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Abstra
t. Many pra
ti
al optimization problems are nonsmooth, and derivative-

type methods 
annot be applied. To over
ome this diÆ
ulty, there are di�erent


on
epts to repla
e the derivative of a fun
tion f : R

n

! R: interval slopes, sem-

igradients, generalized gradients, and slant derivatives are some examples. These

approa
hes generalize the su

ess of 
onvex analysis, and are e�e
tive in opti-

mization. However, with the ex
eption of interval slopes, it is not 
lear how to

automati
ally 
ompute these; having a general analogue to the 
hain rule, interval

slopes 
an be 
omputed with automati
 di�erentiation te
hniques. In this paper we

study the relationships among these approa
hes for nonsmooth Lips
hitz optimiza-

tion problems in �nite dimensional Eu
lidean spa
es. In
lusion theorems 
on
erning

the equivalen
e of these 
on
epts when there exist one sided derivatives in one

dimension and in multidimensional 
ases are proved separately. Valid en
losures are

produ
ed. Under 
ontainment set (
set) theory, for instan
e, the 
set of the gradient

of a lo
ally Lips
hitz fun
tion f near x is in
luded in its generalized gradient.

Keywords: generalized gradient, slope interval, semigradient, slant derivative, sub-

di�erential, subgradient, 
set, symmetri
 slope interval, nonsmooth optimization

methods

1. Introdu
tion

The purpose of this work is to delineate pra
ti
al relationships among

�ve di�erent generalizations to the derivative or gradient of fun
tions

f : D � R

n

! R: slope interval, generalized gradient, subdi�eren-

tial (set of subgradients), semigradient, slant derivative, and 
set. These

generalizations are used in the solution of nonsmooth 
onstrained or

un
onstrained optimization problems.

Di�erent te
hniques have been developed for nonsmooth optimiza-

tion problems. For nonsmooth 
onvex fun
tions, the subdi�erential

in the sense of 
onvex analysis is introdu
ed in [26℄, and the sta-

bility of the optimal solution with subdi�erential is studied in [8℄.

For 
onstrained optimization problems with lo
ally Lips
hitz fun
tion,

the generalized gradient is introdu
ed in [3℄. For un
onstrained opti-
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2 H. Mu~noz and B. Kearfott

mization with lo
ally Lips
hitz 
ontinuous obje
tive fun
tion, bundle

methods are standard solution methods whi
h provide interior ap-

proximations of the generalized gradient [12, 31℄. In the Fren
h and

Russian literature are the works of [1, 4℄ who also worked with Lips
hitz

fun
tions. The �rst works on nonsmooth optimization using tools of

interval arithmeti
 were presented in [20℄. A 
ombination of bundle

methods and interval extensions (outer approximations) of the genera-

lized gradient, based in Goldstein's approa
h and developed in [21℄ and

[33℄.

The following goals motivate generalization of gradients: 1) to gen-

eralize the 
lear su

ess of 
onvex analysis; 2) to be e�e
tive in opti-

mization; and 3) to be easy to 
ompute, parti
ularly in the 
omposition

of fun
tions with 
hain rules. Computing a slope interval is easy with

automati
 slope 
omputation, see Se
tion 6.1 on [11℄ and [9, 24℄. It is

not possible to 
ompute sharp slopes, in general, but we 
an 
ompute

en
losures for non-smooth fun
tions easily enough, while 
omputing

the other generalizations of the gradient seems hard. The other two

goals are a
hievable with all approa
hes.

In Se
tion 2, basi
 notation of interval arithmeti
 as well as the

notation used in the rest of the paper are given. In Se
tion 3, the slope

interval, dire
tional slope, and symmetri
 interval slope are de�ned, and

some results related to these 
on
epts are shown. Clarke's generalized

gradient and the main relationships between slope intervals and genera-

lized gradients are established in Se
tion 4. In Se
tion 5, generalizations

of the Karush-Kuhn-Tu
ker optimality 
onditions are presented. The

semigradient and its relationships with slope intervals and symmetri


interval slopes are given in Se
tion 6. Cset theory and some results

are given in Se
tion 7. Se
tion 8 deals with slant derivative and its

relationship with slope interval. Some general 
on
lusions appear in

Se
tion 9.

2. Notation

Real interval arithmeti
, introdu
ed in its modern form in [15℄, is based

on arithmeti
 within the set of real 
losed intervals. A real bounded and


losed interval is de�ned by

x � [x; �x℄ := [inf x; supx℄ 2 IR;

where IR denotes the set of 
ompa
t intervals. O
asionally, in addition

to using boldfa
e to denote intervals, we use upper
ase boldfa
e to

denote sets.
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Slope and Comparisons 3

Let �x and w(x) denote the midpoint and the width of x, respe
tively,

that is,

�x :=

x+ �x

2

; w(x) := �x� x:

If S is a subset of R

n

, 
o(S) denotes the 
onvex hull of S, and S

denotes the interval hull of S. The interval union or hull of two intervals

is de�ned by

x[y := [minfx; yg;maxf�x; �yg℄;

where the bar under the union symbol means the 
onvex hull. An n-

dimensional interval ve
tor (also 
alled box) is de�ned by

x = (x

1

;x

2

; : : : ;x

n

)

T

2 IR

n

;

where x

1

;x

2

; : : : ;x

n

are real intervals and IR

n

is the set of real interval

ve
tors. An interval matrix A = (a

ij

) is a matrix all of whose entries

a

ij

are intervals. For interval ve
tors x 2 IR

n

, the midpoint �x, the

width w(x), and the hull operation are de�ned 
omponentwise. We

use w(x) in the 
ontext of kw(x)k = kw(x)k

1

. The basi
 interval

operations (+;�; �; =) and elementary interval fun
tions 
an be de�ned

operationally [11℄, [18℄, [23℄,[16℄.

Let f : R ! R be a fun
tion, and x a given real value. We denote

f(x)

�

:= lim

y"x

f(y) and f(x)

+

:= lim

y#x

f(y):

Let R

�

be the set of extended real numbers 
onsisting of the reals

augmented with �1 and +1. �1 are always a

epted as values of

the lim-operators.

3. Slope Interval

Although there are di�erent ways of de�ning slope intervals [13℄, [14℄,

[7℄, [5℄, we will limit ourselves to the following.

DEFINITION 3.1 (Interval slope matrix, [11℄, p. 27). Let f : R

n

! R

and let x be an interval ve
tor. A set S of ve
tors in R

n

is said to be a

slope set for f over x and 
entered on the interval ve
tor �x (usually, �x

is a point or a very small box) if, for every x 2 x, and �x 2 �x,

f(x)� f(�x) = s

T

� (x� �x) for some s 2 S:

Any smallest su
h slope set will be denoted by S

℄

(f;x; �x). The smallest

interval ve
tor that 
ontains S

℄

(f;x; �x) is 
alled the slope interval of f

over x, and it is denoted by S

℄

(f;x; �x).
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4 H. Mu~noz and B. Kearfott

EXAMPLE 3.1. Let f : R ! R be the 
ontinuous fun
tion f(x) =

x

1

x

2

, and �x = (1; 1). Then

f(x)� f(�x) = (1; x

1

) � (x� �x) = (x

2

; 1) � (x� �x):

Thus, (1; x

1

) is a slope of f at �x, and so is (x

2

; 1). Hen
e the slope is

not unique.

Note. It is not ne
essary that f be di�erentiable to obtain S

℄

(f;x; �x).

Interval Newton iteration with slope intervals has potential in global

optimization and nonlinear systems solvers, espe
ially when the deriva-

tives of the obje
tive fun
tion f have jump dis
ontinuities, su
h as when

f 
ontains terms involving k � k or max, [9℄, [10℄, [25℄, [29℄.

LEMMA 3.1. Let f : R ! R, and let x be an interval ve
tor 
ontaining

�x. Then the limiting slope interval is given by

lim

w(x)!0

S

℄

(f;x; �x) =

�

lim inf

x!�x

f(x)� f(�x)

x� �x

; lim sup

x!�x

f(x)� f(�x)

x� �x

�

:

Proof. By de�nition, S

℄

(f;x; �x) is the smallest set su
h that

fa : f(x)� f(�x) = a(x� �x); x 2 x; x 6= �xg � S

℄

(f;x; �x):

Thus, any a 2 S

℄

(f;x; �x) satis�es

inf

x2x

x6=�x

f(x)� f(�x)

x� �x

� a � sup

x2x

x6=�x

f(x)� f(�x)

x� �x

and

S

℄

(f;x; �x) =

2

4

inf

x2x

x6=�x

f(x)� f(�x)

x� �x

; sup

x2x

x6=�x

f(x)� f(�x)

x� �x

3

5

:

Sin
e x! �x is equivalent to w(x)! 0, the result holds. �

EXAMPLE 3.2. Let f : R ! R be the 
ontinuous fun
tion de�ned by

f(x) =

�

(x� 1)

2

; x � 1;

1� x

2

; x < 1;

and x = [0; 2℄, �x = 1. Then

S

℄

(f;x; �x) = [�2;�1℄ [ [0; 1℄; and S

℄

(f;x; �x) = [�2; 1℄:

EXAMPLE 3.3. Let f : R

2

! R be the fun
tion de�ned by

f(x; y) = jx� 2j � y

2

; x = ([1; 3℄; [0; 2℄)

T

; and �x = (2; 1):
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Slope and Comparisons 5

In this parti
ular example, we 
an 
ompute a partial slope en
losure

with respe
t to one variable by substituting point values for the other

variable, treating the other variable as 
onstant. Thus, the �rst 
ompo-

nent of the slope ve
tor is 
omputed by

S

1

= S

℄

(jx� 2j; [1; 3℄; 2) = f�1; 1g:

Similarly, the se
ond 
omponent of the slope ve
tor is

S

2

= S

℄

(�y

2

; [0; 2℄; 1) = [�3;�1℄:

Thus,

S

℄

(f;x; �x) = S = (f�1; 1g; [�3;�1℄)

T

;

and

S

℄

(f;x; �x) = ([�1; 1℄; [�3;�1℄)

T

:

DEFINITION 3.2 (Dire
tional Slope). Let f : R

n

! R, let x be a

ve
tor in R

n

, and v be any other ve
tor in R

n

with kvk = 1 (with the

Eu
lidean norm in R

n

). The dire
tional slope for f at x in the dire
tion

v with step size t is de�ned by

S

v

(f; t; x) =

f(x+ tv)� f(x)

t

:

THEOREM 3.1. Let v be any unitary ve
tor in R

n

, i.e. kvk = 1 and

let t > 0, and let x be an interval ve
tor 
ontaining x and x+ tv, and

let S

℄

(f;x; x) be any minimal slope set for f at x over x. Then there

exists some s 2 S

℄

(f;x; x) su
h that

S

v

(f; t; x) = s

T

� v: (1)

(s will be denoted by s

v

(t), and it is not ne
essarily unique).

Proof. Let v be any unitary ve
tor in R

n

and let t be small enough

to have y = x + tv 2 x. By the de�nition of S

℄

(f;x; x), there exists

some s 2 S

℄

(f;x; x) su
h that

tS

v

(f; t; x) = f(y)� f(x) = s

T

� (y � x) = s

T

� tv:

Dividing by t, we get (1). �

DEFINITION 3.3 (Dire
tional Derivative). Let f : R

n

! R. The usual

(one{sided) dire
tional derivative of f at x in the dire
tion v 2 R

n

is

f

0

(x; v) = lim

t#0

f(x+ tv)� f(x)

t

when this limit exists.
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6 H. Mu~noz and B. Kearfott

Note.Observe that f

0

(x; v) = lim

t#0

S

v

(f; t; x), when this limit exists.

EXAMPLE 3.4. Let f : R

2

! R be the fun
tion de�ned by

f(x

1

; x

2

) = x

1

x

2

; x = ([1:5; 2℄; [0:5; 1:5℄)

T

; and �x = (1; 1):

Then for any v = (v

1

; v

2

) we have

f(�x+ tv)� f(�x)

t

=

(1 + tv

1

)(1 + tv

2

)� 1

t

= v

1

+ v

2

+ tv

1

v

2

= (1 + tv

1

; 1)

T

� v = (1; 1 + tv

2

)

T

� v;

so s

v

(t) = (1 + tv

1

; 1)

T

or s

v

(t) = (1; 1 + tv

2

)

T

. Thus, s

v

(t) is not

ne
essarily unique. However, the dire
tional slope

S

v

(f; t; �x) = s

v

(t) � v

is unique. Taking the limit when t # 0, we get

f

0

(�x; v) = lim

t#0

S

v

(f; t; �x) = v

1

+ v

2

= (1; 1)

T

� v:

We introdu
e a new 
on
ept of slope, Symmetri
 Interval Slope, whi
h

is an extension of the slope interval for dis
ontinuous fun
tions. The

symmetri
 slope interval is 
al
ulated 
onsidering slopes with respe
t

to both points (�x; lim

t"0

f(�x + te

i

)) and (�x; lim

t#0

f(�x + te

i

)), where

e

i

; i = 1; : : : ; n is the i-th 
oordinate ve
tor.

DEFINITION 3.4. Let f : R

n

! R. The ve
tor SS is said to be a

symmetri
 slope set for f over x and 
entered on the interval ve
tor �x

if, for ea
h 
oordinate ve
tor e

i

, x 2 x and �x 2 �x,

f(x)� lim

t"0

f(�x+ te

i

) = S

T

i1

� (x� �x)

and

f(x)� lim

t#0

f(�x+ te

i

) = S

T

i2

� (x� �x);

for some S

i1

; S

i2

2 SS; i = 1; : : : ; n. Any smallest su
h set of ve
tors

satisfying this 
ondition will be denoted by SS

℄

(f;x; �x). The small-

est interval ve
tor that 
ontains SS

℄

(f;x; �x), SS

℄

(f;x; �x), is 
alled

symmetri
 slope interval of f over x.

In the one-dimensional 
ase, the symmetri
 slope interval is 
al-


ulated 
onsidering slopes with respe
t to both points (�x; f(�x)

�

) and

(�x; f(�x)

+

). Note that the symmetri
 slope interval is the same as the

slope interval for 
ontinuous fun
tions at �x.
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Slope and Comparisons 7

LEMMA 3.2. Let f : R ! R, and let x be an interval ve
tor 
ontaining

�x. Then the limiting symmetri
 slope interval is given by

lim

w(x)!0

SS

℄

(f; x; �x) =

h

min

n

lim inf

x!�x

f(x)�f(�x)

�

x��x

; lim inf

x!�x

f(x)�f(�x)

+

x��x

o

;

max

n

lim sup

x!�x

f(x)�f(�x)

�

x��x

; lim sup

x!�x

f(x)�f(�x)

+

x��x

oi

= [s; S℄:

Proof. The proof is analogous to the proof of Lemma 3.1. �

EXAMPLE 3.5. Let f : R ! R be the fun
tion de�ned by

f(x) =

�

�x; x � 0;

x� 1; x > 0;

and let x be any interval 
entered at �x = 0. Then

lim

w(x)!0

S

℄

(f;x; �x) = [�1;�1℄; lim

w(x)!0

SS

℄

(f;x; �x) = [�1; 1℄:

Thus, this example illustrates that for dis
ontinuous fun
tions we have

lim

w(x)!0

S

℄

(f;x; �x) � lim

w(x)!0

SS

℄

(f;x; �x):

4. Generalized gradient

This se
tion presents an alternate 
onstru
tion, the generalized gradi-

ent, of lo
ally Lips
hitz fun
tions f : R

n

! R. The generalized gradient

is originally de�ned for Bana
h spa
es X ( See [3℄ or [34℄) and it has

been studied to obtain generalized versions of the 
lassi
al Hamiltonian

and Euler-Lagrange equations of the 
al
ulus of variations so as to

en
ompass problems in optimal 
ontrol [27℄ and to show Lips
hitz{

type stability in nonsmooth 
onvex problems [8℄. In this work, we


on
entrate our attention on the 
ase X = R

n

.

DEFINITION 4.1. f : R

n

! R is Lips
hitz of rank K near x 2 R

n

(or

f is lo
ally Lips
hitz at x 2 R

n

) if K � 0 and there is an � > 0 su
h

that

jf(x

00

)� f(x

0

)j � Kkx

00

� x

0

k 8x

00

; x

0

2 x+ �B; (2)

where B is the unit ball in R

n

.

DEFINITION 4.2 (Generalized Dire
tional Derivative [3℄, p. 25). Let

f be Lips
hitz near a given point x, and let v be any other ve
tor in
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8 H. Mu~noz and B. Kearfott

R

n

. The generalized dire
tional derivative of f at x in the dire
tion v,

denoted f

Æ

(x; v), is de�ned as follows:

f

Æ

(x; v) = lim sup

y!x

t#0

f(y + tv)� f(y)

t

; (3)

where y 2 R

n

and t is a positive s
alar.

It is 
lear that f

Æ

(x; 0) = 0. This de�nition does not presuppose the

existen
e of any limit, sin
e it involves an upper limit only.

DEFINITION 4.3. A fun
tion f : x! R is positively homogeneous on

x if f(�x) = �f(x) for all � > 0 and x 2 x.

PROPOSITION 4.1 ([3℄, p. 25). Let f be Lips
hitz of rank K near x.

Then

(a) The fun
tion v ! f

Æ

(x; v) is �nite, positively homogeneous, and

subadditive on R

n

, and satis�es

kf

Æ

(x; v)k � Kkvk:

(b) f

Æ

(x; v) is upper semi
ontinuous as a fun
tion of (x; v) and, as

a fun
tion of v alone, is Lips
hitz of rank K on R

n

.

(
) f

Æ

(x;�v) = (�f)

Æ

(x; v):

Under the 
onditions of Proposition 4.1 and the Hahn-Bana
h Theorem

there is at least one linear fun
tional � : R

n

! R su
h that, for all v

in R

n

, one has f

Æ

(x; v) � �(v). � is bounded, so it belongs to the dual

spa
e (R

n

)

�

of 
ontinuous linear fun
tionals on R

n

. In �nite dimensional

spa
es, a spa
e and its dual have the same dimension. Hen
e, they

are isomorphi
 and homeomorphi
, and the strong topology (generated

at the original spa
e) and the weak topology (generated at the dual

spa
e) are identi�ed. So weak 
ompa
tness is the same as 
ompa
tness.

Hen
eforth, we identify (R

n

)

�

with R

n

, and we adopt the 
onvention

of h�; vi = hv; �i = �(v).

DEFINITION 4.4 ( Generalized Gradient[3℄, p. 27).

The generalized gradient of f at x, denoted �f(x), is the subset of R

n

given by

�f(x) = f� 2 R

n

: f

Æ

(x; v) � h�; vi; 8v 2 R

n

g: (4)

The following proposition summarizes some properties of the gene-

ralized gradient in R

n

.
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PROPOSITION 4.2 ([3℄, p. 27). Let f be Lips
hitz of rank K near x,

and 
onsider the norm in R

n

de�ned by

k�k := supfh�; vi : v 2 R

n

; kvk � 1g:

Then

(a) �f(x) is a nonempty, 
onvex, 
ompa
t subset of R

n

and

k�k � K for every � in �f(x).

(b) For every v in R

n

, one has

f

Æ

(x; v) = maxfh�; vi : � 2 �f(x)g: (5)

From (4) and (5) it is equivalent to know the set �f(x) or the fun
tion

f

Æ

(x; :); ea
h is obtainable from the other. The next proposition relates

the generalized gradient and the subdi�erential of a 
onvex fun
tion.

PROPOSITION 4.3 ([3℄, p. 36). Let D be an open 
onvex subset of R

n

.

When f is 
onvex on D and Lips
hitz near x, then �f(x) 
oin
ides with

the subdi�erential at x in the sense of 
onvex analysis, and f

Æ

(x; v) 
o-

in
ides with the dire
tional derivative f

0

(x; v) for ea
h v. The elements

of the subdi�erential �f(x) are 
alled subgradients of f at x.

EXAMPLE 4.1 ([3℄, p. 28 ). Let f : R ! R de�ned by f(x) = jxj, and

�x = 0. Sin
e jjxj � jx

0

jj � jx � x

0

j for all x; x

0

2 R , f is Lips
hitz at

any x with K = 1. Using slope sets on the interval x whose midpoint

is �x, we know that

lim

w(x)!0

S

℄

(f;x; 0) = [�1; 1℄:

Now, we 
ompute f

Æ

(0; v) and �f(0).

f

Æ

(0; v) = lim sup

y!0

t#0

jy + tvj � jyj

t

:

For v � 0 we have the following three 
ases:

y > 0; y + tv > 0 !

y+tv�y

t

= v

y < 0; y + tv > 0 !

y+tv+y

t

=

2y

t

+ v ! [�1; v℄

y < 0; y + tv < 0 !

�(y+tv)+y

t

= �v

9

>

=

>

;

! f

Æ

(0; v) = v:

Similarly, for v < 0 we have the following three 
ases:

y < 0; y + tv < 0 !

�(y+tv)+y

t

= �v

y > 0; y + tv > 0 !

y+tv�y

t

= v

y > 0; y + tv < 0 !

�(y+tv)�y

t

= �

2y

t

� v ! [�1;�v℄

9

>

=

>

;

:
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10 H. Mu~noz and B. Kearfott

This implies f

Æ

(0; v) = �v. Hen
e, f

Æ

(0; v) = jvj, and

�f(0) = f� 2 R : jvj � �vg = [�1; 1℄:

Thus, in this example we have

�f(0) = lim

w(x)!0

S

℄

(f;x; 0) = [�1; 1℄:

EXAMPLE 4.2. Let f be the fun
tion de�ned by f(�x) = f(x) for all

x 2 R, let x be any interval 
ontaining �x = 0, and

f(x) =

8

>

>

>

>

>

<

>

>

>

>

>

:

x�

1

2

;

1

2

� x � 1;

1

2

� x;

1

4

� x <

1

2

;

x;

1

8

� x <

1

4

;

1

2

� x�

P

k

i=2

1

2

(2i�1)

;

1

2

(2k)

� x �

1

2

(2k�1)

; k = 2; 3; : : :

x+

P

k

i=2

1

2

(2i�1)

;

1

2

(2k+1)

� x �

1

2

(2k)

; k = 2; 3; : : :

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f(x)

x axis

y =

1

3

(x+ :5)

y = �

1

3

(x� :5)

j

N

Figure 1. Graph of f(x) in Example 4.2

The graph of f as x � 0 is shown in Figure 1. Sin
e f is linear

in ea
h interval with slopes either 1 or �1, f is Lips
hitz near �x = 0.

Taking the sequen
e of points x

i

=

3

2

i

, we have f

0

(x

i

) = (�1)

i+1

and

�f(0) = [�1; 1℄. Also, the upper and lower bounds for the slopes o

ur

at members of the sequen
e x = x

k

=

1

2

k

. The points 
orresponding

to the upper bound on the slope are on the straight line y =

1

3

(x +

1

2

)
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Slope and Comparisons 11

and the points 
orresponding to the lower bound on the slope are in the

straight line y = �

1

3

(x�

1

2

). Thus, in this example we have

lim

w(x)!0

S

℄

(f;x; �x) =

�

�

1

3

;

1

3

�

� [�1; 1℄ = �f(�x):

This example is not typi
al, but it shows that for f Lips
hitz near �x

not always is true that

�f(�x) � lim

w(x)!0

S

℄

(f;x; �x):

Fundamental relationships between the 
on
epts dire
tional slope

and generalized dire
tional derivative imply in
lusion relationships be-

tween slope sets and generalized gradients. Within the following 
lass

of fun
tions, these in
lusions be
ome equalities.

DEFINITION 4.5. f is said to be regular at �x provided

(a) For all v, the usual one{sided dire
tional derivative

f

0

(�x : v) = lim

t#0

f(�x+ tv)� f(�x)

t

= lim

t#0

S

v

(f; t; �x);

exists.

(b) For all v, f

0

(�x : v) = f

Æ

(�x; v):

In [2℄ f

0

(�x : v) is denoted by Æ

+

f(�x; v). We re
all Radema
her's The-

orem, whi
h states that a fun
tion whi
h is lo
ally Lips
hitz on an

open subset of R is di�erentiable almost everywhere (a.e.) (in the sense

of Lebesgue measure) on that subset. The set of points where f is

not di�erentiable is denoted by 


f

. If f is lo
ally Lips
hitz near �x, f

is Lips
hitz in a delta neighbourhood B of �x. This implies that f is

absolutely 
ontinuous in B and for any x in B we have that

f(x)� f(�x) =

Z

x

�x

f

0

(y)dy:

Examples 4.1 and 4.2 illustrate the following result that 
hara
te-

rizes the relationship between generalized gradient and slope interval

in one dimension.

THEOREM 4.1. Let f : R ! R be Lips
hitz near �x and let x be any

interval 
entered at �x. Then

lim

w(x)!0

S

℄

(f;x; �x) � �f(�x): (6)

If f is regular at �x, then equality holds.
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12 H. Mu~noz and B. Kearfott

Proof. Let Æ > 0 be so small that f is Lips
hitz in the open set

B

Æ

= fx : 0 < jx � �xj < Æ; g: Then 


f

\ B

Æ

has Lebesgue measure 0.

For x 2 B

Æ

and x > �x we have that

f(x)� f(�x)

x� �x

v =

1

x� �x

Z

x

�x

f

0

(y)vdy �

1

x� �x

Z

x

�x

sup

y2[�x;x℄�


f

f

0

(y)vdy;

sin
e from Radema
her's theorem f

0

exist a.e on (�x; x). Similar inequa-

lity holds for x < �x. From (5), for any � > 0, there is a Æ > 0 su
h that

x 2 B

Æ

and

f(x)� f(�x)

x� �x

v � f

Æ

(�x; v) + �:

Sin
e � is arbitrary, we obtain

lim sup

x!�x

f(x)� f(�x)

x� �x

v � f

Æ

(�x; v):

From Lemma 3.1, this implies that

f

Æ

(�x; v) �

(

v lim sup

x!�x

f(x)�f(�x)

x��x

; v � 0;

v lim inf

x!�x

f(x)�f(�x)

x��x

; v < 0;

=

�

vM; v � 0;

vm; v < 0:

Thus,

f

Æ

(�x; v) � mv; and f

Æ

(�x; v) �Mv; for all v 2 R:

Therefore m;M 2 �f(�x). Sin
e �f(�x) is a 
onvex set, we have

lim

w(x)!0

S

℄

(f;x; �x) = [m;M ℄ � �f(�x);

so (6) holds. If f is regular at �x, then we have

f

Æ

(�x; v) =

�

vM; v � 0;

vm; v < 0;

and sin
e m �M; we obtain

�f(�x) = f� 2 R : f

Æ

(�x; v) � �v for all v 2 Rg

= f� 2 R :Mv � �v; v � 0g \ f� 2 R : mv � �v; v < 0g

= [�1;M ℄ \ [m;+1℄

= [m;M ℄

= lim

w(x)!0

S

℄

(f;x; �x):

Thus, (6) holds with equality. �

The next theorem gives us the relationship between gradients and

generalized gradients of Lips
hitz fun
tions.
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Slope and Comparisons 13

THEOREM 4.2 ([3℄, p. 63). Let f : R

n

! R be lo
ally Lips
hitz near

x, and suppose S is any set of Lebesgue measure 0 in R

n

. Then

�f(x) = 
o flimrf(x

i

) : x

i

! x; x

i

=2 S [ 


f

g :

COROLLARY 4.1 ([3℄, p. 64).

f

Æ

(�x; v) = lim sup

y!�x

frf(y) � v : y =2 S [


f

g :

The only way we presently know to obtain a relationship between

generalized gradient and slope interval in multiple dimensions is to


onsider the relationship between the proje
tions of these two 
on
epts.

Let x = x

1

� : : :� x

n

, where x

1

; : : : ;x

n

are intervals in R.

DEFINITION 4.6. Let f : x � R

n

! R be Lips
hitz near �x. For

i = 1; : : : ; n, the i-th proje
tion lim

w(x)!0

�

i

S

℄

(f;x; �x) is de�ned as the

set

lim

w(x)!0


ofs

i

2 R : 9s 2 R

n

; f(x)�f(�x) = s � (x� �x); for x 2 x; x 6= �xg;

and the i-th proje
tion of the generalized gradient of f at �x, �

i

�f(�x) is

de�ned by

�

i

�f(�x) = fx

i

2 R : 9x = (x

1

; : : : ; x

i

; : : : ; x

n

) 2 �f(�x)g:

LEMMA 4.1. Let f : x � R

n

! R be Lips
hitz of rank K near �x.

Then for any v 2 R

n

; lim sup

t#0

S

v

(f; t; �x) is bounded and

lim sup

t#0

S

v

(f; t; �x) � f

Æ

(�x; v):

Proof. Let v any ve
tor in R

n

. By Proposition 4.1, we have

�Kkvk � lim sup

t#0

S

v

(f; t; �x) = lim sup

t#0

f(�x+ tv)� f(�x)

t

� lim sup

t#0

y!�x

f(y + tv)� f(y)

t

= f

Æ

(�x; v) � Kkvk:

The se
ond inequality holds sin
e the set fy : y ! �xg 
ontains f�xg,

and by a monotoni
ity property of lim sup. �

LEMMA 4.2. Let f : x � R

n

! R be Lips
hitz of rank K near �x.

Then

lim

w(x)!0

�

i

S

℄

(f;x; �x) � �

i

�f(�x):

If f is regular at �x, then equality holds.
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14 H. Mu~noz and B. Kearfott

Proof. Considering t = w(x), and ve
tors v 2 R

n

with kvk = 1, we

get

lim

w(x)!0

S

℄

(f;x; �x) = lim

t#0

S

℄

(f;x; �x)

= lim

t#0

�

s

v

(�) : S

v

(f; �; �x) = s

v

(�)

T

� v; 0 < � � t;8v 2 R

n

	

:

Sin
e lim sup

t#0

n

s

v

(t)

T

� v

o

is bounded for all v 2 R

n

by Lemma 4.1,

then lim

t#0

fs

v

(�)g is bounded.

Suppose there exists an s

i

2 lim

t#0

�

i

S

℄

(f;x; �x) and s

i

=2 �

i

�f(�x).

Then there exists an unitary ve
tor v 2 R

n

and s = lim

t#0

s

v

(t) su
h

that

s 2 lim

t#0

S

℄

(f;x; �x); s =2 �f(�x); and lim

t#0

s

v

i

(t) = s

i

:

This means that

f

Æ

(�x; v) < s

T

� v = lim sup

t#0

s

v

(t)

T

� v � lim sup

t#0

S

v

(f; t; �x):

This 
ontradi
ts Lemma 4.1. Thus,

lim

t#0

�

i

S

℄

(f;x; �x) � �

i

�f(�x):

Conversely, if f is regular at �x, and s

i

2 �

i

�f(�x), there exists an s 2

�f(�x) with s = (s

1

; � � � ; s

i

; � � � ; s

n

), and 8v 2 R

n

, we have

s

T

� v � f

Æ

(�x; v) = lim

t#0

S

v

(f; t; �x):

By Theorem 3.1, for any v 2 R

n

there exist s

v

(t) 2 S

℄

(f;x; �x) su
h

that S

v

(f; t; �x) = s

v

(t)

T

� v. Then we have

s

T

� v � lim

t#0

s

v

(t)

T

� v:

If v = v

i

e

i

, for all v

i

2 R we have redu
ed the problem to the

one-dimensional 
ase. Sin
e

s

i

v

i

� lim

t#0

s

v

i

(t)v

i

� lim sup

w(x)#0

s

v

i

(t)v

i

�

�

lim sup

w(x)!0

�

i

S

℄

(f; x; �x)v

i

; v

i

� 0

lim inf

w(x)!0

�

i

S

℄

(f; x; �x)v

i

; v

i

< 0;

then s

i

2 lim

w(x)!0

�

i

S

℄

(f;x; �x): �

For f regular at x = (x

1

; x

2

), is shown in [3℄ that

�f(x

1

; x

2

) � �

1

f(x

1

; x

2

)� �

2

f(x

1

; x

2

): (7)
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Slope and Comparisons 15

THEOREM 4.3. Let f : x � R

n

! R be lo
ally Lips
hitz near �x and

regular at �x. Then

lim

w(x)!0

S

℄

(f;x; �x) � �f(�x) � �

1

�f(�x)� � � � � �

n

�f(�x) = lim

w(x)!0

S

℄

(f;x; �x):

Proof. The se
ond in
lusion follows by extending (7) to dimension

n, and applying Lemma 4.2. For the �rst in
lusion suppose there exists

s su
h that s 2 lim

w(x)!0

S

℄

(f;x; �x), and s =2 �f(�x). Then for some

unitary ve
tor v 2 R

n

, and t = w(x), s = lim

t#0

s

v

(t) and

f

Æ

(�x; v) < s

T

� v = lim

t#0

s

v

(t)

T

� v � lim sup

t#0

S

v

(f; t; �x):

This 
ontradi
ts Lemma 4.1. �

The next example illustrates this theorem.

EXAMPLE 4.3. Consider the fun
tion f : R

2

! R, de�ned by

f(x; y) = maxfminfx;�yg; y � xg:

Taking R

2

= C

1

[ C

2

[C

3

, with

C

1

= f(x; y) : y � 2x and y � �xg;

C

2

= f(x; y) : y � x=2 and y � �xg;

C

3

= f(x; y) : y � 2x or y � x=2g;

we have

f(x; y) =

8

<

:

x; (x; y) 2 C

1

;

�y; (x; y) 2 C

2

;

y � x; (x; y) 2 C

3

:

(a) Let �x = (0; 0). f is Lips
hitz near �x sin
e it is linear in ea
h

region of R

2

. However, f is not regular at �x. In fa
t,

f

Æ

(�x; v) = limsupf(0;�1) � v; (1; 0) � v; (�1; 1) � v : v 2 R

2

g

=

8

<

:

�v

2

; v 2 C

1

;

v

1

; v 2 C

2

;

v

2

� v

1

; v 2 C

3

;

and

f

0

(�x; v) = lim

t#0

f(�x+ tv)� f(�x)

t

=

8

<

:

v

1

; v 2 C

1

;

�v

2

; v 2 C

2

;

v

2

� v

1

; v 2 C

3

;

exists for all v 2 R

2

, but f

0

(�x; v) 6= f

Æ

(�x; v).
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16 H. Mu~noz and B. Kearfott

(b) The set S = �C

1

[ �C

2

[ �C

3

= 


f

, has Lebesgue measure 0.

If (x; y) =2 S, then rf(x; y) 2 f(1; 0); (0;�1); (�1; 1)g.

By Theorem 4.2, �f(�x) = 
of(1; 0); (0;�1); (�1; 1)g, whi
h is the

triangle with these three verti
es. Taking partial generalized gradi-

ents, we have

f(x; 0) = maxf0;�xg ! �

x

f(�x) = [�1; 0℄;

f(0; y) = maxf0; yg ! �

y

f(�x) = [0; 1℄;

�

1

�f(�x) = [�1; 1℄;

�

2

�f(�x) = [�1; 1℄:

So, we have

�

x

f(�x)� �

y

f(�x) 6� �f(�x) 6� �

x

f(�x)� �

y

f(�x):

(
) Let x be any box 
entered at �x = (0; 0).

K

-

i

�

x

f(�x)� �

y

f(�x)

(0;�1)

)

6

lim

w(x)!0

S

℄

(f;x; �x)

(�1; 1)

(1; 0)

y

�f(�x)

x

Figure 2. �

x

f(�x)� �

y

f(�x); �f(�x), and lim

w(x)!0

S

℄

(f; x; �x) for Example 4.3

Letting x = (x

1

; x

2

), f(�x) = 0, we 
onsider the slope sets.

x 2 C

1

: f(x) = x

1

= (1; 0)(x

1

; x

2

)

T

! s = (1; 0)

T

;

x 2 C

2

: f(x) = �x

2

= (0;�1)(x

1

; x

2

)

T

! s = (0;�1)

T

;

x 2 C

3

: f(x) = x

2

� x

1

= (�1; 1)(x

1

; x

2

)

T

! s = (�1; 1)

T

:

Thus,

lim

w(x)!0

S

℄

(f;x; �x) = f(1; 0)

T

; (0;�1)

T

; (�1; 1)

T

g;

and

lim

w(x)!0

S

℄

(f;x; �x) = [�1; 1℄� [�1; 1℄:

sssg_kluwer.tex; 6/07/2003; 19:54; p.16



Slope and Comparisons 17

Clearly, the sharpest slope set is easily obtainable and

�f(�x) � �

1

�f(�x)� �

2

�f(�x) = lim

w(x)!0

S

℄

(f;x; �x) = [�1; 1℄ � [�1; 1℄:

Here, the interval hull of �f(�x) is

lim

w(x)!0

S

℄

(f;x; �x):

These relationships for Example 4.3 are illustrated in Figure 2.

5. Optimality 
onditions

This se
tion 
ontains generalizations of the Karush-Kuhn-Tu
ker opti-

mality 
onditions for nonsmooth 
onstrained optimization problems.

Let f : R

n

! R, g

i

: R

n

! R, (i = 1; 2; : : : ; k), and h

j

: R

n

! R,

(j = 1; 2; : : : ;m) be 
ontinuous fun
tions in a 
onvex set D � R

n

. Let

x � D, and 
onsider the 
onstrained optimization problem

minimize f(x)

subje
t to

g

i

(x) � 0; i = 1; 2; : : : ; k;

h

j

(x) = 0; j = 1; 2; : : : ;m;

x 2 x

(8)

If all fun
tions are Lips
hitz fun
tions near �x, the generalized gradients

yield a generalization of the Karush-Kuhn-Tu
ker ne

esary 
onditions

of optimality [3℄,[34℄. In fa
t, if �x is a solution of (8) there exist �

i

� 0,

i = 1; : : : ;m, and �

j

� 0, j = 1; 2; : : : ; k satisfying

(

0 2 �f(�x) +

P

m

i=1

�

i

�g

i

(�x) +

P

k

j=1

�

j

�h

j

(�x);

�

i

g

i

(�x) = 0; i = 1; : : : ;m;

(9)

In [22℄, [6℄, and [30℄ are introdu
ed interval te
hniques used in the

solution of (8) and based in in
lusions of the generalized gradients.

The next theorem shows that interval slopes also yield a pra
ti
al

generalization of the Karush-Kuhn-Tu
ker 
onditions.

THEOREM 5.1. If �x is a solution of (8)there exist �

i

� 0, i =

1; : : : ;m, and �

j

� 0, j = 1; 2; : : : ; k satisfying

8

>

<

>

:

0 2 lim

w(x)!0

S

℄

(f;x; �x) +

P

m

i=1

�

i

lim

w(x)!0

S

℄

(g

i

;x; �x)

+

P

k

j=1

�

j

lim

w(x)!0

S

℄

(h

j

;x; �x)

�

i

g

i

(�x) = 0; i = 1; : : : ;m;

(10)
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18 H. Mu~noz and B. Kearfott

Proof. If all fun
tions are Lips
hitz fun
tions near �x and regular at

�x, Theorem 4.3 and (9) prove (10).

In [20℄ is shown that interval methods have no di�
ulties in handling

nonsmooth problems, be
ause neither the 
onstru
tion of in
lusion

fun
tions nor the appli
ation of monotoni
ity tests depends on the

smoothness of the obje
tive fun
tion. �

6. Semigradient

The semigradient is a generalization of the 
on
ept of generalized gra-

dient to arbitrary not ne
essarily 
ontinuous fun
tions. This extension

to arbitrary fun
tions f : R

n

! R

�

was introdu
ed in [17℄.

In [3℄, �f(x) is de�ned for extended-valued fun
tions f : R

n

! R

�

,

as long as f is �nite at x. The generalized gradient is 
hara
terized

geometri
ally in terms of normals to the epigraph of f at the point

(x; f(x)), whi
h is denoted and de�ned by

epif =

n

(x; r) 2 R

n+1

: f(x) � r

o

T

epif

(x; f(x)) = epif

Æ

(x; �);

N

epif

(x; f(x)) =

n

� : (�; v) � 0 for all v in T

epif

(x; f(x))

o

;

�f(x) =

n

� : (�;�1) 2 N

epif

(x; f(x))

o

;

where T

epif

(x; f(x)) and N

epif

(x; f(x)) are the tangent 
one and nor-

mal 
one to the epif at (x; f(x)) respe
tively. In the non-Lips
hitz


ase, the dire
t 
hara
terization of f

Æ

involves some 
ompli
ated limits

for whi
h the following notion due to Ro
kafellar [26℄ is in order. The

expression (y; �) #

f

x shall mean that (y; �) 2 epif; y ! x; � ! f(x).

The fun
tion f

Æ

(x; :) : R

n

! R

�

is de�ned as follows

f

Æ

(x; v) = lim

�#0

lim sup

(y;�)#

f

x

t#0

inf

w2v+�B

f(y + tw)� �

t

:

If f is lower semi
ontinuous at x, then f

Æ

(x; v) is given by the slightly

simpler expression

f

Æ

(x; v) = lim

�#0

lim sup

y#

f

x

t#0

inf

w2v+�B

f(y + tw)� f(y)

t

;

where y #

f

x signi�es that y and f(y) 
onverge to x and f(x) respe
-

tively. The following result shows that the extended f

Æ

plays the same

role vis-�a-vis �f as it did in the Lips
hitz 
ase.
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COROLLARY 6.1 (Ro
kafellar [26℄). One has �f(x) = ; i�

f

Æ

(x; 0) = �1. Otherwise, one has

�f(x) = f� 2 R

n

: f

Æ

(x; v) � h�; vi; 8v 2 R

n

g;

and

f

Æ

(x; v) = supfh�; vi : � 2 �f(x)g:

If f is dis
ontinuous and �nite at x, �f(x) only in
orporates infor-

mation of the epigraph of f near to the point (x; f(x)), and in some


ases �f(x) dis
ards the behavior of f near x. The semigradient takes

into a

ount the behavior of f near x.

The following proposition, due to Moreau [17℄, provides an alterna-

tive 
hara
terization of f

Æ

(x; v).

PROPOSITION 6.1 ([17℄). f

Æ

(x; v) is given by

f

Æ

(x; v) = max

�

lim sup

i!1

f(x

i

+ t

i

v)� f(x

i

)

t

i

: 8x

i

! x; t

i

# 0

�

;

where the maximum is obtained over all sequen
es fx

i

g

1

i=1

in R

n


on-

verging to x and ft

i

g

1

i=1

in (0;1) 
onverging to 0.

DEFINITION 6.1 ([17℄). Assume an arbitrary fun
tion f : R

n

! R

�

.

Let x; v 2 R

n

. Let x 2 R

n

. The semigradient of f at x, denoted SGf(x),

is a subset of R

n

de�ned by

SGf(x) = f� 2 R

n

: f

Æ

(x; v) � h�; vi; 8v 2 R

n

g ;

where f

Æ

is as in De�nition 4.2.

SGf(x) is as �f(x) a 
losed 
onvex set, possibly empty. The next

theorem relates these two 
on
epts.

THEOREM 6.1 ([17℄). Let x 2 R

n

. For arbitrary fun
tions f : R

n

!

R

�

, the following in
lusion holds:

�f(x) � SGf(x):

In the parti
ular 
ase that f : R

n

! R is lo
ally Lips
hitz, this in
lusion

redu
es to

�f(x) = SGf(x):

The relationships between symmetri
 slope intervals and semigradients

in this se
tion extend the results presented in the previous se
tion to

arbitrary fun
tions.
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20 H. Mu~noz and B. Kearfott

THEOREM 6.2. Let f : R ! R be an arbitrary fun
tion and let x be

any interval 
entered at �x. Then

SGf(�x) = lim

w(x)!0

SS

℄

(f;x; �x): (11)

Proof. From Proposition 6.1 we get

f

Æ

(�x; v) = max

�

lim sup

i!1

f(x

i

+ t

i

v)� f(x

i

)

t

i

: 8x

i

! �x; t

i

# 0

�

:

sin
e x

i

! �x and t

i

# 0, y

i

= x

i

+ t

i

v ! �x. Then we have

f

Æ

(�x; v) = max

�

lim sup

i!1

f(y

i

)� f(x

i

)

y

i

� x

i

v : 8x

i

! �x; t

i

# 0; y

i

= x

i

+ t

i

v

�

� max

�

lim sup

i!1

f(y

i

)� f(�x)

�

y

i

� �x

v; lim sup

i!1

f(y

i

)� f(�x)

+

y

i

� �x

v : 8 y

i

! �x

�

� max

�

lim sup

x!�x

f(x)� f(�x)

�

x� �x

v; lim sup

x!�x

f(x)� f(�x)

+

x� �x

v

�

=

8

<

:

vmax

n

lim sup

x!�x

f(x)�f(�x)

�

x��x

; lim sup

x!�x

f(x)�f(�x)

+

x��x

o

; v � 0;

vmin

n

lim inf

x!�x

f(x)�f(�x)

�

x��x

; lim inf

x!�x

f(x)�f(�x)

+

x��x

o

; v < 0;

=

�

vS; v � 0;

vs; v < 0;

where s and S are given in Lemma 3.2. Thus, f

Æ

(�x; v) � sv and

f

Æ

(�x; v) � Sv for all v 2 R, this implies that s and S belong to SGf(�x).

Sin
e SGf(�x) is a 
losed 
onvex set, we get

lim

w(x)!0

SS

℄

(f;x; �x) = [s; S℄ � SGf(�x):

In the other hand, let � 2 SGf(�x), and

f

Æ

(�x; v) = max

�

lim sup

i!1

f(y

i

)� f(x

i

)

y

i

� x

i

v : 8x

i

! �x; t

i

# 0; y

i

= x

i

+ t

i

v

�

=

�

v lim sup

i!1

f(y

i

)�f(x

i

)

y

i

�x

i

; v � 0;

v lim inf

i!1

f(y

i

)�f(x

i

)

y

i

�x

i

; v < 0:

From de�nition of SGf(�x), we have f

Æ

(x; v) � �v, 8v 2 R. Thus,

lim inf

i!1

f(y

i

)� f(x

i

)

y

i

� x

i

� � � lim sup

i!1

f(y

i

)� f(x

i

)

y

i

� x

i

; 8x

i

; y

i

! �x:

Lemma 3.2 and the previous inequalities imply that, s � � � S, and

we obtain

SGf(�x) � [s; S℄ = lim

w(x)!0

SS

℄

(f;x; �x):
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This 
ompletes the proof of (11). �

The following examples illustrate this result.

EXAMPLE 6.1. Let f : R ! R be the fun
tion in the Example 3.5

de�ned by

f(x) =

�

�x; x � 0;

x� 1; x > 0;

and x is any interval 
entered at �x = 0. Note that f is upper semi-

-

?

I

(0;�1)

x

�f(0)

epif

�

6

�

:

f(x)

Figure 3. Graph of epif near (0; 0) and �f(0) in Example 5.1


ontinuous at �x = 0 and has a lo
al in�mum (whi
h is a
tually global)

at �x see Figure 3. The Clarke generalized gradient of f only in
orpo-

rates information of the epigraph of f near (0; 0) and thus dis
ards

the behavior of f for x > 0, whi
h is 
ru
ial for f to have an in�-

mum or not. Therefore, although this fun
tion has an in�mum at �x,

0 =2 �f(0) = [�1;�1℄. On the other hand, 0 2 SGf(0) = [�1; 1℄ =

lim

w(x)!0

SS

℄

(f;x; �x). Thus, for this example we have

lim

w(x)!0

S

℄

(f;x; �x) = �f(0) � SGf(0) = lim

w(x)!0

SS

℄

(f;x; �x):

EXAMPLE 6.2. Consider the fun
tion f : R ! R de�ned by

f(x) =

�

x; x < 0;

�x� 1; x � 0;

and x is any interval 
entered at �x = 0. Note that f is lower semi-


ontinuous at �x = 0 and has a lo
al supremum (whi
h is a
tually

global) at �x see Figure 4. The Clarke generalized gradient of f only

in
orporates information of the epigraph of f near (0;�1) and thus

dis
ards the behavior of f for x < 0, whi
h is 
ru
ial for f to have a

supremum or not. Therefore, although this fun
tion has a supremum at
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x

s

�f(0)

�

:

f(x)

epif

?

�

-

6

-1

Figure 4. Graph of epif near (0;�1) and �f(0) in Example 5.2

-

6

f(x)

�x = 0

1

2

x

Figure 5. Graph of f(x) in Example 5.3

�x, 0 =2 �f(0) = [�1;�1℄. On the other hand, 0 2 SGf(0) = [�1; 1℄ =

lim

w(x)!0

SS

℄

(f;x; �x). Thus, for this example we have

lim

w(x)!0

S

℄

(f;x; �x) = �f(0) � SGf(0) = lim

w(x)!0

SS

℄

(f;x; �x):

EXAMPLE 6.3. Consider the fun
tion f : R ! R de�ned by

f(x) =

�

x

2

+ x+ 1; x > 0;

�(x+ 1)

2

+ 3; x � 0;

and x is any interval 
entered at �x = 0. The fun
tion f is upper

semi
ontinuous at �x and has a lo
al in�mum (whi
h is a
tually global)

at �x, whi
h is illustrated in Figure 5, and one veri�es easily that

lim

w(x)!0

S

℄

(f;x; �x) = [�1;�2℄ � SGf(�x) = [�1; 1℄:
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-

6

�x = 0

x

f(x)

Figure 6. Graph of f(x) = �

p

jxj with �x = 0 in Example 5.4

Sin
e f is neither 
onvex nor Lips
hitz at �x, �f(�x) = ;. Observe that

f is not regular at �x, and the symmetri
 slope interval is

lim

w(x)!0

SS

℄

(f;x; �x) = [�1; 1℄:

EXAMPLE 6.4. Consider the fun
tion f : R ! R de�ned by f(x) =

�

p

jxj, and let x be any interval 
entered at �x = 0. Figure 6 shows that

f has a lo
al maximum (whi
h is a
tually global) at �x = 0, and one

veri�es easily that 0 2 R

�

= SGf(�x) = lim

w(x)!0

S

℄

(f;x; �x). Sin
e

f is neither 
onvex nor Lips
hitz at �x, �f(�x) = ;. Observe that f is

regular at �x with f

Æ

(�x; v) =1 8v 2 R.

In multiple dimensions, the next theorem extends Theorem 4.3 to

arbitrary fun
tions.

THEOREM 6.3. Let f : x � R

n

! R be an arbitrary fun
tion that is

regular at �x. Then

lim

w(x)!0

S

℄

(f;x; �x) � SGf(�x) � lim

w(x)!0

S

℄

(f;x; �x): (12)

Proof. Considering w(x) = t, and ve
tors v 2 R

n

with kvk = 1, we

have

lim

w(x)!0

S

℄

(f;x; �x) = lim

t#0

S

℄

(f;x; �x)

= lim

t#0

fs

v

(�) : S

v

(f; �; �x) = s

v

(�) � v; 0 < � � t;8v 2 R

n

g :

Sin
e f is regular at �x, we have

lim

t#0

S

v

(f; t; �x) = f

Æ

(�x; v):

Let s 2 lim

w(x)!0

S

℄

(f;x; �x). From Theorem 3.1, for some unitary

ve
tor v 2 R

n

, we have

s � v = lim

t#0

S

v

(f; t; �x) = f

Æ

(�x; v);
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and it follows that s 2 SGf(�x).

On the other hand, suppose that there exists s 2 R

n

su
h that

s 2 SGf(�x) and s =2 lim

w(x)!0

S

℄

(f;x; �x). Then, for some unitary

ve
tor v 2 R

n

, we get

s � v > lim

t#0

s

v

(t) � v = lim

t#0

S

v

(f; t; �x) = f

Æ

(�x; v);

whi
h 
ontradi
ts that s 2 SGf(�x), and (12) is hold. �

Example 4.3 illustrates this Theorem. In fa
t, f is Lips
hitz near �x,

then

SGf(�x) = �f(�x) = 
of(1; 0); (0;�1); (�1; 1)g;

whi
h is the triangle with these three verti
es, and

SGf(�x) � lim

w(x)!0

S

℄

(f;x; �x) = [�1; 1℄ � [�1; 1℄:

7. Containment-set of f

The 
ontainment-set or 
set of a fun
tion was introdu
ed in [35℄.

DEFINITION 7.1 ([35℄). Let f : (R

�

)

n

! R be an arbitrary fun
tion.

The 
ontainment-set of f at a point a = (a

1

; : : : ; a

n

) 2 (R

�

)

n

is the set

of all possible limits of values of f(x

i

) where the ve
tors x

i


onverge

to a as i ! 1. The 
ontainment-set (or 
set) is formally denoted


set(f; a).

Arithmeti
 with the interval hull of 
sets is termed 
set-based in-

terval arithmeti
, or extended interval arithmeti
 be
ause it uses the

extended real number system R

�

. The 
set of f

0

= rf at �x is de�ned


omponentwise. The next two results relate the generalized gradient

and semigradient to the 
set of f

0

. Basi
 elements of this te
hnique 
an

be found in [21℄.

THEOREM 7.1. For a lo
ally Lips
hitz fun
tion f : (R

�

)

n

! R near

�x we have


set(f

0

; �x) � �f(�x) = 
o(
set(f

0

; �x)) � 
set(f

0

; �x) = �f(�x);

where the third relation is an equality when n = 1.

Proof. It follows from Theorem 4.2 and De�nition 6.1. All equalities

hold when f is di�erentiable at �x. When n = 1, 
set(f

0

; �x), and �f(�x)

sssg_kluwer.tex; 6/07/2003; 19:54; p.24



Slope and Comparisons 25

are equal to the interval 
onstru
ted from the lower and upper bounds

of the derivatives near to �x, i.e.,

�f(�x) = 
set(f

0

; �x) = [f

0

(�x); f

0

(�x)℄;

where

f

0

(�x) = lim sup

x!�x

f

0

(x); and f

0

(�x) = lim inf

x!�x

f

0

(x): �

The next examples illustrate this theorem.

EXAMPLE 7.1. Consider the fun
tion f in the Example 4.3, and

�x = (0; 0). We have


set(rf; �x) = f(1; 0); (0;�1); (�1; 1)g

� �f(�x) = 
o(
set(rf; �x)) = 
of(1; 0); (0;�1); (�1; 1)g

� 
set(rf; �x) = [�1; 1℄ � [�1; 1℄ = �f(�x)

= lim

w(x)!0

S

℄

(f;x; �x)

EXAMPLE 7.2. Consider the fun
tion f in the Example 4.2, �x = 0,

and x is any interval 
entered at �x. We have


set(f

0

; �x) = f�1; 1g � �f(�x) = 
set(f

0

; �x) = [�1; 1℄;

and

lim

w(x)!0

S

℄

(f;x; �x) = [�1=3; 1=3℄ � 
set(f

0

; �x):

When f is an arbitrary fun
tion, the �rst in
lusion of Theorem 7.1


an be generalized with the semigradient, and we have the following

result.

THEOREM 7.2. Let f an arbitrary fun
tion, and �x is in its domain,

we have


set(f

0

; �x) � SGf(�x):

EXAMPLE 7.3. Let x be any interval 
entered at �x = 0. Consider the

following Riemann fun
tion de�ned by

f(x) =

�

1; if x is rational;

0; if x is irrational:

Sin
e this fun
tion is not di�erentiable in any real value, then


set(f

0

; �x) = ;

� SGf(�x) = lim

w(x)!0

SS

℄

(f;x; �x) = [�1;1℄:
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EXAMPLE 7.4. Consider the fun
tion in the Example 6.3, and x is

any interval 
entered at �x = 0. The derivative, f

0

(x), is de�ned by

f

0

(x) =

�

2x+ 1; x > 0;

�2(x+ 1); x < 0;

then


set(f

0

; �x) = f�2; 1g

� 
set(f

0

; �x) = [�2; 1℄

� SGf(�x) = lim

w(x)!0

SS

℄

(f;x; �x) = [�1; 1℄:

EXAMPLE 7.5. Consider the fun
tion in the Example 6.2, and x is

any interval 
entered at �x = 0. The derivative, f

0

(x), is de�ned by

f

0

(x) =

�

�1; x > 0;

1; x < 0;

then


set(f

0

; �x) = f�1; 1g

� 
set(f

0

; �x) = [�1; 1℄

� SGf(�x) = lim

w(x)!0

SS

℄

(f;x; �x) = [�1; 1℄:

8. Slant di�erentiability

The de�nition of slant di�erentiability is introdu
ed in [2℄. This 
on
ept

is an extension of Clarke's generalized derivative for lo
ally Lips
hitz

fun
tions in �nite dimensional Eu
lidean spa
es to in�nite dimensional

spa
es. We present relationships between slant derivatives and slope

sets for Lips
hitzian fun
tions in �nite dimensional Eu
lidean spa
es.

Let X and Y be Bana
h spa
es, and let D be an open domain in X.

L(X;Y ) denotes the set of all bounded linear operators on X into Y .

DEFINITION 8.1 ([2℄). A fun
tion f : D � X ! Y is said to be B-

di�erentiable at the point x if it is one-sided dire
tionally di�erentiable

at x, and

lim

h!0

f(x+ h)� f(x)� f

0

(x;h)

khk

= 0:

In this 
ase, we 
all f

0

(x; :) the B-derivative of f at x.

DEFINITION 8.2 ([2℄). A fun
tion f : D � X ! Y is said to be slantly

di�erentiable at x 2 D if there exists a mapping

^

f

Æ

: D ! L(X;Y )
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su
h that the family f

^

f

Æ

(x + h) : h 2 X;x + h 2 Dg of bounded linear

operators is uniformly bounded in the operator norm for h suÆ
iently

small, and

lim

h!0

f(x+ h)� f(x)�

^

f

Æ

(x+ h)h

khk

= 0:

The fun
tion

^

f

Æ

is 
alled a slanting fun
tion for f at x.

In �nite dimensional Eu
lidean spa
es, Shapiro [28℄ showed that a

lo
ally Lips
hitz fun
tion f is B-di�erentiable at x if and only if it is

dire
tionally (Gateaux) di�erentiable at x.

DEFINITION 8.3 ([2℄). Suppose that

^

f

Æ

: D ! L(X;Y ) is a slanting

fun
tion for f at x 2 D. We 
all the set

�

S

f(x) = f lim

x

k

!x

^

f

Æ

(x

k

)g

the slant derivative of f asso
iated with

^

f

Æ

at x 2 D. The limit is taken

for any sequen
e fx

k

g � D su
h that x

k

! x and the limit exists. (Note

that

^

f

Æ

(x) 2 �

S

f(x), so �

S

f(x) is always nonempty.)

When f is lo
ally Lips
hitz and regular at x, there exists a relationship

between the generalized dire
tional derivative f

Æ

(x; v) and the slant

derivative

^

f

Æ

(x). Indeed, we have

f

Æ

(x; v) = lim

t#0

^

f

Æ

(x+ tv)v:

EXAMPLE 8.1. Let X = Y = R and f(x) = max(0; x). Let Æ be a real

number. Then the fun
tion

^

f

Æ

(x) =

8

<

:

1 x > 0

Æ x = 0

0 x < 0;

is a slanting fun
tion for f in X. The slant derivative of f for x 2 X

is

�

S

f(x) =

8

<

:

1 x > 0

f0; Æ; 1g x = 0

0 x < 0:

In this example we get

�

S

f(0) = f0; Æ; 1g 6� [0; 1℄ = �f(0) = SGf(0) = lim

w(x)!0

S

℄

(f;x; 0);

for any x � X, 
entered at �x = 0, and Æ =2 [0; 1℄.
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DEFINITION 8.4 ([2℄). We say that f is semismooth at x if there is a

slanting fun
tion

^

f

Æ

for f in a neighborhood N

x

of x, su
h that

^

f

Æ

and

the asso
iated derivative satisfy the following two 
onditions.

(a) lim

t!0

+

^

f

Æ

(x+ th)h exists for every h 2 X and

lim

khk!0

lim

t!0

+

^

f

Æ

(x+ th)h�

^

f

Æ

(x+ h)h

khk

= 0:

(b)

^

f

Æ

(x+ th)h� V h = Æ(khk) for all V 2 �

S

f(x+ h):

In �nite dimensional spa
es, Qi and Sun [19℄ showed that f is

semismooth at x if and only if f is B-di�erentiable at x.

THEOREM 8.1 ([2℄). f is slantly di�erentiable at x if and only if f is

Lips
hitz 
ontinuous at x.

Remark 1([2℄) For a lo
ally Lips
hitz fun
tion f : R

n

! R

m

, if

f is semismooth at x, then any single-valued sele
tion of the Clarke

Ja
obian is a slanting fun
tion of f at x. Then, the slant derivative

�

S

f(x) of f asso
iated with

^

f

Æ

at x satis�es

�

S

f(x) � �f(x):

COROLLARY 8.1 ([2℄ Mean Value Theorem). Suppose that f : D �

X ! Y is slantly di�erentiable at x. Then for any h 6= 0 su
h that

x+ h 2 D, there exists a slanting fun
tion

^

f

Æ

for f at x su
h that

f(x+ h)� f(x) =

^

f

Æ

(x+ h)h:

THEOREM 8.2. Let f : D � R

n

! R

m

be Lips
hitz 
ontinuous at �x.

Let x and �x be interval boxes in D su
h that �x 2 �x � x. Then there

exists a slanting fun
tion

^

f

Æ

for f at �x, su
h that the slant derivative

�

S

f(x) of f asso
iated with

^

f

Æ

at x satis�es

�

S

f(�x) � lim

w(x)!0

S

℄

(f;x; �x)

Proof. Sin
e f is Lips
hitz 
ontinuous at �x, from Theorem 6.5 there

exists a slanting fun
tion

^

f

Æ

for f at �x and its asso
iated slant derivative

�

S

f(�x). Let y 2 �

S

f(�x), then there is a sequen
e of points fx

k

g � D

su
h that x

k

! �x and

^

f

Æ

(x

k

) ! y. There is a K su
h that x

k

2 x for

all k � K. From Corollary 6.6. we have

f(x

k

)� f(�x) =

^

f

Æ

(x

k

)(x

k

� �x):
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Thus,

^

f

Æ

(x

k

) 2 S

℄

(f;x; �x), for all k � K. Sin
e the slope interval is


ompa
t, we have

y 2 lim

w(x)!0

S

℄

(f;x; �x): �

9. Con
lusions

Let f : D � R

n

! R be an arbitrary fun
tion. The results presented

above lead to the following in
lusions. These in
lusions are satis�ed

ex
ept on a set of measure zero. Sin
e these 
on
epts are generalizations

of the gradient, all relations are equations when f is di�erentiable at

�x; in that 
ase, all quantities are equal to the singleton set ff

0

(�x)g.

(a) From Theorems 4.1, 6.2 and 8.2 for n = 1, we 
an 
hoose any

parti
ular value of lim

w(x)!0

S

℄

(f;x; �x) as slanting fun
tion of f

at �x, and we get

�

S

f(�x) � lim

w(x)!0

S

℄

(f;x; �x) � �f(�x) � lim

w(x)!0

SS

℄

(f;x; �x) = SGf(�x):

Equality holds in the last two in
lusions when f is lo
ally Lips
hitz

and regular at �x.

(b) From Theorems 4.3, 6.1, 6.3, and 8.2, for n > 1 and f regular at �x,

we get

�

S

f(�x) � �f(�x) � SGf(�x) � lim

w(x)!0

S

℄

(f;x; �x) � lim

w(x)!0

SS

℄

(f;x; �x):

The �rst in
lusion is obtained if any-single value of �f(�x) is 
hosen

to de�ne the slanting fun
tion asso
iated to �

S

f(�x). Equality holds

in the se
ond and the fourth in
lusions when f is lo
ally Lips
hitz

near �x.

(
) From Theorem 7.1, for f lo
ally Lips
hitz, we get


set(f

0

; �x) � �f(�x) = 
o(
set(f

0

; �x)) � 
set(f

0

; �x) = �f(�x);

where the third equality holds when n = 1.

(d) From Theorem 7.2, for n � 1, we get


set(f

0

; �x) � SGf(�x):

Equality holds when f is di�erentiable at �x.
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(e) From Theorems 4.1 and 7.1, for n = 1 and f lo
ally Lips
hitz, we

get

lim

w(x)!0

S

℄

(f;x; �x) � 
set(f

0

; �x):

Equality holds when f is regular at �x.

Other important result in this work is Theorem 5.1, whi
h shows that

interval slopes yield a pra
ti
al generalization of the Karush-Kuhn-

Tu
ker 
onditions in 
onstrained optimization.
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