� f(�x) = (1; x

1

) � (x� �x) = (x

2

; 1) � (x� �x):

Thus, (1; x

1

) is a slope of f at �x, and so is (x

2

; 1). Hene the slope is

not unique.

Note. It is not neessary that f be di�erentiable to obtain S

℄

(f;x; �x).

Interval Newton iteration with slope intervals has potential in global

optimization and nonlinear systems solvers, espeially when the deriva-

tives of the objetive funtion f have jump disontinuities, suh as when

f ontains terms involving k � k or max, [9℄, [10℄, [25℄, [29℄.

LEMMA 3.1. Let f : R ! R, and let x be an interval vetor ontaining

�x. Then the limiting slope interval is given by

lim

w(x)!0

S

℄

(f;x; �x) =

�

lim inf

x!�x

f(x)� f(�x)

x� �x

; lim sup

x!�x

f(x)� f(�x)

x� �x

�

:

Proof. By de�nition, S

℄

(f;x; �x) is the smallest set suh that

fa : f(x)� f(�x) = a(x� �x); x 2 x; x 6= �xg � S

℄

(f;x; �x):

Thus, any a 2 S

℄

(f;x; �x) satis�es

inf

x2x

x6=�x

f(x)� f(�x)

x� �x

� a � sup

x2x

x6=�x

f(x)� f(�x)

x� �x

and

S

℄

(f;x; �x) =

2

4

inf

x2x

x6=�x

f(x)� f(�x)

x� �x

; sup

x2x

x6=�x

f(x)� f(�x)

x� �x

3

5

:

Sine x! �x is equivalent to w(x)! 0, the result holds. �

EXAMPLE 3.2. Let f : R ! R be the ontinuous funtion de�ned by

f(x) =

�

(x� 1)

2

; x � 1;

1� x

2

; x < 1;

and x = [0; 2℄, �x = 1. Then

S

℄

(f;x; �x) = [�2;�1℄ [ [0; 1℄; and S

℄

(f;x; �x) = [�2; 1℄:

EXAMPLE 3.3. Let f : R

2

! R be the funtion de�ned by

f(x; y) = jx� 2j � y

2

; x = ([1; 3℄; [0; 2℄)

T

; and �x = (2; 1):

sssg_kluwer.tex; 6/07/2003; 19:54; p.4



Slope and Comparisons 5

In this partiular example, we an ompute a partial slope enlosure

with respet to one variable by substituting point values for the other

variable, treating the other variable as onstant. Thus, the �rst ompo-

nent of the slope vetor is omputed by

S

1

= S

℄

(jx� 2j; [1; 3℄; 2) = f�1; 1g:

Similarly, the seond omponent of the slope vetor is

S

2

= S

℄

(�y

2

; [0; 2℄; 1) = [�3;�1℄:

Thus,

S

℄

(f;x; �x) = S = (f�1; 1g; [�3;�1℄)

T

;

and

S

℄

(f;x; �x) = ([�1; 1℄; [�3;�1℄)

T

:

DEFINITION 3.2 (Diretional Slope). Let f : R

n

! R, let x be a

vetor in R

n

, and v be any other vetor in R

n

with kvk = 1 (with the

Eulidean norm in R

n

). The diretional slope for f at x in the diretion

v with step size t is de�ned by

S

v

(f; t; x) =

f(x+ tv)� f(x)

t

:

THEOREM 3.1. Let v be any unitary vetor in R

n

, i.e. kvk = 1 and

let t > 0, and let x be an interval vetor ontaining x and x+ tv, and

let S

℄

(f;x; x) be any minimal slope set for f at x over x. Then there

exists some s 2 S

℄

(f;x; x) suh that

S

v

(f; t; x) = s

T

� v: (1)

(s will be denoted by s

v

(t), and it is not neessarily unique).

Proof. Let v be any unitary vetor in R

n

and let t be small enough

to have y = x + tv 2 x. By the de�nition of S

℄

(f;x; x), there exists

some s 2 S

℄

(f;x; x) suh that

tS

v

(f; t; x) = f(y)� f(x) = s

T

� (y � x) = s

T

� tv:

Dividing by t, we get (1). �

DEFINITION 3.3 (Diretional Derivative). Let f : R

n

! R. The usual

(one{sided) diretional derivative of f at x in the diretion v 2 R

n

is

f

0

(x; v) = lim

t#0

f(x+ tv)� f(x)

t

when this limit exists.
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6 H. Mu~noz and B. Kearfott

Note.Observe that f

0

(x; v) = lim

t#0

S

v

(f; t; x), when this limit exists.

EXAMPLE 3.4. Let f : R

2

! R be the funtion de�ned by

f(x

1

; x

2

) = x

1

x

2

; x = ([1:5; 2℄; [0:5; 1:5℄)

T

; and �x = (1; 1):

Then for any v = (v

1

; v

2

) we have

f(�x+ tv)� f(�x)

t

=

(1 + tv

1

)(1 + tv

2

)� 1

t

= v

1

+ v

2

+ tv

1

v

2

= (1 + tv

1

; 1)

T

� v = (1; 1 + tv

2

)

T

� v;

so s

v

(t) = (1 + tv

1

; 1)

T

or s

v

(t) = (1; 1 + tv

2

)

T

. Thus, s

v

(t) is not

neessarily unique. However, the diretional slope

S

v

(f; t; �x) = s

v

(t) � v

is unique. Taking the limit when t # 0, we get

f

0

(�x; v) = lim

t#0

S

v

(f; t; �x) = v

1

+ v

2

= (1; 1)

T

� v:

We introdue a new onept of slope, Symmetri Interval Slope, whih

is an extension of the slope interval for disontinuous funtions. The

symmetri slope interval is alulated onsidering slopes with respet

to both points (�x; lim

t"0

f(�x + te

i

)) and (�x; lim

t#0

f(�x + te

i

)), where

e

i

; i = 1; : : : ; n is the i-th oordinate vetor.

DEFINITION 3.4. Let f : R

n

! R. The vetor SS is said to be a

symmetri slope set for f over x and entered on the interval vetor �x

if, for eah oordinate vetor e

i

, x 2 x and �x 2 �x,

f(x)� lim

t"0

f(�x+ te

i

) = S

T

i1

� (x� �x)

and

f(x)� lim

t#0

f(�x+ te

i

) = S

T

i2

� (x� �x);

for some S

i1

; S

i2

2 SS; i = 1; : : : ; n. Any smallest suh set of vetors

satisfying this ondition will be denoted by SS

℄

(f;x; �x). The small-

est interval vetor that ontains SS

℄

(f;x; �x), SS

℄

(f;x; �x), is alled

symmetri slope interval of f over x.

In the one-dimensional ase, the symmetri slope interval is al-

ulated onsidering slopes with respet to both points (�x; f(�x)

�

) and

(�x; f(�x)

+

). Note that the symmetri slope interval is the same as the

slope interval for ontinuous funtions at �x.
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Slope and Comparisons 7

LEMMA 3.2. Let f : R ! R, and let x be an interval vetor ontaining

�x. Then the limiting symmetri slope interval is given by

lim

w(x)!0

SS

℄

(f; x; �x) =

h

min

n

lim inf

x!�x

f(x)�f(�x)

�

x��x

; lim inf

x!�x

f(x)�f(�x)

+

x��x

o

;

max

n

lim sup

x!�x

f(x)�f(�x)

�

x��x

; lim sup

x!�x

f(x)�f(�x)

+

x��x

oi

= [s; S℄:

Proof. The proof is analogous to the proof of Lemma 3.1. �

EXAMPLE 3.5. Let f : R ! R be the funtion de�ned by

f(x) =

�

�x; x � 0;

x� 1; x > 0;

and let x be any interval entered at �x = 0. Then

lim

w(x)!0

S

℄

(f;x; �x) = [�1;�1℄; lim

w(x)!0

SS

℄

(f;x; �x) = [�1; 1℄:

Thus, this example illustrates that for disontinuous funtions we have

lim

w(x)!0

S

℄

(f;x; �x) � lim

w(x)!0

SS

℄

(f;x; �x):

4. Generalized gradient

This setion presents an alternate onstrution, the generalized gradi-

ent, of loally Lipshitz funtions f : R

n

! R. The generalized gradient

is originally de�ned for Banah spaes X ( See [3℄ or [34℄) and it has

been studied to obtain generalized versions of the lassial Hamiltonian

and Euler-Lagrange equations of the alulus of variations so as to

enompass problems in optimal ontrol [27℄ and to show Lipshitz{

type stability in nonsmooth onvex problems [8℄. In this work, we

onentrate our attention on the ase X = R

n

.

DEFINITION 4.1. f : R

n

! R is Lipshitz of rank K near x 2 R

n

(or

f is loally Lipshitz at x 2 R

n

) if K � 0 and there is an � > 0 suh

that

jf(x

00

)� f(x

0

)j � Kkx

00

� x

0

k 8x

00

; x

0

2 x+ �B; (2)

where B is the unit ball in R

n

.

DEFINITION 4.2 (Generalized Diretional Derivative [3℄, p. 25). Let

f be Lipshitz near a given point x, and let v be any other vetor in
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8 H. Mu~noz and B. Kearfott

R

n

. The generalized diretional derivative of f at x in the diretion v,

denoted f

Æ

(x; v), is de�ned as follows:

f

Æ

(x; v) = lim sup

y!x

t#0

f(y + tv)� f(y)

t

; (3)

where y 2 R

n

and t is a positive salar.

It is lear that f

Æ

(x; 0) = 0. This de�nition does not presuppose the

existene of any limit, sine it involves an upper limit only.

DEFINITION 4.3. A funtion f : x! R is positively homogeneous on

x if f(�x) = �f(x) for all � > 0 and x 2 x.

PROPOSITION 4.1 ([3℄, p. 25). Let f be Lipshitz of rank K near x.

Then

(a) The funtion v ! f

Æ

(x; v) is �nite, positively homogeneous, and

subadditive on R

n

, and satis�es

kf

Æ

(x; v)k � Kkvk:

(b) f

Æ

(x; v) is upper semiontinuous as a funtion of (x; v) and, as

a funtion of v alone, is Lipshitz of rank K on R

n

.

() f

Æ

(x;�v) = (�f)

Æ

(x; v):

Under the onditions of Proposition 4.1 and the Hahn-Banah Theorem

there is at least one linear funtional � : R

n

! R suh that, for all v

in R

n

, one has f

Æ

(x; v) � �(v). � is bounded, so it belongs to the dual

spae (R

n

)

�

of ontinuous linear funtionals on R

n

. In �nite dimensional

spaes, a spae and its dual have the same dimension. Hene, they

are isomorphi and homeomorphi, and the strong topology (generated

at the original spae) and the weak topology (generated at the dual

spae) are identi�ed. So weak ompatness is the same as ompatness.

Heneforth, we identify (R

n

)

�

with R

n

, and we adopt the onvention

of h�; vi = hv; �i = �(v).

DEFINITION 4.4 ( Generalized Gradient[3℄, p. 27).

The generalized gradient of f at x, denoted �f(x), is the subset of R

n

given by

�f(x) = f� 2 R

n

: f

Æ

(x; v) � h�; vi; 8v 2 R

n

g: (4)

The following proposition summarizes some properties of the gene-

ralized gradient in R

n

.
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PROPOSITION 4.2 ([3℄, p. 27). Let f be Lipshitz of rank K near x,

and onsider the norm in R

n

de�ned by

k�k := supfh�; vi : v 2 R

n

; kvk � 1g:

Then

(a) �f(x) is a nonempty, onvex, ompat subset of R

n

and

k�k � K for every � in �f(x).

(b) For every v in R

n

, one has

f

Æ

(x; v) = maxfh�; vi : � 2 �f(x)g: (5)

From (4) and (5) it is equivalent to know the set �f(x) or the funtion

f

Æ

(x; :); eah is obtainable from the other. The next proposition relates

the generalized gradient and the subdi�erential of a onvex funtion.

PROPOSITION 4.3 ([3℄, p. 36). Let D be an open onvex subset of R

n

.

When f is onvex on D and Lipshitz near x, then �f(x) oinides with

the subdi�erential at x in the sense of onvex analysis, and f

Æ

(x; v) o-

inides with the diretional derivative f

0

(x; v) for eah v. The elements

of the subdi�erential �f(x) are alled subgradients of f at x.

EXAMPLE 4.1 ([3℄, p. 28 ). Let f : R ! R de�ned by f(x) = jxj, and

�x = 0. Sine jjxj � jx

0

jj � jx � x

0

j for all x; x

0

2 R , f is Lipshitz at

any x with K = 1. Using slope sets on the interval x whose midpoint

is �x, we know that

lim

w(x)!0

S

℄

(f;x; 0) = [�1; 1℄:

Now, we ompute f

Æ

(0; v) and �f(0).

f

Æ

(0; v) = lim sup

y!0

t#0

jy + tvj � jyj

t

:

For v � 0 we have the following three ases:

y > 0; y + tv > 0 !

y+tv�y

t

= v

y < 0; y + tv > 0 !

y+tv+y

t

=

2y

t

+ v ! [�1; v℄

y < 0; y + tv < 0 !

�(y+tv)+y

t

= �v

9

>

=

>

;

! f

Æ

(0; v) = v:

Similarly, for v < 0 we have the following three ases:

y < 0; y + tv < 0 !

�(y+tv)+y

t

= �v

y > 0; y + tv > 0 !

y+tv�y

t

= v

y > 0; y + tv < 0 !

�(y+tv)�y

t

= �

2y

t

� v ! [�1;�v℄

9

>

=

>

;

:
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10 H. Mu~noz and B. Kearfott

This implies f

Æ

(0; v) = �v. Hene, f

Æ

(0; v) = jvj, and

�f(0) = f� 2 R : jvj � �vg = [�1; 1℄:

Thus, in this example we have

�f(0) = lim

w(x)!0

S

℄

(f;x; 0) = [�1; 1℄:

EXAMPLE 4.2. Let f be the funtion de�ned by f(�x) = f(x) for all

x 2 R, let x be any interval ontaining �x = 0, and

f(x) =

8

>

>

>

>

>

<

>

>

>

>

>

:

x�

1

2

;

1

2

� x � 1;

1

2

� x;

1

4

� x <

1

2

;

x;

1

8

� x <

1

4

;

1

2

� x�

P

k

i=2

1

2

(2i�1)

;

1

2

(2k)

� x �

1

2

(2k�1)

; k = 2; 3; : : :

x+

P

k

i=2

1

2

(2i�1)

;

1

2

(2k+1)

� x �

1

2

(2k)

; k = 2; 3; : : :

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f(x)

x axis

y =

1

3

(x+ :5)

y = �

1

3

(x� :5)

j

N

Figure 1. Graph of f(x) in Example 4.2

The graph of f as x � 0 is shown in Figure 1. Sine f is linear

in eah interval with slopes either 1 or �1, f is Lipshitz near �x = 0.

Taking the sequene of points x

i

=

3

2

i

, we have f

0

(x

i

) = (�1)

i+1

and

�f(0) = [�1; 1℄. Also, the upper and lower bounds for the slopes our

at members of the sequene x = x

k

=

1

2

k

. The points orresponding

to the upper bound on the slope are on the straight line y =

1

3

(x +

1

2

)
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Slope and Comparisons 11

and the points orresponding to the lower bound on the slope are in the

straight line y = �

1

3

(x�

1

2

). Thus, in this example we have

lim

w(x)!0

S

℄

(f;x; �x) =

�

�

1

3

;

1

3

�

� [�1; 1℄ = �f(�x):

This example is not typial, but it shows that for f Lipshitz near �x

not always is true that

�f(�x) � lim

w(x)!0

S

℄

(f;x; �x):

Fundamental relationships between the onepts diretional slope

and generalized diretional derivative imply inlusion relationships be-

tween slope sets and generalized gradients. Within the following lass

of funtions, these inlusions beome equalities.

DEFINITION 4.5. f is said to be regular at �x provided

(a) For all v, the usual one{sided diretional derivative

f

0

(�x : v) = lim

t#0

f(�x+ tv)� f(�x)

t

= lim

t#0

S

v

(f; t; �x);

exists.

(b) For all v, f

0

(�x : v) = f

Æ

(�x; v):

In [2℄ f

0

(�x : v) is denoted by Æ

+

f(�x; v). We reall Rademaher's The-

orem, whih states that a funtion whih is loally Lipshitz on an

open subset of R is di�erentiable almost everywhere (a.e.) (in the sense

of Lebesgue measure) on that subset. The set of points where f is

not di�erentiable is denoted by 


f

. If f is loally Lipshitz near �x, f

is Lipshitz in a delta neighbourhood B of �x. This implies that f is

absolutely ontinuous in B and for any x in B we have that

f(x)� f(�x) =

Z

x

�x

f

0

(y)dy:

Examples 4.1 and 4.2 illustrate the following result that harate-

rizes the relationship between generalized gradient and slope interval

in one dimension.

THEOREM 4.1. Let f : R ! R be Lipshitz near �x and let x be any

interval entered at �x. Then

lim

w(x)!0

S

℄

(f;x; �x) � �f(�x): (6)

If f is regular at �x, then equality holds.
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12 H. Mu~noz and B. Kearfott

Proof. Let Æ > 0 be so small that f is Lipshitz in the open set

B

Æ

= fx : 0 < jx � �xj < Æ; g: Then 


f

\ B

Æ

has Lebesgue measure 0.

For x 2 B

Æ

and x > �x we have that

f(x)� f(�x)

x� �x

v =

1

x� �x

Z

x

�x

f

0

(y)vdy �

1

x� �x

Z

x

�x

sup

y2[�x;x℄�


f

f

0

(y)vdy;

sine from Rademaher's theorem f

0

exist a.e on (�x; x). Similar inequa-

lity holds for x < �x. From (5), for any � > 0, there is a Æ > 0 suh that

x 2 B

Æ

and

f(x)� f(�x)

x� �x

v � f

Æ

(�x; v) + �:

Sine � is arbitrary, we obtain

lim sup

x!�x

f(x)� f(�x)

x� �x

v � f

Æ

(�x; v):

From Lemma 3.1, this implies that

f

Æ

(�x; v) �

(

v lim sup

x!�x

f(x)�f(�x)

x��x

; v � 0;

v lim inf

x!�x

f(x)�f(�x)

x��x

; v < 0;

=

�

vM; v � 0;

vm; v < 0:

Thus,

f

Æ

(�x; v) � mv; and f

Æ

(�x; v) �Mv; for all v 2 R:

Therefore m;M 2 �f(�x). Sine �f(�x) is a onvex set, we have

lim

w(x)!0

S

℄

(f;x; �x) = [m;M ℄ � �f(�x);

so (6) holds. If f is regular at �x, then we have

f

Æ

(�x; v) =

�

vM; v � 0;

vm; v < 0;

and sine m �M; we obtain

�f(�x) = f� 2 R : f

Æ

(�x; v) � �v for all v 2 Rg

= f� 2 R :Mv � �v; v � 0g \ f� 2 R : mv � �v; v < 0g

= [�1;M ℄ \ [m;+1℄

= [m;M ℄

= lim

w(x)!0

S

℄

(f;x; �x):

Thus, (6) holds with equality. �

The next theorem gives us the relationship between gradients and

generalized gradients of Lipshitz funtions.
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Slope and Comparisons 13

THEOREM 4.2 ([3℄, p. 63). Let f : R

n

! R be loally Lipshitz near

x, and suppose S is any set of Lebesgue measure 0 in R

n

. Then

�f(x) = o flimrf(x

i

) : x

i

! x; x

i

=2 S [ 


f

g :

COROLLARY 4.1 ([3℄, p. 64).

f

Æ

(�x; v) = lim sup

y!�x

frf(y) � v : y =2 S [


f

g :

The only way we presently know to obtain a relationship between

generalized gradient and slope interval in multiple dimensions is to

onsider the relationship between the projetions of these two onepts.

Let x = x

1

� : : :� x

n

, where x

1

; : : : ;x

n

are intervals in R.

DEFINITION 4.6. Let f : x � R

n

! R be Lipshitz near �x. For

i = 1; : : : ; n, the i-th projetion lim

w(x)!0

�

i

S

℄

(f;x; �x) is de�ned as the

set

lim

w(x)!0

ofs

i

2 R : 9s 2 R

n

; f(x)�f(�x) = s � (x� �x); for x 2 x; x 6= �xg;

and the i-th projetion of the generalized gradient of f at �x, �

i

�f(�x) is

de�ned by

�

i

�f(�x) = fx

i

2 R : 9x = (x

1

; : : : ; x

i

; : : : ; x

n

) 2 �f(�x)g:

LEMMA 4.1. Let f : x � R

n

! R be Lipshitz of rank K near �x.

Then for any v 2 R

n

; lim sup

t#0

S

v

(f; t; �x) is bounded and

lim sup

t#0

S

v

(f; t; �x) � f

Æ

(�x; v):

Proof. Let v any vetor in R

n

. By Proposition 4.1, we have

�Kkvk � lim sup

t#0

S

v

(f; t; �x) = lim sup

t#0

f(�x+ tv)� f(�x)

t

� lim sup

t#0

y!�x

f(y + tv)� f(y)

t

= f

Æ

(�x; v) � Kkvk:

The seond inequality holds sine the set fy : y ! �xg ontains f�xg,

and by a monotoniity property of lim sup. �

LEMMA 4.2. Let f : x � R

n

! R be Lipshitz of rank K near �x.

Then

lim

w(x)!0

�

i

S

℄

(f;x; �x) � �

i

�f(�x):

If f is regular at �x, then equality holds.
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14 H. Mu~noz and B. Kearfott

Proof. Considering t = w(x), and vetors v 2 R

n

with kvk = 1, we

get

lim

w(x)!0

S

℄

(f;x; �x) = lim

t#0

S

℄

(f;x; �x)

= lim

t#0

�

s

v

(�) : S

v

(f; �; �x) = s

v

(�)

T

� v; 0 < � � t;8v 2 R

n

	

:

Sine lim sup

t#0

n

s

v

(t)

T

� v

o

is bounded for all v 2 R

n

by Lemma 4.1,

then lim

t#0

fs

v

(�)g is bounded.

Suppose there exists an s

i

2 lim

t#0

�

i

S

℄

(f;x; �x) and s

i

=2 �

i

�f(�x).

Then there exists an unitary vetor v 2 R

n

and s = lim

t#0

s

v

(t) suh

that

s 2 lim

t#0

S

℄

(f;x; �x); s =2 �f(�x); and lim

t#0

s

v

i

(t) = s

i

:

This means that

f

Æ

(�x; v) < s

T

� v = lim sup

t#0

s

v

(t)

T

� v � lim sup

t#0

S

v

(f; t; �x):

This ontradits Lemma 4.1. Thus,

lim

t#0

�

i

S

℄

(f;x; �x) � �

i

�f(�x):

Conversely, if f is regular at �x, and s

i

2 �

i

�f(�x), there exists an s 2

�f(�x) with s = (s

1

; � � � ; s

i

; � � � ; s

n

), and 8v 2 R

n

, we have

s

T

� v � f

Æ

(�x; v) = lim

t#0

S

v

(f; t; �x):

By Theorem 3.1, for any v 2 R

n

there exist s

v

(t) 2 S

℄

(f;x; �x) suh

that S

v

(f; t; �x) = s

v

(t)

T

� v. Then we have

s

T

� v � lim

t#0

s

v

(t)

T

� v:

If v = v

i

e

i

, for all v

i

2 R we have redued the problem to the

one-dimensional ase. Sine

s

i

v

i

� lim

t#0

s

v

i

(t)v

i

� lim sup

w(x)#0

s

v

i

(t)v

i

�

�

lim sup

w(x)!0

�

i

S

℄

(f; x; �x)v

i

; v

i

� 0

lim inf

w(x)!0

�

i

S

℄

(f; x; �x)v

i

; v

i

< 0;

then s

i

2 lim

w(x)!0

�

i

S

℄

(f;x; �x): �

For f regular at x = (x

1

; x

2

), is shown in [3℄ that

�f(x

1

; x

2

) � �

1

f(x

1

; x

2

)� �

2

f(x

1

; x

2

): (7)
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Slope and Comparisons 15

THEOREM 4.3. Let f : x � R

n

! R be loally Lipshitz near �x and

regular at �x. Then

lim

w(x)!0

S

℄

(f;x; �x) � �f(�x) � �

1

�f(�x)� � � � � �

n

�f(�x) = lim

w(x)!0

S

℄

(f;x; �x):

Proof. The seond inlusion follows by extending (7) to dimension

n, and applying Lemma 4.2. For the �rst inlusion suppose there exists

s suh that s 2 lim

w(x)!0

S

℄

(f;x; �x), and s =2 �f(�x). Then for some

unitary vetor v 2 R

n

, and t = w(x), s = lim

t#0

s

v

(t) and

f

Æ

(�x; v) < s

T

� v = lim

t#0

s

v

(t)

T

� v � lim sup

t#0

S

v

(f; t; �x):

This ontradits Lemma 4.1. �

The next example illustrates this theorem.

EXAMPLE 4.3. Consider the funtion f : R

2

! R, de�ned by

f(x; y) = maxfminfx;�yg; y � xg:

Taking R

2

= C

1

[ C

2

[C

3

, with

C

1

= f(x; y) : y � 2x and y � �xg;

C

2

= f(x; y) : y � x=2 and y � �xg;

C

3

= f(x; y) : y � 2x or y � x=2g;

we have

f(x; y) =

8

<

:

x; (x; y) 2 C

1

;

�y; (x; y) 2 C

2

;

y � x; (x; y) 2 C

3

:

(a) Let �x = (0; 0). f is Lipshitz near �x sine it is linear in eah

region of R

2

. However, f is not regular at �x. In fat,

f

Æ

(�x; v) = limsupf(0;�1) � v; (1; 0) � v; (�1; 1) � v : v 2 R

2

g

=

8

<

:

�v

2

; v 2 C

1

;

v

1

; v 2 C

2

;

v

2

� v

1

; v 2 C

3

;

and

f

0

(�x; v) = lim

t#0

f(�x+ tv)� f(�x)

t

=

8

<

:

v

1

; v 2 C

1

;

�v

2

; v 2 C

2

;

v

2

� v

1

; v 2 C

3

;

exists for all v 2 R

2

, but f

0

(�x; v) 6= f

Æ

(�x; v).

sssg_kluwer.tex; 6/07/2003; 19:54; p.15



16 H. Mu~noz and B. Kearfott

(b) The set S = �C

1

[ �C

2

[ �C

3

= 


f

, has Lebesgue measure 0.

If (x; y) =2 S, then rf(x; y) 2 f(1; 0); (0;�1); (�1; 1)g.

By Theorem 4.2, �f(�x) = of(1; 0); (0;�1); (�1; 1)g, whih is the

triangle with these three verties. Taking partial generalized gradi-

ents, we have

f(x; 0) = maxf0;�xg ! �

x

f(�x) = [�1; 0℄;

f(0; y) = maxf0; yg ! �

y

f(�x) = [0; 1℄;

�

1

�f(�x) = [�1; 1℄;

�

2

�f(�x) = [�1; 1℄:

So, we have

�

x

f(�x)� �

y

f(�x) 6� �f(�x) 6� �

x

f(�x)� �

y

f(�x):

() Let x be any box entered at �x = (0; 0).

K

-

i

�

x

f(�x)� �

y

f(�x)

(0;�1)

)

6

lim

w(x)!0

S

℄

(f;x; �x)

(�1; 1)

(1; 0)

y

�f(�x)

x

Figure 2. �

x

f(�x)� �

y

f(�x); �f(�x), and lim

w(x)!0

S

℄

(f; x; �x) for Example 4.3

Letting x = (x

1

; x

2

), f(�x) = 0, we onsider the slope sets.

x 2 C

1

: f(x) = x

1

= (1; 0)(x

1

; x

2

)

T

! s = (1; 0)

T

;

x 2 C

2

: f(x) = �x

2

= (0;�1)(x

1

; x

2

)

T

! s = (0;�1)

T

;

x 2 C

3

: f(x) = x

2

� x

1

= (�1; 1)(x

1

; x

2

)

T

! s = (�1; 1)

T

:

Thus,

lim

w(x)!0

S

℄

(f;x; �x) = f(1; 0)

T

; (0;�1)

T

; (�1; 1)

T

g;

and

lim

w(x)!0

S

℄

(f;x; �x) = [�1; 1℄� [�1; 1℄:
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Slope and Comparisons 17

Clearly, the sharpest slope set is easily obtainable and

�f(�x) � �

1

�f(�x)� �

2

�f(�x) = lim

w(x)!0

S

℄

(f;x; �x) = [�1; 1℄ � [�1; 1℄:

Here, the interval hull of �f(�x) is

lim

w(x)!0

S

℄

(f;x; �x):

These relationships for Example 4.3 are illustrated in Figure 2.

5. Optimality onditions

This setion ontains generalizations of the Karush-Kuhn-Tuker opti-

mality onditions for nonsmooth onstrained optimization problems.

Let f : R

n

! R, g

i

: R

n

! R, (i = 1; 2; : : : ; k), and h

j

: R

n

! R,

(j = 1; 2; : : : ;m) be ontinuous funtions in a onvex set D � R

n

. Let

x � D, and onsider the onstrained optimization problem

minimize f(x)

subjet to

g

i

(x) � 0; i = 1; 2; : : : ; k;

h

j

(x) = 0; j = 1; 2; : : : ;m;

x 2 x

(8)

If all funtions are Lipshitz funtions near �x, the generalized gradients

yield a generalization of the Karush-Kuhn-Tuker neesary onditions

of optimality [3℄,[34℄. In fat, if �x is a solution of (8) there exist �

i

� 0,

i = 1; : : : ;m, and �

j

� 0, j = 1; 2; : : : ; k satisfying

(

0 2 �f(�x) +

P

m

i=1

�

i

�g

i

(�x) +

P

k

j=1

�

j

�h

j

(�x);

�

i

g

i

(�x) = 0; i = 1; : : : ;m;

(9)

In [22℄, [6℄, and [30℄ are introdued interval tehniques used in the

solution of (8) and based in inlusions of the generalized gradients.

The next theorem shows that interval slopes also yield a pratial

generalization of the Karush-Kuhn-Tuker onditions.

THEOREM 5.1. If �x is a solution of (8)there exist �

i

� 0, i =

1; : : : ;m, and �

j

� 0, j = 1; 2; : : : ; k satisfying

8

>

<

>

:

0 2 lim

w(x)!0

S

℄

(f;x; �x) +

P

m

i=1

�

i

lim

w(x)!0

S

℄

(g

i

;x; �x)

+

P

k

j=1

�

j

lim

w(x)!0

S

℄

(h

j

;x; �x)

�

i

g

i

(�x) = 0; i = 1; : : : ;m;

(10)
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18 H. Mu~noz and B. Kearfott

Proof. If all funtions are Lipshitz funtions near �x and regular at

�x, Theorem 4.3 and (9) prove (10).

In [20℄ is shown that interval methods have no di�ulties in handling

nonsmooth problems, beause neither the onstrution of inlusion

funtions nor the appliation of monotoniity tests depends on the

smoothness of the objetive funtion. �

6. Semigradient

The semigradient is a generalization of the onept of generalized gra-

dient to arbitrary not neessarily ontinuous funtions. This extension

to arbitrary funtions f : R

n

! R

�

was introdued in [17℄.

In [3℄, �f(x) is de�ned for extended-valued funtions f : R

n

! R

�

,

as long as f is �nite at x. The generalized gradient is haraterized

geometrially in terms of normals to the epigraph of f at the point

(x; f(x)), whih is denoted and de�ned by

epif =

n

(x; r) 2 R

n+1

: f(x) � r

o

T

epif

(x; f(x)) = epif

Æ

(x; �);

N

epif

(x; f(x)) =

n

� : (�; v) � 0 for all v in T

epif

(x; f(x))

o

;

�f(x) =

n

� : (�;�1) 2 N

epif

(x; f(x))

o

;

where T

epif

(x; f(x)) and N

epif

(x; f(x)) are the tangent one and nor-

mal one to the epif at (x; f(x)) respetively. In the non-Lipshitz

ase, the diret haraterization of f

Æ

involves some ompliated limits

for whih the following notion due to Rokafellar [26℄ is in order. The

expression (y; �) #

f

x shall mean that (y; �) 2 epif; y ! x; � ! f(x).

The funtion f

Æ

(x; :) : R

n

! R

�

is de�ned as follows

f

Æ

(x; v) = lim

�#0

lim sup

(y;�)#

f

x

t#0

inf

w2v+�B

f(y + tw)� �

t

:

If f is lower semiontinuous at x, then f

Æ

(x; v) is given by the slightly

simpler expression

f

Æ

(x; v) = lim

�#0

lim sup

y#

f

x

t#0

inf

w2v+�B

f(y + tw)� f(y)

t

;

where y #

f

x signi�es that y and f(y) onverge to x and f(x) respe-

tively. The following result shows that the extended f

Æ

plays the same

role vis-�a-vis �f as it did in the Lipshitz ase.
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COROLLARY 6.1 (Rokafellar [26℄). One has �f(x) = ; i�

f

Æ

(x; 0) = �1. Otherwise, one has

�f(x) = f� 2 R

n

: f

Æ

(x; v) � h�; vi; 8v 2 R

n

g;

and

f

Æ

(x; v) = supfh�; vi : � 2 �f(x)g:

If f is disontinuous and �nite at x, �f(x) only inorporates infor-

mation of the epigraph of f near to the point (x; f(x)), and in some

ases �f(x) disards the behavior of f near x. The semigradient takes

into aount the behavior of f near x.

The following proposition, due to Moreau [17℄, provides an alterna-

tive haraterization of f

Æ

(x; v).

PROPOSITION 6.1 ([17℄). f

Æ

(x; v) is given by

f

Æ

(x; v) = max

�

lim sup

i!1

f(x

i

+ t

i

v)� f(x

i

)

t

i

: 8x

i

! x; t

i

# 0

�

;

where the maximum is obtained over all sequenes fx

i

g

1

i=1

in R

n

on-

verging to x and ft

i

g

1

i=1

in (0;1) onverging to 0.

DEFINITION 6.1 ([17℄). Assume an arbitrary funtion f : R

n

! R

�

.

Let x; v 2 R

n

. Let x 2 R

n

. The semigradient of f at x, denoted SGf(x),

is a subset of R

n

de�ned by

SGf(x) = f� 2 R

n

: f

Æ

(x; v) � h�; vi; 8v 2 R

n

g ;

where f

Æ

is as in De�nition 4.2.

SGf(x) is as �f(x) a losed onvex set, possibly empty. The next

theorem relates these two onepts.

THEOREM 6.1 ([17℄). Let x 2 R

n

. For arbitrary funtions f : R

n

!

R

�

, the following inlusion holds:

�f(x) � SGf(x):

In the partiular ase that f : R

n

! R is loally Lipshitz, this inlusion

redues to

�f(x) = SGf(x):

The relationships between symmetri slope intervals and semigradients

in this setion extend the results presented in the previous setion to

arbitrary funtions.
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THEOREM 6.2. Let f : R ! R be an arbitrary funtion and let x be

any interval entered at �x. Then

SGf(�x) = lim

w(x)!0

SS

℄

(f;x; �x): (11)

Proof. From Proposition 6.1 we get

f

Æ

(�x; v) = max

�

lim sup

i!1

f(x

i

+ t

i

v)� f(x

i

)

t

i

: 8x

i

! �x; t

i

# 0

�

:

sine x

i

! �x and t

i

# 0, y

i

= x

i

+ t

i

v ! �x. Then we have

f

Æ

(�x; v) = max

�

lim sup

i!1

f(y

i

)� f(x

i

)

y

i

� x

i

v : 8x

i

! �x; t

i

# 0; y

i

= x

i

+ t

i

v

�

� max

�

lim sup

i!1

f(y

i

)� f(�x)

�

y

i

� �x

v; lim sup

i!1

f(y

i

)� f(�x)

+

y

i

� �x

v : 8 y

i

! �x

�

� max

�

lim sup

x!�x

f(x)� f(�x)

�

x� �x

v; lim sup

x!�x

f(x)� f(�x)

+

x� �x

v

�

=

8

<

:

vmax

n

lim sup

x!�x

f(x)�f(�x)

�

x��x

; lim sup

x!�x

f(x)�f(�x)

+

x��x

o

; v � 0;

vmin

n

lim inf

x!�x

f(x)�f(�x)

�

x��x

; lim inf

x!�x

f(x)�f(�x)

+

x��x

o

; v < 0;

=

�

vS; v � 0;

vs; v < 0;

where s and S are given in Lemma 3.2. Thus, f

Æ

(�x; v) � sv and

f

Æ

(�x; v) � Sv for all v 2 R, this implies that s and S belong to SGf(�x).

Sine SGf(�x) is a losed onvex set, we get

lim

w(x)!0

SS

℄

(f;x; �x) = [s; S℄ � SGf(�x):

In the other hand, let � 2 SGf(�x), and

f

Æ

(�x; v) = max

�

lim sup

i!1

f(y

i

)� f(x

i

)

y

i

� x

i

v : 8x

i

! �x; t

i

# 0; y

i

= x

i

+ t

i

v

�

=

�

v lim sup

i!1

f(y

i

)�f(x

i

)

y

i

�x

i

; v � 0;

v lim inf

i!1

f(y

i

)�f(x

i

)

y

i

�x

i

; v < 0:

From de�nition of SGf(�x), we have f

Æ

(x; v) � �v, 8v 2 R. Thus,

lim inf

i!1

f(y

i

)� f(x

i

)

y

i

� x

i

� � � lim sup

i!1

f(y

i

)� f(x

i

)

y

i

� x

i

; 8x

i

; y

i

! �x:

Lemma 3.2 and the previous inequalities imply that, s � � � S, and

we obtain

SGf(�x) � [s; S℄ = lim

w(x)!0

SS

℄

(f;x; �x):
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This ompletes the proof of (11). �

The following examples illustrate this result.

EXAMPLE 6.1. Let f : R ! R be the funtion in the Example 3.5

de�ned by

f(x) =

�

�x; x � 0;

x� 1; x > 0;

and x is any interval entered at �x = 0. Note that f is upper semi-

-

?

I

(0;�1)

x

�f(0)

epif

�

6

�

:

f(x)

Figure 3. Graph of epif near (0; 0) and �f(0) in Example 5.1

ontinuous at �x = 0 and has a loal in�mum (whih is atually global)

at �x see Figure 3. The Clarke generalized gradient of f only inorpo-

rates information of the epigraph of f near (0; 0) and thus disards

the behavior of f for x > 0, whih is ruial for f to have an in�-

mum or not. Therefore, although this funtion has an in�mum at �x,

0 =2 �f(0) = [�1;�1℄. On the other hand, 0 2 SGf(0) = [�1; 1℄ =

lim

w(x)!0

SS

℄

(f;x; �x). Thus, for this example we have

lim

w(x)!0

S

℄

(f;x; �x) = �f(0) � SGf(0) = lim

w(x)!0

SS

℄

(f;x; �x):

EXAMPLE 6.2. Consider the funtion f : R ! R de�ned by

f(x) =

�

x; x < 0;

�x� 1; x � 0;

and x is any interval entered at �x = 0. Note that f is lower semi-

ontinuous at �x = 0 and has a loal supremum (whih is atually

global) at �x see Figure 4. The Clarke generalized gradient of f only

inorporates information of the epigraph of f near (0;�1) and thus

disards the behavior of f for x < 0, whih is ruial for f to have a

supremum or not. Therefore, although this funtion has a supremum at
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x

s

�f(0)

�

:

f(x)

epif

?

�

-

6

-1

Figure 4. Graph of epif near (0;�1) and �f(0) in Example 5.2

-

6

f(x)

�x = 0

1

2

x

Figure 5. Graph of f(x) in Example 5.3

�x, 0 =2 �f(0) = [�1;�1℄. On the other hand, 0 2 SGf(0) = [�1; 1℄ =

lim

w(x)!0

SS

℄

(f;x; �x). Thus, for this example we have

lim

w(x)!0

S

℄

(f;x; �x) = �f(0) � SGf(0) = lim

w(x)!0

SS

℄

(f;x; �x):

EXAMPLE 6.3. Consider the funtion f : R ! R de�ned by

f(x) =

�

x

2

+ x+ 1; x > 0;

�(x+ 1)

2

+ 3; x � 0;

and x is any interval entered at �x = 0. The funtion f is upper

semiontinuous at �x and has a loal in�mum (whih is atually global)

at �x, whih is illustrated in Figure 5, and one veri�es easily that

lim

w(x)!0

S

℄

(f;x; �x) = [�1;�2℄ � SGf(�x) = [�1; 1℄:
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-

6

�x = 0

x

f(x)

Figure 6. Graph of f(x) = �

p

jxj with �x = 0 in Example 5.4

Sine f is neither onvex nor Lipshitz at �x, �f(�x) = ;. Observe that

f is not regular at �x, and the symmetri slope interval is

lim

w(x)!0

SS

℄

(f;x; �x) = [�1; 1℄:

EXAMPLE 6.4. Consider the funtion f : R ! R de�ned by f(x) =

�

p

jxj, and let x be any interval entered at �x = 0. Figure 6 shows that

f has a loal maximum (whih is atually global) at �x = 0, and one

veri�es easily that 0 2 R

�

= SGf(�x) = lim

w(x)!0

S

℄

(f;x; �x). Sine

f is neither onvex nor Lipshitz at �x, �f(�x) = ;. Observe that f is

regular at �x with f

Æ

(�x; v) =1 8v 2 R.

In multiple dimensions, the next theorem extends Theorem 4.3 to

arbitrary funtions.

THEOREM 6.3. Let f : x � R

n

! R be an arbitrary funtion that is

regular at �x. Then

lim

w(x)!0

S

℄

(f;x; �x) � SGf(�x) � lim

w(x)!0

S

℄

(f;x; �x): (12)

Proof. Considering w(x) = t, and vetors v 2 R

n

with kvk = 1, we

have

lim

w(x)!0

S

℄

(f;x; �x) = lim

t#0

S

℄

(f;x; �x)

= lim

t#0

fs

v

(�) : S

v

(f; �; �x) = s

v

(�) � v; 0 < � � t;8v 2 R

n

g :

Sine f is regular at �x, we have

lim

t#0

S

v

(f; t; �x) = f

Æ

(�x; v):

Let s 2 lim

w(x)!0

S

℄

(f;x; �x). From Theorem 3.1, for some unitary

vetor v 2 R

n

, we have

s � v = lim

t#0

S

v

(f; t; �x) = f

Æ

(�x; v);
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and it follows that s 2 SGf(�x).

On the other hand, suppose that there exists s 2 R

n

suh that

s 2 SGf(�x) and s =2 lim

w(x)!0

S

℄

(f;x; �x). Then, for some unitary

vetor v 2 R

n

, we get

s � v > lim

t#0

s

v

(t) � v = lim

t#0

S

v

(f; t; �x) = f

Æ

(�x; v);

whih ontradits that s 2 SGf(�x), and (12) is hold. �

Example 4.3 illustrates this Theorem. In fat, f is Lipshitz near �x,

then

SGf(�x) = �f(�x) = of(1; 0); (0;�1); (�1; 1)g;

whih is the triangle with these three verties, and

SGf(�x) � lim

w(x)!0

S

℄

(f;x; �x) = [�1; 1℄ � [�1; 1℄:

7. Containment-set of f

The ontainment-set or set of a funtion was introdued in [35℄.

DEFINITION 7.1 ([35℄). Let f : (R

�

)

n

! R be an arbitrary funtion.

The ontainment-set of f at a point a = (a

1

; : : : ; a

n

) 2 (R

�

)

n

is the set

of all possible limits of values of f(x

i

) where the vetors x

i

onverge

to a as i ! 1. The ontainment-set (or set) is formally denoted

set(f; a).

Arithmeti with the interval hull of sets is termed set-based in-

terval arithmeti, or extended interval arithmeti beause it uses the

extended real number system R

�

. The set of f

0

= rf at �x is de�ned

omponentwise. The next two results relate the generalized gradient

and semigradient to the set of f

0

. Basi elements of this tehnique an

be found in [21℄.

THEOREM 7.1. For a loally Lipshitz funtion f : (R

�

)

n

! R near

�x we have

set(f

0

; �x) � �f(�x) = o(set(f

0

; �x)) � set(f

0

; �x) = �f(�x);

where the third relation is an equality when n = 1.

Proof. It follows from Theorem 4.2 and De�nition 6.1. All equalities

hold when f is di�erentiable at �x. When n = 1, set(f

0

; �x), and �f(�x)
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are equal to the interval onstruted from the lower and upper bounds

of the derivatives near to �x, i.e.,

�f(�x) = set(f

0

; �x) = [f

0

(�x); f

0

(�x)℄;

where

f

0

(�x) = lim sup

x!�x

f

0

(x); and f

0

(�x) = lim inf

x!�x

f

0

(x): �

The next examples illustrate this theorem.

EXAMPLE 7.1. Consider the funtion f in the Example 4.3, and

�x = (0; 0). We have

set(rf; �x) = f(1; 0); (0;�1); (�1; 1)g

� �f(�x) = o(set(rf; �x)) = of(1; 0); (0;�1); (�1; 1)g

� set(rf; �x) = [�1; 1℄ � [�1; 1℄ = �f(�x)

= lim

w(x)!0

S

℄

(f;x; �x)

EXAMPLE 7.2. Consider the funtion f in the Example 4.2, �x = 0,

and x is any interval entered at �x. We have

set(f

0

; �x) = f�1; 1g � �f(�x) = set(f

0

; �x) = [�1; 1℄;

and

lim

w(x)!0

S

℄

(f;x; �x) = [�1=3; 1=3℄ � set(f

0

; �x):

When f is an arbitrary funtion, the �rst inlusion of Theorem 7.1

an be generalized with the semigradient, and we have the following

result.

THEOREM 7.2. Let f an arbitrary funtion, and �x is in its domain,

we have

set(f

0

; �x) � SGf(�x):

EXAMPLE 7.3. Let x be any interval entered at �x = 0. Consider the

following Riemann funtion de�ned by

f(x) =

�

1; if x is rational;

0; if x is irrational:

Sine this funtion is not di�erentiable in any real value, then

set(f

0

; �x) = ;

� SGf(�x) = lim

w(x)!0

SS

℄

(f;x; �x) = [�1;1℄:
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EXAMPLE 7.4. Consider the funtion in the Example 6.3, and x is

any interval entered at �x = 0. The derivative, f

0

(x), is de�ned by

f

0

(x) =

�

2x+ 1; x > 0;

�2(x+ 1); x < 0;

then

set(f

0

; �x) = f�2; 1g

� set(f

0

; �x) = [�2; 1℄

� SGf(�x) = lim

w(x)!0

SS

℄

(f;x; �x) = [�1; 1℄:

EXAMPLE 7.5. Consider the funtion in the Example 6.2, and x is

any interval entered at �x = 0. The derivative, f

0

(x), is de�ned by

f

0

(x) =

�

�1; x > 0;

1; x < 0;

then

set(f

0

; �x) = f�1; 1g

� set(f

0

; �x) = [�1; 1℄

� SGf(�x) = lim

w(x)!0

SS

℄

(f;x; �x) = [�1; 1℄:

8. Slant di�erentiability

The de�nition of slant di�erentiability is introdued in [2℄. This onept

is an extension of Clarke's generalized derivative for loally Lipshitz

funtions in �nite dimensional Eulidean spaes to in�nite dimensional

spaes. We present relationships between slant derivatives and slope

sets for Lipshitzian funtions in �nite dimensional Eulidean spaes.

Let X and Y be Banah spaes, and let D be an open domain in X.

L(X;Y ) denotes the set of all bounded linear operators on X into Y .

DEFINITION 8.1 ([2℄). A funtion f : D � X ! Y is said to be B-

di�erentiable at the point x if it is one-sided diretionally di�erentiable

at x, and

lim

h!0

f(x+ h)� f(x)� f

0

(x;h)

khk

= 0:

In this ase, we all f

0

(x; :) the B-derivative of f at x.

DEFINITION 8.2 ([2℄). A funtion f : D � X ! Y is said to be slantly

di�erentiable at x 2 D if there exists a mapping

^

f

Æ

: D ! L(X;Y )
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suh that the family f

^

f

Æ

(x + h) : h 2 X;x + h 2 Dg of bounded linear

operators is uniformly bounded in the operator norm for h suÆiently

small, and

lim

h!0

f(x+ h)� f(x)�

^

f

Æ

(x+ h)h

khk

= 0:

The funtion

^

f

Æ

is alled a slanting funtion for f at x.

In �nite dimensional Eulidean spaes, Shapiro [28℄ showed that a

loally Lipshitz funtion f is B-di�erentiable at x if and only if it is

diretionally (Gateaux) di�erentiable at x.

DEFINITION 8.3 ([2℄). Suppose that

^

f

Æ

: D ! L(X;Y ) is a slanting

funtion for f at x 2 D. We all the set

�

S

f(x) = f lim

x

k

!x

^

f

Æ

(x

k

)g

the slant derivative of f assoiated with

^

f

Æ

at x 2 D. The limit is taken

for any sequene fx

k

g � D suh that x

k

! x and the limit exists. (Note

that

^

f

Æ

(x) 2 �

S

f(x), so �

S

f(x) is always nonempty.)

When f is loally Lipshitz and regular at x, there exists a relationship

between the generalized diretional derivative f

Æ

(x; v) and the slant

derivative

^

f

Æ

(x). Indeed, we have

f

Æ

(x; v) = lim

t#0

^

f

Æ

(x+ tv)v:

EXAMPLE 8.1. Let X = Y = R and f(x) = max(0; x). Let Æ be a real

number. Then the funtion

^

f

Æ

(x) =

8

<

:

1 x > 0

Æ x = 0

0 x < 0;

is a slanting funtion for f in X. The slant derivative of f for x 2 X

is

�

S

f(x) =

8

<

:

1 x > 0

f0; Æ; 1g x = 0

0 x < 0:

In this example we get

�

S

f(0) = f0; Æ; 1g 6� [0; 1℄ = �f(0) = SGf(0) = lim

w(x)!0

S

℄

(f;x; 0);

for any x � X, entered at �x = 0, and Æ =2 [0; 1℄.
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DEFINITION 8.4 ([2℄). We say that f is semismooth at x if there is a

slanting funtion

^

f

Æ

for f in a neighborhood N

x

of x, suh that

^

f

Æ

and

the assoiated derivative satisfy the following two onditions.

(a) lim

t!0

+

^

f

Æ

(x+ th)h exists for every h 2 X and

lim

khk!0

lim

t!0

+

^

f

Æ

(x+ th)h�

^

f

Æ

(x+ h)h

khk

= 0:

(b)

^

f

Æ

(x+ th)h� V h = Æ(khk) for all V 2 �

S

f(x+ h):

In �nite dimensional spaes, Qi and Sun [19℄ showed that f is

semismooth at x if and only if f is B-di�erentiable at x.

THEOREM 8.1 ([2℄). f is slantly di�erentiable at x if and only if f is

Lipshitz ontinuous at x.

Remark 1([2℄) For a loally Lipshitz funtion f : R

n

! R

m

, if

f is semismooth at x, then any single-valued seletion of the Clarke

Jaobian is a slanting funtion of f at x. Then, the slant derivative

�

S

f(x) of f assoiated with

^

f

Æ

at x satis�es

�

S

f(x) � �f(x):

COROLLARY 8.1 ([2℄ Mean Value Theorem). Suppose that f : D �

X ! Y is slantly di�erentiable at x. Then for any h 6= 0 suh that

x+ h 2 D, there exists a slanting funtion

^

f

Æ

for f at x suh that

f(x+ h)� f(x) =

^

f

Æ

(x+ h)h:

THEOREM 8.2. Let f : D � R

n

! R

m

be Lipshitz ontinuous at �x.

Let x and �x be interval boxes in D suh that �x 2 �x � x. Then there

exists a slanting funtion

^

f

Æ

for f at �x, suh that the slant derivative

�

S

f(x) of f assoiated with

^

f

Æ

at x satis�es

�

S

f(�x) � lim

w(x)!0

S

℄

(f;x; �x)

Proof. Sine f is Lipshitz ontinuous at �x, from Theorem 6.5 there

exists a slanting funtion

^

f

Æ

for f at �x and its assoiated slant derivative

�

S

f(�x). Let y 2 �

S

f(�x), then there is a sequene of points fx

k

g � D

suh that x

k

! �x and

^

f

Æ

(x

k

) ! y. There is a K suh that x

k

2 x for

all k � K. From Corollary 6.6. we have

f(x

k

)� f(�x) =

^

f

Æ

(x

k

)(x

k

� �x):
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Thus,

^

f

Æ

(x

k

) 2 S

℄

(f;x; �x), for all k � K. Sine the slope interval is

ompat, we have

y 2 lim

w(x)!0

S

℄

(f;x; �x): �

9. Conlusions

Let f : D � R

n

! R be an arbitrary funtion. The results presented

above lead to the following inlusions. These inlusions are satis�ed

exept on a set of measure zero. Sine these onepts are generalizations

of the gradient, all relations are equations when f is di�erentiable at

�x; in that ase, all quantities are equal to the singleton set ff

0

(�x)g.

(a) From Theorems 4.1, 6.2 and 8.2 for n = 1, we an hoose any

partiular value of lim

w(x)!0

S

℄

(f;x; �x) as slanting funtion of f

at �x, and we get

�

S

f(�x) � lim

w(x)!0

S

℄

(f;x; �x) � �f(�x) � lim

w(x)!0

SS

℄

(f;x; �x) = SGf(�x):

Equality holds in the last two inlusions when f is loally Lipshitz

and regular at �x.

(b) From Theorems 4.3, 6.1, 6.3, and 8.2, for n > 1 and f regular at �x,

we get

�

S

f(�x) � �f(�x) � SGf(�x) � lim

w(x)!0

S

℄

(f;x; �x) � lim

w(x)!0

SS

℄

(f;x; �x):

The �rst inlusion is obtained if any-single value of �f(�x) is hosen

to de�ne the slanting funtion assoiated to �

S

f(�x). Equality holds

in the seond and the fourth inlusions when f is loally Lipshitz

near �x.

() From Theorem 7.1, for f loally Lipshitz, we get

set(f

0

; �x) � �f(�x) = o(set(f

0

; �x)) � set(f

0

; �x) = �f(�x);

where the third equality holds when n = 1.

(d) From Theorem 7.2, for n � 1, we get

set(f

0

; �x) � SGf(�x):

Equality holds when f is di�erentiable at �x.
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(e) From Theorems 4.1 and 7.1, for n = 1 and f loally Lipshitz, we

get

lim

w(x)!0

S

℄

(f;x; �x) � set(f

0

; �x):

Equality holds when f is regular at �x.

Other important result in this work is Theorem 5.1, whih shows that

interval slopes yield a pratial generalization of the Karush-Kuhn-

Tuker onditions in onstrained optimization.
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