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Abstract. Computational fixed point theorems can be used to automatically verify existence
and uniqueness of a solution to a nonlinear system of equations F (x) = 0, F : Rn → Rn within
a given region x of n-space. But such computations succeed only when the Jacobi matrix F ′(x) is
nonsingular everywhere in x. However, in many practical problems, the Jacobi matrix is singular,
or nearly so, at the solution x∗, F (x∗) = 0. In such cases, arbitrarily small perturbations of the
problem result in problems F̃ (x) = 0 either with no solutions in x or with more than one solution
in x; thus no general computational technique can prove existence and uniqueness. This leads to a
fundamental philosophical problem: “What is meant by existence and uniqueness in such cases?”

Here, an interpretation of verification is given in the singular context: proof that a given number
of true solutions exist within a region in complex space containing x.

Proof that a given number of true solutions exist within a given region of complex space is
possible by computation of the topological degree, but such computations heretofore have required
a global search on the (n− 1)-dimensional boundary of an n-dimensional region. Here, it is observed
that preconditioning leads to a system of equations whose topological degree can be computed with
a much lower-dimensional search. Formulas are given for this computation, and the special case of
rank-defect one is studied, both theoretically and empirically.
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1. Introduction. Given an approximate solution x̌ to a nonlinear system of
equations F (x) = 0, F : Rn → Rn, it is useful in various contexts to construct bounds
around x̌ in which it is proven that there exists a unique solution x∗, F (x∗) = 0. For
continuously differentiable F for which the Jacobian det(F ′(x∗)) 6= 0 and for which
that Jacobian is well conditioned, interval computations have no trouble proving that
there is a unique solution within small boxes with x∗ reasonably near the center;
see [5, 9, 10]. However, if F ′(x∗) is ill-conditioned or singular, such computations
necessarily must fail. In this singular situation, what is meant by “unique solution”
can be defined in several ways. A particular interpretation may be most appropriate
in a particular practical context. Also, given a particular interpretation, various
computational procedures can be developed to verify existence and uniqueness. In
this paper, one interpretation and its corresponding computational procedure are
considered.

1.1. Notation. We assume familiarity with the fundamentals of interval arith-
metic; see [9, 10] for an introduction in the present context. (The works [2, 5, 11] also
contain introductory material.)

Throughout, scalars and vectors will be denoted by lower case, while matrices
will be denoted by upper case. Intervals, interval vectors (also called “boxes”) and
interval matrices will be denoted by boldface. For instance, x = (x1, . . . , xn) denotes
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an interval vector, A = (ai,j) denotes a point matrix, and A = (ai,j) denotes an
interval matrix. Real n-space will be denoted by Rn, while the set of n-dimensional
interval vectors, i.e. n-dimensional boxes, will be denoted by IRn. Similarly, complex
n-space will be denoted by Cn, while the space of n-dimensional complex interval
vectors will be denoted by ICn. The midpoint of an interval or interval vector x will
be denoted by m(x). The non-oriented boundary of a box x will be denoted by ∂x
while its oriented boundary will be denoted by b(x). (See §2.)

1.2. Traditional Computational Existence and Uniqueness. Computa-
tional existence and uniqueness verification rests on interval versions of Newton’s
method. Typically, such computations can be described as evaluation of a related
interval operator G(x); G(x) ⊆ x then implies existence and uniqueness of F (x) = 0
within x. To describe these, we review

Definition 1.1. ( [10, p. 174], etc.) Let F : Rn → Rm. The matrix A is
said to be a Lipschitz matrix for F over x provided, for every x ∈ x and y ∈ x,
F (x)− F (y) = A(x− y) for some A ∈ A.

Most interval Newton methods for F : Rn → Rn, abstractly, are of the general
form

x̃ = N(F ; x, x̌) = x̌ + v,(1.1)

where v is computed to contain the solution set to the interval linear system

Av = −F (x̌),(1.2)

and where, for initial uniqueness verification, A is generally a Lipschitz matrix1 for F
over the box (interval vector) x and x̌ ∈ x is a guess point. We sometimes write F ′(x)
in place of A, since the matrix can be an interval extension of the Jacobi matrix of
F . Uniqueness verification traditionally depends on regularity of the matrix A. We
have

Lemma 1.2. ([9, 10]) Suppose x̃ = x̌ + v is the image under the interval Newton
method (formula (1.1)), where v is computed by any method that bounds the solution
set to the interval linear system (1.2), and x̃ ⊆ x. Then A is regular.

The method of bounding the solution set of equation (1.2) to be considered here
is the interval Gauss–Seidel method, defined by:

Definition 1.3. The preconditioned interval Gauss–Seidel image GS(F ;x, x̌) of
a box x is defined as GS(F ; x, x̌) ≡ (x̃1, . . . , x̃n), where x̃i is defined sequentially for
i = 1 to n by:

x̃i ≡ xi ∩
(

x̌i −N i/(YiAi)
)

,

where

N i = YiF (x̌) +
i−1
∑

j=1

YiAj(x̃j − x̌j) +
n

∑

j=i+1

YiAj(xj − x̌j),

and where x̌ = (x̌1, . . . , x̌n)T is an initial guess point, Y A ∈ IRn×n and Y F (x̌) are the
matrix and right-hand-side vector for the preconditioned interval system Y A(x− x̌) =
−Y F (x̌), Y ∈ Rn×n is a point preconditioning matrix, Yi denotes the i-th row of Y ,
and Aj denotes the j-th column of A.

1However, see [9, 12] for techniques for using slope matrices.
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Lemma 1.2 applies when N(F ;x, x̌) = GS(F ; x, x̌), provided we specify that
GS(F ; x, x̌) be in the interior int(x) of x. (We must specify the interior because of
the intersection step in Definition 1.3.) In particular, we have

Theorem 1.4. ([9, 10]) Suppose F : x ⊂ Rn → Rn and A is a Lipschitz
matrix such as an interval extension F ′(x) of the Jacobi matrix. If x̃ is the image
under an interval Newton method as in formula (1.1) and x̃ ⊂ int(x), then there is
a unique x∗ ∈ x with F (x∗) = 0. Various authors have proven Theorem 1.4; see
[9, 10]. In particular, Miranda’s theorem can be used to easily prove Theorem 1.4 for
N(F ; x, x̌) = GS(F ;x, x̌); see [9, p. 60].

Example 1. Take

f1(x1, x2) = x2
1 − x2,

f2(x1, x2) = x1 − x2
2,

and x =
(

x1, x2
)T

=
(

[−0.1, 0.1], [−0.1, 0.3]
)T

. There is a unique root x∗ = (0, 0)T of
F = (f1, f2)T within x. In Example 1, if x̌ = (0, .1)T , then F (x̌) = (−0.1,−0.01)T ,
and an interval extension of the Jacobi matrix is

F ′(x) =
(

2x1 −1
1 −2x2

)

=
(

[−.2, .2] −1
1 [−0.6, 0.2]

)

.

If the preconditioning matrix Y is taken to be the inverse of the midpoint matrix of
F ′(x), then

Y =
{

m
(

F ′(X)
)}−1

=
(

−0.2 1
−1 0

)

.

We obtain, rounded out to four digits,

GS(F ; x, x̌) = ([−0.07292, 0.09375], [−0.01875, 0.01875])T ⊂ int(x).

Therefore, this computation proves that there is a unique solution to F (x) = 0 within
x.

Inclusion in the interval Gauss–Seidel method is made possible because the in-
verse midpoint preconditioner reduces the interval Jacobi matrix to approximately a
diagonal matrix.

1.3. Singularities: Philosophical Considerations. Theorem 1.4 is applica-
ble only when the matrix A is regular, i.e. when A does not contain singular matrices.
But consider

Example 2. Take

f1(x1, x2) = x2
1 − x2,

f2(x1, x2) = x2
1 + x2,

and x =
(

x1, x2
)T

=
(

[−0.001, 0.001], [−0.001, 0.001]
)T

. Even though there is a
unique root x∗ = (0, 0)T of F = (f1, f2)T within x when F is as in Example 2, the
interval Gauss–Seidel method cannot prove this, since the Jacobi matrix F ′(x∗) is
singular. In fact, the interval Jacobi matrix is computed to be

F ′(x) =
(

2x1 −1
2x1 1

)

=
(

[-0.002,0.002] −1
[-0.002,0.002] 1

)

,
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and the midpoint

m(F ′(x)) =
(

0 −1
0 1

)

,

matrix the inverse of which is often used as the preconditioner matrix Y , is not
invertible2.

Symbolic methods can be used to show that Example 2 has a unique solution in
a small region containing x1 = 0, x2 = 0. However, arbitrarily small perturbations of
the problem result in either no solutions or two solutions. Consider

Example 3. Take

f1(x1, x2) = x2
1 − x2,

f2(x1, x2) = x2
1 + x2 + ε,

and x =
(

x1, x2
)T

=
(

[−0.001, 0.001], [−0.001, 0.001]
)T

. Here, |ε| is very small.
The system in Example 3 has two solutions for ε < 0 and no solutions for ε > 0.

But roundout in computer arithmetic and, perhaps, uncertainties in the system itself
due to modelling or measurement uncertainties, make it impossible to distinguish
systems such as in Example 3 for different ε, especially when computer arithmetic is
used as part of the verification process. In such instances, a new interpretation needs
to be given to existence / uniqueness. One expects the appropriate interpretation to
be application-dependent in general, but the following is possible: verify that the
system has an exact number of solutions within a larger space containing
the original space. This paper will be based on this interpretation.

To be specific, we can extend an n-dimensional box in Rn to an n-dimensional
box in Cn by adding a small imaginary part to each variable. If the system can
be extended to an analytic function in complex n-space (or if it can be extended to
a function that can be approximated by an analytic function), then the topological
degree gives the number of solutions, counting multiplicities, within the small region
in complex space. (See §2 for an explanation of multiplicity.) When the imaginary
parts are small, we can view the complex roots as approximating a multiple real
root. For example, the degree of the system in Example 3 within an extended box in
complex space can be computed to be 2, regardless of whether ε is negative, positive
or zero. (See the numerical results in §8.) The topological degree corresponds roughly
to algebraic degree in one dimension; for example, the degree of zn in a small region
in C1 containing 0 is n.

1.4. Organization of This Paper. A review of properties of the topological
degree, to be used later, appears in §2. The issue of preconditioning appears in §3.
Construction of the box in the complex space appears in §4.

Several algorithms have previously been proposed for computing the topological
degree [1, 7, 14], but these require computational effort equivalent to finding all so-
lutions to 4n (2n-1)-dimensional nonlinear systems within a given box, or worse. In
§5, a reduction is proposed that allows computation of the topological degree with a
search in a space of dimension equal to the rank defect of the Jacobian matrix. A
theorem is proven that further simplifies the search.

2Alternate preconditioners can nonetheless be computed; see [9]. However, it can be shown that
uniqueness cannot be proven in this case; see [9, 10].
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In §6, the actual algorithm is presented and its computational complexity is given.
Test problems and the test environment are described in §7. Numerical results appear
in §8. Future directions appear in §9.

2. Review of Some Elements of Degree Theory. The topological degree
or Brouwer degree, well-known within algebraic topology and nonlinear functional
analysis, is both a generalization of the concept of a sign change of a one-dimensional
continuous function and of the winding number for analytic functions. It can be used
to generalize the concept of multiplicity of a root. The fundamentals will not be
reviewed here, but we refer to [3, 4, 7]. We only present the material we need.

Here, we explain what we mean by “multiplicity”. Actually, there is a more
general concept index (see [4, Chapter I]) for an isolated zero. The topological degree
is equal to the sum of the indices of zeros in the domain. The index is always positive
in our context. So, we use multiplicity as an alternative term for index since it’s more
suggestive.

Suppose that F : D ⊂ Cn → Cn is analytic. Then the real and imaginary
components of F and its argument z ∈ Cn may be viewed as real components in
R2n. Let z = x + iy and F (z) = u(x, y) + iv(x, y), where x = (x1, . . . , xn), y =
(y1, . . . , yn), u(x, y) = (u1(x, y), . . . , un(x, y)) and v(x, y) = (v1(x, y), . . . , vn(x, y)).
We can define D̃ by

D̃ ≡ {(x1, y1, . . . , xn, yn)|(x1 + iy1, . . . , xn + iyn) ∈ D}

and F̃ : D̃ ⊂ R2n → R2n by

F̃ = (u1, v1, . . . , un, vn).

Then, we have the following property of topological degree d(F̃ , D̃, 0), and relation-
ships between d(F̃ , D̃, 0) and the solutions of the system F (z) = 0 in D.

Theorem 2.1. Suppose F : D ⊂ Cn → Cn is analytic, with F (z) 6= 0 for any
z ∈ ∂D, and suppose D̃ and F̃ : D̃ → R2n are defined as above. Then

1. d(F̃ , D̃, 0) ≥ 0.
2. d(F̃ , D̃, 0) > 0 if and only if there is a solution z∗ ∈ D, F (z∗) = 0.
3. d(F̃ , D̃, 0) is equal to the number of solutions z∗ ∈ D, F (z∗) = 0, counting

multiplicities.
4. If the Jacobi matrix F ′(z∗) is non-singular at every z∗ ∈ D with F (z∗) = 0,

then d(F̃ , D̃, 0) is equal to the number of solutions z∗ ∈ D, F (z∗) = 0.
To obtain Theorem 2.1, we need to notice that F (z∗) = 0 for z∗ ∈ D is equivalent

to F̃ (x∗, y∗) = 0 for (x∗, y∗) ∈ D̃, where z∗ = x∗ + iy∗. In Theorem 2.1, the first
conclusion is easily obtained by knowing |d(FR,DR, 0)| ≤ d(F̃ , D̃, 0), where FR is
function F (z) with z in a corresponding n-dimensional real domain DR ∈ Rn. (See [4,
p. 49].) The third conclusion is actually Theorem (5.2) in Chapter I of [4], considering
the definition of topological degree. The fourth conclusion can be obtained by the
third conclusion, Theorem (7.2) and Lemma (9.3-2) in Chapter I of [4]. As for the
second conclusion, it’s easy to see that d(F̃ , D̃, 0) > 0 implies there is a solution
(x∗, y∗) ∈ D̃, F̃ (x∗, y∗) = 0. (See Existence Theorem (6.6) in Chapter I of [4].) The
reverse is obtained by noticing the third conclusion and the fact that the multiplicities
are positive.

The following three theorems will lead to the degree computation formula in
Theorem 5.1 in §5, the formula used in our computational scheme.

Theorem 2.2. (See [13, §4.2].) Let D be an n-dimensional connected, oriented
region in Rn and F = (f1, . . . , fn), where fk, k = 1, . . . , n, are continuous functions
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defined in D. Assume F 6= 0 on the oriented boundary b(D) of D, b(D) can be sub-
divided into a finite number of closed, connected (n− 1)-dimensional oriented subsets
βk

n−1, k = 1, . . . , r, and there is p, 1 ≤ p ≤ n, such that:
1. F¬p ≡ (f1, . . . , fp−1, fp+1, . . . , fn) 6= 0 on the oriented boundary b(βk

n−1) of
βk

n−1, k = 1, . . . , r; and
2. fp has the same sign at all solutions of F¬p = 0, if there are any, on βk

n−1,
1 ≤ k ≤ r.

Choose s ∈ {−1,+1} and let K0(s) denote the subset of the integers k ∈ {1, . . . , r}
such that F¬p = 0 has solutions on βk

n−1 and sgn(fp) = s at each of those solutions.
Then

d(F,D, 0) = (−1)p−1s
∑

k∈K0(s)

d(F¬p, βk
n−1, 0).

The formula in Theorem 2.2 is a combination of formulas (4.15) and (4.16) in
[13]. The orientation of D is positive and the orientations of βk

n−1, whether positive
or negative, are induced by the orientation of D. If we assume that the Jacobi matrices
of F¬p are non-singular at all solutions of F¬p = 0 on βk

n−1, then

d(F¬p, βk
n−1, 0) = t(βk

n−1)
∑

x∈βk
n−1

F¬p=0

sgn(JF¬p(x)),

where t(βk
n−1) = +1 or −1 depending on whether βk

n−1 has positive orientation or
negative orientation, and JF¬p(x) is the determinant of the Jacobi matrix of F¬p at
x . (See Theorem (5.2) and (7.2) in Chapter I of [4].) So, under this assumption, we
can simplify the formula in Theorem 2.2.

Theorem 2.3. Suppose that all the conditions of Theorem 2.2 are satisfied and
the Jacobi matrices of F¬p are non-singular at all solutions of F¬p = 0 on βk

n−1 for
each k ∈ K0(s). Then

d(F,D, 0) = (−1)p−1s
∑

k∈K0(s)

t(βk
n−1)

∑

x∈βk
n−1

F¬p(x)=0

sgn(JF¬p(x)),

where t(βk
n−1) = +1 or −1 depending on whether βk

n−1 has positive orientation or
negative orientation, and JF¬p(x) is the determinant of the Jacobi matrix of F¬p at
x.

In our context, the region D is an n-dimensional box

x = (x1, . . . , xn),

where n ≥ 2 and xk = [xk, xk]. The boundary ∂x of x consists of 2n (n − 1)-
dimensional boxes

xk ≡ (x1, . . . , xk−1, xk, xk+1, . . . , xn)

and

xk ≡ (x1, . . . , xk−1, xk, xk+1, . . . , xn),

where k = 1, . . . , n.
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Fig. 2.1. Positive center decomposition of x when n = 2.

Before introducing the next theorem, for completeness in the exposition, we con-
struct the so-called positive or negative center decomposition of x (although such
decompositions are undoubtedly known among experts). This center decomposi-
tion shows us how to specify orientations of the faces of x. We follow the con-
vention that an n-simplex < P0, P1, . . . , Pn > in Rn has positive or negative orienta-
tion if the determinant ∆n((1, P0), (1, P1), . . . , (1, Pn)) is positive or negative. Here,
Pi = (xi1, . . . , xin), i = 0, 1, . . . , n, are n + 1 points in Rn represented by row vectors,
and (1, Pi) = (1, xi1, . . . , xin), i = 0, 1, . . . , n, are (n+1)-dimensional vectors that form
the n + 1 rows of the determinant. See [3, 4, 7] for further details.

We construct the center decompositions of x inductively. Without loss of general-
ity, assume xk = [−1, +1], k = 1, . . . , n. So, the center of x is (0, . . . , 0). When n = 2
the positive center decomposition is shown in Figure 2.1, in which P0 = (0, 0). It’s
easy to check that each of the 22 · 2! 2-simplexes has positive orientation. So, x has
positive orientation. Sometimes we say the orientation is +1 or −1 if it’s positive or
negative. It’s clear that the orientations of x1, x1, x2 and x2 are −1, +1, +1 and −1.
The negative center decomposition of x can be obtained by taking all the simplexes
with the negative orientation. Sometimes we say a center decomposition with sign
+1 or −1 if it’s positive or negative, respectively.

Suppose we already have center decompositions of (n − 1)-dimensional (n > 2)
boxes with each decomposition consisting of 2n−1 · (n − 1)! (n − 1)-simplexes . We
construct the positive center decomposition of an n-dimensional box x as follows. We
take the center decomposition with sign (−1)k of the (n− 1)-dimensional box xk and
we take the center decomposition with sign (−1)k+1 of the (n − 1)-dimensional box
xk, where k = 1, . . . , n.

We use

< Q(k,−1)
0 , Q(k,−1)

1 , . . . , Q(k,−1)
n−1 >

or

< Q(k,+1)
0 , Q(k,+1)

1 , . . . , Q(k,+1)
n−1 >

to denote an (n− 1)-simplex in the center decomposition of xk or xk, where

Qi = (xi1, . . . , xi(k−1), xi(k+1), . . . , xin)
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and

Q(k,±1)
i = (xi1, . . . , xi(k−1),±1, xi(k+1), . . . , xin).

So,
sgn(∆n−1((1, Q0), (1, Q1), . . . , (1, Qn−1)))

= (−1)k on xk and (−1)k+1 on xk.
For each (n− 1)-simplex

< Q(k,−1)
0 , Q(k,−1)

1 , . . . , Q(k,−1)
n−1 ) >

or

< Q(k,+1)
0 , Q(k,+1)

1 , . . . , Q(k,+1)
n−1 ) >,

we add the center P0 = (0, 0, . . . , 0) of x as the first point to form an n-simplex

< P0, Q
(k,−1)
0 , Q(k,−1)

1 , . . . , Q(k,−1)
n−1 >

or

< P0, Q
(k,+1)
0 , Q(k,+1)

1 , . . . , Q(k,+1)
n−1 > .

It’s easy to see that there are altogether 2n ·n! n-simplexes. Next we verify that each
of those n-simplexes has the positive orientation.

∆n((1, P0), (1, Q(k,−1)
0 ), (1, Q(k,−1)

1 ), . . . , (1, Q(k,−1)
n−1 ))

= ∆n−1(Q
(k,−1)
0 , Q(k,−1)

1 , . . . , Q(k,−1)
n−1 )

= (−1)k∆n−1((1, Q0), (1, Q1), . . . , (1, Qn−1)).
∆n((1, P0), (1, Q(k,+1)

0 ), (1, Q(k,+1)
1 ), . . . , (1, Q(k,+1)

n−1 ))
= ∆n−1(Q

(k,+1)
0 , Q(k,+1)

1 , . . . , Q(k,+1)
n−1 )

= (−1)k−1∆n−1((1, Q0), (1, Q1), . . . , (1, Qn−1)).
So,

sgn(∆n((1, P0), (1, Q(k,−1)
0 ), (1, Q(k,−1)

1 ), . . . , (1, Q(k,−1)
n−1 )))

= (−1)k(−1)k = +1, and
sgn(∆n((1, P0), (1, Q(k,+1)

0 ), (1, Q(k,+1)
1 ), . . . , (1, Q(k,+1)

n−1 )))
= (−1)k−1(−1)k+1 = +1.

This means we actually do get a positive center decomposition of x. We can get
a negative center decomposition by taking all the 2n · n! n-simplexes with negative
orientation.

From the above we know that if we decompose x by the positive center decom-
position, then x has positive orientation, the induced orientation of xk is (−1)k,
and the induced orientation of xk is (−1)k+1. b(x) can be divided into xk and xk,
k = 1, . . . , n, with the associated orientations. So, F 6= 0 on b(x) is the same as F 6= 0
on ∂x. Similarly, F¬p(x) = 0 on b(xk) or b(xk) is the same as F¬p(x) = 0 on ∂xk or
∂xk. Let K0(s) denote the subset of the integers k ∈ {1, . . . , n} such that F¬p = 0

has solutions on xk and sgn(fp) = s at all the solutions, and K0(s) denote the subset
of the integers k ∈ {1, . . . , n} such that F¬p = 0 has solutions on xk and sgn(fp) = s
at all the solutions, where s ∈ {−1,+1}. Then, by Theorem 2.3, we have

Theorem 2.4. Suppose F 6= 0 on ∂x, and there is p, 1 ≤ p ≤ n, such that:
1. F¬p 6= 0 on ∂xk or ∂xk, k = 1, . . . , n;
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Fig. 3.1. A singular system of rank n− p preconditioned with an incomplete LU factorization,
where “∗” represents a non-zero element.

2. fp has the same sign at all solutions of F¬p = 0, if there are any, on xk or
xk, 1 ≤ k ≤ n; and

3. the Jacobi matrices of F¬p are non-singular at all solutions of F¬p = 0 on
∂x.

Then

d(F, x, 0)

= (−1)p−1s

{

∑

k∈K0(s)

(−1)k
∑

x∈xk
F¬p(x)=0

sgn
∣

∣

∣

∣

∂F¬p

∂x1x2 . . . xk−1xk+1 . . . xn
(x)

∣

∣

∣

∣

+
∑

k∈K0(s)

(−1)k+1
∑

x∈x
k

F¬p(x)=0

sgn
∣

∣

∣

∣

∂F¬p

∂x1x2 . . . xk−1xk+1 . . . xn
(x)

∣

∣

∣

∣

}

.

3. On Preconditioning. The inverse midpoint preconditioner approximately
diagonalizes the interval Jacobi matrix, when F ′(x∗) is non-singular (and well-enough
conditioned). This preconditioner can be computed with Gaussian elimination with
partial pivoting. We can compute (to within a series of row permutations) an LU
factorization of the midpoint matrix m

(

F ′(X)
)

. The factors L and U may then be
applied to actually precondition the interval linear system.

When the rank of F ′(x∗) is n − p for some p > 0, then Gaussian elimination
with full pivoting can be used to reduce F ′(x) to approximately the pattern shown
in Figure 3.1. Actually, an incomplete factorization based on full pivoting will put
the system into a pattern that resembles a permutation of the columns of the pattern
in Figure 3.1. However, for notational simplicity, there is no loss here in assuming
exactly the form in Figure 3.1.

In the analysis to follow, we assume that the system has already been precondi-
tioned, so that it is, to within second-order terms with respect to w(x), of the form
in Figure 3.1. In the rest of this paper, we concentrate on the case p=1, although the
idea can be applied to the general case.

4. The Complex Setting and System Form. In the remainder of this paper,
we assume

1. F : D ⊂ Rn → Rn can be extended to an analytic function in Cn.
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2. x = (x1, . . . , xn) = ([x1, x1], . . . , [xn, xn]) is a small box that will be con-
structed centered at the approximate solution x̌, i.e. m(x) = (x̌1, . . . , x̌n).

3. x̌ is near a point x∗ with F (x∗) = 0, such that ‖x̌− x∗‖ is much smaller
than the width of the box x, and width of the box x is small enough for a
quadratic model to be accurate over the box x.

4. F has been preconditioned as in Figure 3.1, and F ′(x∗) has null space of
dimension 1.

So,

fk(x) = (xk − x̌k) +
∂fk

∂xn
(x̌)(xn − x̌n) +O

(

‖x− x̌‖2
)

for 1 ≤ k ≤ n− 1.

fn(x) =
1
2

n
∑

k=1

n
∑

l=1

∂2fn

∂xk∂xl
(x̌)(xk − x̌k)(xl − x̌l) +O

(

‖x− x̌‖3
)

For F : Rn → Rn, extend F to complex space: x + iy, with y in a small box

y =
(

y1, . . . , yn

)

=
(

[y
1
, y1], . . . , [yn

, yn]
)

,

where y is centered at (0, . . . , 0). Define z ≡ (x1,y1, . . . , xn,yn) = ([x1, x1],[y1
, y1],. . .,

[xn, xn],[y
n
, yn]), uk(x, y) ≡ <(fk(x + iy)) and vk(x, y) ≡ =(fk(x + iy)). With this,

define

F̃ (x, y) ≡ (u1(x, y), v1(x, y), . . . , un(x, y), vn(x, y)) : R2n → R2n.

Then, if preconditioning based on complete factorization of the midpoint matrix for
F ′(x) is used, the first-order terms are eliminated in the pattern of Figure 3.1, and,
for 1 ≤ k ≤ (n− 1),

uk(x, y) = (xk − x̌k) + ∂fk
∂xn

(x̌)(xn − x̌n)

+O
(

‖(x− x̌, y)‖2
)

,

vk(x, y) = yk + ∂fk
∂xn

(x̌)yn +O
(

‖(x− x̌, y)‖2
)

,















(4.1)

and

un(x, y) = 1
2

∑n
k=1

∑n
l=1

∂2fn
∂xk∂xl

(x̌)(xk − x̌k)(xl − x̌l)

− 1
2

∑n
k=1

∑n
l=1

∂2fn
∂xk∂xl

(x̌)ykyl

+O
(

‖(x− x̌, y)‖3
)

,

vn(x, y) =
∑n

k=1
∑n

l=1
∂2fn

∂xk∂xl
(x̌)(xk − x̌k)yl

+O
(

‖(x− x̌, y)‖3
)

.



































(4.2)

5. Simplification of a Degree Computation Procedure. To use Theo-
rem 2.4 to compute the topological degree d(F̃ , z, 0) directly in a verification algorithm
would require a global search of the 4n (n−1)-dimensional faces of the 2n-dimensional
box z for zeros of F̃¬p. This is an inordinate amount of work for a verification process
that would normally require only a single step of an interval Newton method in the
nonsingular case. However, if the system is preconditioned and in the form described
in §3 and §4, the verification can be reduced to 4n − 4 interval evaluations and four
1-dimensional searches.
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To describe the simplification, define

xk ≡ (x1, y1, . . . , xk−1,yk−1, xk, yk, xk+1, yk+1, . . . , xn,yn),

and

xk ≡ (x1,y1, . . . , xk−1, yk−1, xk, yk, xk+1, yk+1, . . . , xn,yn).

Similarly define yk and yk. Also define

F̃¬un(x, y) ≡
(

u1(x, y), v1(x, y), . . . , un−1(x, y), vn−1(x, y), vn(x, y)
)

.

To compute the degree d(F̃ , z, 0), we will consider F̃¬un on the boundary of z. The
boundary of z consists of the 4n faces x1, x1, y1, y1, . . ., xn, xn, yn, yn.

Observe that, for 1 ≤ k ≤ (n− 1),
F̃¬un(x, y) = 0 on xk

=⇒ uk(x, y) ≈ (xk − x̌k) +
∂fk

∂xn
(x̌)(xn − x̌n) = 0

=⇒ |xk − x̌k| = |∂fk/∂xn(x̌)||xn − x̌n|

=⇒w(xk) ≤ |∂fk/∂xn(x̌)|w(xn), or
w(xk)

|∂fk/∂xn(x̌)|
≤ w(xn).

Similarly,
F̃¬un(x, y) = 0 on xk

=⇒w(xk) ≤ |∂fk/∂xn(x̌)|w(xn), or
w(xk)

|∂fk/∂xn(x̌)|
≤ w(xn).

Also observe that, for 1 ≤ k ≤ (n− 1),
F̃¬un(x, y) = 0 on yk,

=⇒ uk(x, y) ≈ y
k

+
∂fk

∂xn
(x̌)yn = 0

=⇒ |y
k
| = |∂fk/∂xn(x̌)||yn|

=⇒w(yk) ≤ |∂fk/∂xn(x̌)|w(yn), or
w(yk)

|∂fk/∂xn(x̌)|
≤ w(yn).

Similarly,
F̃¬un(x, y) = 0 on yk

=⇒w(yk) ≤ |∂fk/∂xn(x̌)|w(yn), or
w(yk)

|∂fk/∂xn(x̌)|
≤ w(yn).

Thus, if xn is chosen so that

w(xn) ≤ 1
2

min
1≤k≤n−1

{

w(xk)
|∂fk/∂xn(x̌)|

}

,(5.1)

then it is unlikely that uk(x, y) = 0 on either xk or xk.
Similarly, if yn is chosen so that

w(yn) ≤ 1
2

min
1≤k≤n−1

{

w(yk)
|∂fk/∂xn(x̌)|

}

,(5.2)
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then it is unlikely that vk(x, y) = 0 on either yk or yk.
Here, the coefficient 1

2 is to take into consideration the fact that uk(x, y) ≈ (xk −
x̌k) + ∂fk

∂xn
(x̌)(xn− x̌n) and vk(x, y) ≈ yk + ∂fk

∂xn
(x̌)yn are only approximate equalities.

When ∂fk/∂xn(x̌) happens to be 0, we can think that w(xk)
|∂fk/∂xn(x̌)| and

w(yk)
|∂fk/∂xn(x̌)|

are +∞.
By constructing the box z in this way, we can eliminate search of 4n − 4 of the

4n faces of the boundary of z, since we have arranged to verify F̃¬un(x, y) 6= 0 on
each of these faces. Elimination of these 4n− 4 faces only needs 4n− 4 interval eval-
uations. Then, we only need to search the four faces xn, xn, yn and yn for solutions
of F̃¬un(x, y) = 0, regardless of how large n is. This reduces total computational cost
dramatically, since searching a face is expensive. The following theorem forms the
theoretical basis of our algorithm in §6.1.

Theorem 5.1. Suppose
1. uk 6= 0 on xk and xk, and vk 6= 0 on yk and yk, k = 1, . . . , n− 1;
2. F̃¬un = 0 has a unique solution on xn and xn with yn in the interior of yn,

and F̃¬un = 0 has a unique solution on yn and yn with xn in the interior of
xn;

3. un 6= 0 at the four solutions of F̃¬un = 0 in condition 2; and
4. the Jacobi matrices of F̃¬un are non-singular at the four solutions of F̃¬un = 0

in condition 2.
Then

d(F̃ , z, 0) = −
∑

xn=xn
F̃¬un (x,y)=0

un(x,y)>0

sgn

∣

∣

∣

∣

∣

∂F̃¬un

∂x1y1 . . . xn−1yn−1yn
(x, y)

∣

∣

∣

∣

∣

+
∑

xn=xn
F̃¬un (x,y)=0

un(x,y)>0

sgn

∣

∣

∣

∣

∣

∂F̃¬un

∂x1y1 . . . xn−1yn−1yn
(x, y)

∣

∣

∣

∣

∣

+
∑

yn=y
n

F̃¬un (x,y)=0
un(x,y)>0

sgn

∣

∣

∣

∣

∣

∂F̃¬un

∂x1y1 . . . xn−1yn−1xn
(x, y)

∣

∣

∣

∣

∣

−
∑

yn=yn
F̃¬un (x,y)=0

un(x,y)>0

sgn

∣

∣

∣

∣

∣

∂F̃¬un

∂x1y1 . . . xn−1yn−1xn
(x, y)

∣

∣

∣

∣

∣

.

Proof. Condition 1 implies F̃ 6= 0 on xk, xk, yk and yk, k = 1, . . . , n− 1, and 2
and 3 imply F̃ 6= 0 on xn, xn, yn and yn. So, F̃ 6= 0 on ∂z.

Condition 1 implies F̃¬un 6= 0 on ∂xk, ∂xk, ∂yk and ∂yk, k = 1, . . . , n− 1. ∂xn

consists of 2(n − 1) (n − 2)-dimensional boxes each of which is either embedded in
some xk, xk, yk or yk, 1 ≤ k ≤ n − 1, or is embedded in yn or yn. So, by 2 and 3,
F̃¬un 6= 0 on ∂xn. Similarly, F̃¬un 6= 0 on ∂xn, ∂yn and ∂yn. So, condition 1 in
Theorem 2.4 is satisfied.
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Condition 2 in Theorem 2.4 is automatically satisfied since F¬p = 0 either has no
solutions or a unique solution on xk, xk, yk, or yk, 1 ≤ k ≤ n.

Then, by noticing 4, the conditions of Theorem 2.4 are satisfied. The formula is
thus obtained with s = +1.

The conditions of Theorem 5.1 will be satisfied when the system is that as de-
scribed in §3 and §4, the box z is constructed as in (5.1) and (5.2), and the quadratic
model is accurate. (See Theorem 5.2 and its proof of the results when all the approx-
imations are exact.)

In Theorem 5.1, the degree consists of contributions of the four faces we search.
We can compute the degree contribution of each of the four faces and then add them
to get the degree.

In Theorem 5.1 we choose s = +1. We can also choose s = −1. That doesn’t
make any difference in our context if we ignore higher order terms in the values of un

at the solutions of F̃¬un = 0 on the four faces xn, xn, yn and yn. To be specific, the
four values of un are

un =
1
2
∆(xn − x̌n)2 +O

(

‖(x− x̌, y)‖3
)

,

un =
1
2
∆(xn − x̌n)2 +O

(

‖(x− x̌, y)‖3
)

,

un = −1
2
∆y2

n
+O

(

‖(x− x̌, y)‖3
)

,

un = −1
2
∆y2

n +O
(

‖(x− x̌, y)‖3
)

,

respectively, where, ∆ is defined in (5.3). When we choose w(yk) the same (or roughly
the same) as w(xk), the values of un as a function of y

n
(or yn) will be the same (or

roughly the same) as the values of un as a function of xn− x̌n (or xn− x̌n). So, if we
ignore higher order terms, the cost of verifying un < 0 and searching for solutions of
F̃¬un = 0 with un > 0 is approximately the same as the cost of verifying un > 0 and
searching for solutions of F̃¬un = 0 with un < 0.

Next, we will give a theorem which will further reduce the search cost by telling
us how we should search. Before introducing the theorem, define

αk ≡
∂fk

∂xn
(x̌), 1 ≤ k ≤ n− 1,

αn ≡ −1,

βkl ≡
∂2fn

∂xk∂xl
(x̌) 1 ≤ k ≤ n, 1 ≤ l ≤ n,

∆ ≡
n

∑

k=1

n
∑

l=1

βklαkαl(5.3)

Note βkl = βlk

Theorem 5.2. If the approximations of (4.1) and (4.2) are exact, if we construct
the box z as in (5.1) and (5.2), and if ∆ 6= 0, then d(F̃ , z, 0) = 2.

Proof. Under the assumptions,

uk = (xk − x̌k) + αk(xn − x̌n), 1 ≤ k ≤ n− 1,(5.4)
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vk = yk + αkyn, 1 ≤ k ≤ n− 1,(5.5)

un =
1
2

n
∑

k=1

n
∑

l=1

βkl(xk − x̌k)(xl − x̌l)−
1
2

n
∑

k=1

n
∑

l=1

βklykyl(5.6)

vn =
n

∑

k=1

n
∑

l=1

βkl(xk − x̌k)yl(5.7)

Due to the construction of the box z,

uk = (xk − x̌k) + αk(xn − x̌n) 6= 0

on xk and xk, and

vk = y
k

+ αkyn 6= 0

on yk and yk, where k = 1, . . . , n− 1.
Next, we locate the solutions of F̃¬un = 0 on xn, xn, yn and yn.
1) On xn;

uk = 0 =⇒ x̃k = x̌k − αk(xn − x̌n), 1 ≤ k ≤ n− 1,(5.8)

vk = 0 =⇒ ỹk = −αkyn, 1 ≤ k ≤ n− 1,(5.9)

Plugging equations (5.8) and (5.9) into equations (5.6) and (5.7), we get

un =
1
2

n
∑

k=1

n
∑

l=1

βklαkαl(xn − x̌n)2 − 1
2

n
∑

k=1

n
∑

l=1

βklαkαly2
n(5.10)

=
1
2
∆(xn − x̌n)2 − 1

2
∆y2

n

vn =
n

∑

k=1

n
∑

l=1

βklαkαl(xn − x̌n)yn(5.11)

= ∆(xn − x̌n)yn.

Then,

vn = 0 =⇒ ỹn = 0,(5.12)

since ∆ 6= 0.
Thus, by equation (5.9)

ỹn = 0 =⇒ ỹk = 0, 1 ≤ k ≤ n− 1,(5.13)

So, F̃¬un = 0 has a unique solution

(x̃, ỹ) = (x̃1, 0, . . . , x̃n−1, 0, xn, 0)

on xn.
Plugging (5.12) into (5.10), we get the un value at this solution, which is
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un =
1
2
∆(xn − x̌n)2.(5.14)

Next, we compute the determinant of the Jacobi matrix of F̃¬un at this solution.
Define

γk ≡
n

∑

l=1

βlkαl.

Noting equations (5.4), (5.5) and (5.7), we have

∣

∣

∣

∣

∣

∂F̃¬un

∂x1y1 . . . xn−1yn−1yn
(x̃, ỹ)

∣

∣

∣

∣

∣

(5.15)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂u1
∂x1

∂u1
∂y1

. . . ∂u1
∂xn−1

∂u1
∂yn−1

∂u1
∂yn

∂v1
∂x1

∂v1
∂y1

. . . ∂v1
∂xn−1

∂v1
∂yn−1

∂v1
∂yn

...
...

...
...

...
∂un−1

∂x1

∂un−1
∂y1

. . . ∂un−1
∂xn−1

∂un−1
∂yn−1

∂un−1
∂yn

∂vn−1
∂x1

∂vn−1
∂y1

. . . ∂vn−1
∂xn−1

∂vn−1
∂yn−1

∂vn−1
∂yn

∂vn
∂x1

∂vn
∂y1

. . . ∂vn
∂xn−1

∂vn
∂yn−1

∂vn
∂yn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 . . . 0 0 0
0 1 . . . 0 0 α1
...

...
...

...
...

0 0 . . . 1 0 0
0 0 . . . 0 1 αn−1

0 −γ1(xn − x̌n) . . . 0 −γn−1(xn − x̌n) −γn(xn − x̌n)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −(xn − x̌n)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 . . . 0 0 0
0 1 . . . 0 0 α1
...

...
...

...
...

0 0 . . . 1 0 0
0 0 . . . 0 1 αn−1

0 γ1 . . . 0 γn−1 γn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −(xn − x̌n)(−
n

∑

k=1

αkγk)

= (xn − x̌n)
n

∑

k=1

αk

n
∑

l=1

βlkαl

= (xn − x̌n)
n

∑

k=1

n
∑

l=1

βlkαkαl

= (xn − x̌n)
n

∑

k=1

n
∑

l=1

βklαkαl

= (xn − x̌n)∆.
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2) On xn;
Similarly, F̃¬un = 0 has a unique solution (x̃, ỹ) on xn.
The un value at this solution is

un =
1
2
∆(xn − x̌n)2.(5.16)

The determinant of the Jacobi matrix of F̃¬un at this solution is

∣

∣

∣

∣

∣

∂F̃¬un

∂x1y1 . . . xn−1yn−1yn
(x̃, ỹ)

∣

∣

∣

∣

∣

= (xn − x̌n)∆(5.17)

3) On yn;

uk = 0 =⇒ x̃k = x̌k − αk(xn − x̌n), 1 ≤ k ≤ n− 1,(5.18)

vk = 0 =⇒ ỹk = −αky
n
, 1 ≤ k ≤ n− 1,(5.19)

Plugging equations (5.18) and (5.19) into equations (5.6) and (5.7), we get

un =
1
2

n
∑

k=1

n
∑

l=1

βklαkαl(xn − x̌n)2 − 1
2

n
∑

k=1

n
∑

l=1

βklαkαly2
n

(5.20)

=
1
2
∆(xn − x̌n)2 − 1

2
∆y2

n

vn =
n

∑

k=1

n
∑

l=1

βklαkαl(xn − x̌n)y
n

(5.21)

= ∆(xn − x̌n)y
n
.

Then,

vn = 0 =⇒ x̃n = x̌n,(5.22)

since ∆ 6= 0.
Thus, by equation (5.18)

x̃n = x̌n =⇒ x̃k = x̌k, 1 ≤ k ≤ n− 1,(5.23)

So, F̃¬un = 0 has a unique solution

(x̃, ỹ) = (x̌1, ỹ1, . . . , x̌n−1, ỹn−1, x̌n, y
n
)

on yn.
Plugging (5.22) into (5.20), we get the un value at this solution, which is

un = −1
2
∆y2

n
.(5.24)

Next, we compute the determinant of the Jacobi matrix of F̃¬un at this solution.
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Noting the equations (5.4), (5.5) and (5.7), we have

∣

∣

∣

∣

∣

∂F̃¬un

∂x1y1 . . . xn−1yn−1xn
(x̃, ỹ)

∣

∣

∣

∣

∣

(5.25)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂u1
∂x1

∂u1
∂y1

. . . ∂u1
∂xn−1

∂u1
∂yn−1

∂u1
∂xn

∂v1
∂x1

∂v1
∂y1

. . . ∂v1
∂xn−1

∂v1
∂yn−1

∂v1
∂xn

...
...

...
...

...
∂un−1

∂x1

∂un−1
∂y1

. . . ∂un−1
∂xn−1

∂un−1
∂yn−1

∂un−1
∂xn

∂vn−1
∂x1

∂vn−1
∂y1

. . . ∂vn−1
∂xn−1

∂vn−1
∂yn−1

∂vn−1
∂xn

∂vn
∂x1

∂vn
∂y1

. . . ∂vn
∂xn−1

∂vn
∂yn−1

∂vn
∂xn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 . . . 0 0 α1

0 1 . . . 0 0 0
...

...
...

...
...

0 0 . . . 1 0 αn−1
0 0 . . . 0 1 0

−γ1yn
0 . . . −γn−1yn

0 −γny
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −y
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 . . . 0 0 α1

0 1 . . . 0 0 0
...

...
...

...
...

0 0 . . . 1 0 αn−1

0 0 . . . 0 1 0
γ1 0 . . . γn−1 0 γn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −y
n
(−

n
∑

k=1

αkγk)

= y
n

n
∑

k=1

αk

n
∑

l=1

βlkαl

= y
n

n
∑

k=1

n
∑

l=1

βlkαkαl

= y
n

n
∑

k=1

n
∑

l=1

βklαkαl

= y
n
∆.

4) On yn;
Similarly, F̃¬un = 0 has a unique solution (x̃, ỹ) on yn.
The un value at this solution is

un = −1
2
∆y2

n.(5.26)

The determinant of the Jacobi matrix of F̃¬un at this solution is
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∣

∣

∣

∣

∣

∂F̃¬un

∂x1y1 . . . xn−1yn−1xn
(x̃, ỹ)

∣

∣

∣

∣

∣

= yn∆(5.27)

Finally, we can use the formula in Theorem 5.1 to compute the topological degree
d(F̃ , z, 0).

If ∆ > 0, then we know from the equations (5.14), (5.16), (5.24) and (5.26)
that un is only positive at the solutions of F̃¬un = 0 on xn and xn. We also know the
signs of the determinants of the Jacobi matrices at the two solutions from equations
(5.15) and (5.17). So,

d(F̃ , z, 0) = −(−1) + (+1) = 2

If ∆ < 0, then we know from the equations (5.14), (5.16), (5.24) and (5.26)
that un is only positive at the solutions of F̃¬un = 0 on yn and yn. We also know the
signs of the determinants of the Jacobi matrices at the two solutions from equations
(5.25) and (5.27). So,

d(F̃ , z, 0) = +(+1)− (−1) = 2

The proof of Theorem 5.2 tells us approximately where we can expect to find the
solutions of F̃¬un = 0 on the four faces we search and the value of the degree we can
expect when the approximations (4.1) and (4.2) are accurate.

From (4.1), we know that if xn is known precisely, formally solving uk(x, y) = 0

for xk gives sharper bounds x̃k with w(x̃k) = O
(

‖(x− x̌, y)‖2
)

, 1 ≤ k ≤ n −
1. Similarly, if yn is known precisely, formally solving vk(x, y) = 0 for yk gives

sharper bounds ỹk with w(ỹk) = O
(

‖(x− x̌, y)‖2
)

, 1 ≤ k ≤ n − 1. So, when we

search xn (or xn) for solutions of F̃¬un = 0, we can first get sharper bounds for
xk, 1 ≤ k ≤ n − 1, since xn is known precisely. Then, for a small subinterval y0

n
of yn, we can solve vk(x,y) = 0 for yk to get sharper bounds ỹk with w(ỹk) =

O
(

max(‖(x− x̌, y)‖2,
∥

∥y0
n

∥

∥)
)

, 1 ≤ k ≤ n− 1. Thus we get a small subface of xn (or

xn) over which we can either use an interval Newton method to verify the existence
and uniqueness of the zero of F̃¬un or use mean-value extensions to verify that F̃¬un

has no zeros, depending on whether y0
n is in the middle of yn or not. So, we end up

with searching over a 1-dimensional interval yn. This further reduces the search cost.
We can search yn or yn in a similar way.

The analysis in this section leads to a practical algorithm in the next section.

6. The Algorithm and Its Computational Complexity. In this section, we
will present the actual algorithm and give its complexity.

6.1. Algorithm. The algorithm consists of three phases. In the box-setting
phase, we set the box z. In the elimination phase, we verify that uk 6= 0 on xk and
xk, and vk 6= 0 on yk and yk, where 1 ≤ k ≤ n − 1. In the search phase, we verify
the unique solution of F̃¬un = 0 on xn and xn with yn in the interior of yn, and on
yn and yn with xn in the interior of xn, compute the signs of un and the signs of
the Jacobi matrices of F̃¬un at the four solutions of F̃¬un = 0, compute the degree
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contributions of the 4 faces xn, xn, yn and yn according to the formula in Theorem
5.1 and finally add the contributions to get the degree.

ALGORITHM
Box-setting Phase
1. Compute the preconditioner of the original system, using Gaussian elimina-

tion with full pivoting.
2. Set the widths of xk and yk (see explanation below), for 1 ≤ k ≤ n− 1.
3. Set the widths of xn and yn as in (5.1) and (5.2).

Elimination Phase
1. Do for 1 ≤ k ≤ n− 1

(a) Do for xk and xk
i. Compute the mean-value extension of uk over that face.
ii. If 0 ∈ uk, then, stop and signal failure.

(b) Do for yk and yk
i. Compute the mean-value extension of vk over that face.
ii. If 0 ∈ vk, then, stop and signal failure.

Search Phase
1. Do for xn and xn

(a) i. Use mean-value extensions for uk(x,y) = 0 to solve for xk to get

sharper bounds x̃k with width O
(

‖(x− x̌, y)‖2
)

, 1 ≤ k ≤ n− 1.

ii. If x̃k ∩ xk = ∅, then return the degree contribution of that face as
0.

iii. Update xk.
(b) i. Compute the mean-value extension un over that face.

ii. If un < 0, then return the degree contribution of that face as 0.
(c) Construct a small subinterval y0

n of yn which is centered at 0.
(d) i. Use mean-value extensions for vk(x,y) = 0 to solve for yk to get

sharper bounds ỹk with width
O

(

max(‖(x− x̌, y)‖2,
∥

∥y0
n

∥

∥)
)

, 1 ≤ k ≤ n − 1, and thus to get a

subface x0
n (or x0

n) of xn (or xn.)
ii. If ỹk ∩ yk = ∅, then stop and signal failure.

(e) i. Set up an interval Newton method for F̃¬un to verify existence and
uniqueness of a zero in the subface x0

n (or x0
n.)

ii. If the zero can not be verified, then stop and signal failure.
(f) Inflate y0

n as much as possible provided the existence and uniqueness
of the zero of F̃¬un can be verified over the corresponding subface, and
thus get a subinterval y1

n of yn.
(g) In this step, we verify F̃¬un = 0 has no solutions when yn ∈ yn \ y1

n.
yn \ y1

n has two separate parts; we denote the lower part by yl
n and the

upper part by yu
n. We only present the processing of the lower part.

The upper part can be processed in a similar way.
i. Do

A. Use mean-value extensions for vk(x,y) = 0 to solve for yk to
get sharper bounds for yk, 1 ≤ k ≤ n − 1, and thus to get a
subface of xn (or xn.)

B. Compute the mean-value extensions F̃¬un over the subface ob-
tained in the last step.

C. If 0 ∈ F̃¬un , then bisect yl
n, update the lower part as a new yl

n
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and cycle.
If 0 6∈ F̃¬un , then exit the loop.

ii. Do
A. If y1

n
≤ yl

n, then exit the loop.
B. yl

n ←− [yl
n, yl

n + w
(

yl
n

)

].
C. Use mean-value extensions for vk(x,y) = 0 to solve for yk to

get sharper bounds for yk, 1 ≤ k ≤ n − 1, and thus to get a
subface of xn (or xn.)

D. Compute the mean-value extensions F̃¬un over the subface ob-
tained in the last step.

E. If 0 6∈ F̃¬un , then cycle.
If 0 ∈ F̃¬un , then yl

n ←− [yl
n
,mid(yl

n)] and cycle.
(h) i. Compute the mean-value extension of un over x0

n (or x0
n.)

ii. If un < 0, then return the degree contribution of that face as 0.
(i) i. Compute

∣

∣

∣

∂F̃¬un
∂x1y1...xn−1yn−1yn

(x0
n)

∣

∣

∣ (or
∣

∣

∣

∂F̃¬un
∂x1y1...xn−1yn−1yn

(x0
n)

∣

∣

∣).

ii. If 0 ∈
∣

∣

∣

∂F̃¬un
∂x1y1...xn−1yn−1yn

(x0
n)

∣

∣

∣ (or 0 ∈
∣

∣

∣

∂F̃¬un
∂x1y1...xn−1yn−1yn

(x0
n)

∣

∣

∣), then
stop and signal failure.

(j) Use the formula in Theorem 5.1 to compute the degree contribution of
that face.

2. Do for yn and yn
(a) Same as Step 1a except change xk to yk, x̃k to ỹk, xk to yk and uk to

vk.
(b) Same as Step 1b.
(c) Same as Step 1c except change y0

n to x0
n, yn to xn and 0 to x̌n.

(d) Same as Step 1d except change yk to xk, ỹk to x̃k, yk to xk, x0
n to y0

n,
x0

n to y0
n, xn to yn and xn to yn.

(e) Same as Step 1e except change x0
n to y0

n and x0
n to y0

n.
(f) Same as Step 1f except change y0

n to x0
n, y1

n to x1
n and yn to xn.

(g) Same as Step 1g except change yn \ y1
n to xn \ x1

n.
(h) Same as Step 1h except change x0

n to y0
n and x0

n to y0
n.

(i) Same as Step 1i except change
∣

∣

∣

∂F̃¬un
∂x1y1...xn−1yn−1yn

(x0
n)

∣

∣

∣ to
∣

∣

∣

∂F̃¬un
∂x1y1...xn−1yn−1xn

(y0
n)

∣

∣

∣ and
∣

∣

∣

∂F̃¬un
∂x1y1...xn−1yn−1yn

(x0
n)

∣

∣

∣ to
∣

∣

∣

∂F̃¬un
∂x1y1...xn−1yn−1xn

(y0
n)

∣

∣

∣.

(j) Same as Step 1j.
3. Add the degree contributions of the four faces obtained in steps 1 and 2 to

get the degree.
END OF ALGORITHM

An Explanation of the Algorithm
1. In the box-setting phase, in Step 2, the width w(xk) of xk depends on the

accuracy of the approximate solution x̌ of the system F (x) = 0. w(xk) should
be much larger than |x̌k − x∗k|. But, at the same time, it should not be too
large since the quadratic model needs to be accurate over the box.

2. In the search phase, in Step 1b (or 2b), we check the sign of un on that face
and discard that face at the earliest possible time if un < 0 on that face, since
we know the degree contribution of that face is 0 according to the formula
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in Theorem 5.1. This will save time significantly if it happens that un < 0
on that face. It did happen for all the test problems. (See §8 for the test
results.)

3. In the search phase, in Step 1e ( or 2e), we precondition the system F̃¬un

before we use an interval Newton method, so that the method will succeed
(see §1.2 and §3). The system F̃¬un is nonsingular over the subfaces under
consideration. In the actual implementation, LINPACK routines DGECO and
DGESL were used to compute the preconditioners.

4. In the search phase, in Step 1f (or 2f), we first expand the subinterval y0
n (or

x0
n) by ε = 1

2w
(

y0
n

)

at both ends. If the existence and uniqueness of the zero
of F̃¬un can be verified over the corresponding subface, then we expand the
subinterval by 2ε at both ends, and then 4ε and so on until the existence and
uniqueness of the zero can not be established.

5. In the search phase, in Step 1g (or 2g), the underlying idea is that the farther
away the interval yl

n is from the interval y0
n whose corresponding subface of

xn (or xn) contains a unique solution of F̃¬un = 0 and/or the narrower the
interval yl

n is, the more probable it is that we can verify that F̃¬un 6= 0 over
the subface of xn (or xn) which corresponds to yl

n.

6.2. Computational Complexity.
Derivation of the Computational Complexity
Box-setting Phase: Step 1 is of order O

(

n3
)

. Step 2 is of order O (n). Step 3 is of
order O

(

n2
)

.
Thus, the order of this phase is O

(

n3
)

.
Elimination Phase: Step 1ai and 1bi are of order O

(

n2
)

. Step 1aii and 1bii are of
order O (1).
Thus, the order of this phase is O

(

n3
)

.
Search Phase: Step 1a and 2a are of order O

(

n3
)

. Step 1b and 2b are of order
O

(

n2
)

. Step 1c and 2c are of order O (1). Step 1d and 2d are of order O
(

n3
)

.
Step 1e and 2e are of order O

(

n3
)

. Step 1f and 2f are of order Ninfl*O
(

n3
)

.
(See explanation below.) Step 1g and 2g are of order Nproc*O

(

n3
)

. (See
explanation below.) Step 1h and 2h are of order O

(

n2
)

. Step 1i and 2i are of
order O

(

n3
)

. Step 1j and 2j are of order O (1) . The last step of this phase
is of order O (1) too.
Thus, the order of this phase is O

(

n3
)

.

The order of the overall algorithm is thus O
(

n3
)

.

Remarks
1. There are two performance measures in the algorithm, Ninfl and Nproc. Ninfl

is the number of inflations the algorithm did in Step 1f or 2f. Nproc is the
number of subintervals of yn \ y1

n the algorithm processed in Step 1g or
subintervals of xn \ x1

n the algorithm processed in Step 2g, i.e. number of
yl

n’s plus number of yu
n’s in Step 1g or number of xl

n’s plus number of xu
n’s

in Step 2g . (See the algorithm in §6.1).
2. The order of the algorithm cannot be improved, since computing precondi-

tioners of the original system and the system F̃¬un is necessary and computing
each preconditioner is of order O

(

n3
)

.
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7. Test Problems and Test Environment.

7.1. Test Problems. Before describing the test set, we introduce one more
problem. Motivated by [6, Lemma 2.4], we considered systems of the following form.

Example 4. Set

f(x) = h(x, t) = (1− t)(Ax− x2)− tx,

where A ∈ Rn×n is the matrix corresponding to central difference discretization of the
boundary value problem −u′′ = 0, u(0) = u(1) = 0 and x2 = (x2

1, . . . , x
2
n)T . t was

chosen to be equal to

t1 = λ1/(1 + λ1),

where λ1 is the largest eigenvalue of A.
The homotopy h in Example 4 has a simple bifurcation point at t = t1, where the

two paths cross obliquely. That is, there are two solutions to f(x) = 0 near x = 0, for
all t near t1 and on either side of t1. Furthermore, the quadratic terms in the Taylor
expansion for f do not vanish at t = t1.

The test set consists of Example 2, Example 3 with ε = +10−6 and −10−6,
and Example 4 with n = 5, 10, 20, 40, 80, 160, 320. For all the test problems, we used
(0, 0, . . . , 0) as a good approximate solution to the problem F (x) = 0. Actually, it’s the
exact solution in Example 2 and Example 4. w(xk) and w(yk) were set to 10−3 for 1 ≤
k ≤ n− 1. w(xn) and w(yn) were computed automatically by the algorithm. In fact,
w(xk) and w(yk), 1 ≤ k ≤ n−1, can also be computed automatically by the algorithm,
depending on the accuracy of the approximate solution. At present, we used the known
true solutions to Example 2 and Example 4 and the known approximate solution to
Example 3 to test the algorithm and set the widths apparently small but otherwise
arbitrary.

For all the problems, the algorithm succeeded and returned a degree of 2.

7.2. Test Environment. The algorithm in §6.1 was programmed in the Fortran
90 environment developed and described in [8, 9]. Similarly, all the functions in
the test problems were programmed using the same Fortran 90 system, and internal
symbolic representations of the functions were generated prior to execution of the
numerical tests. In the actual tests, generic routines then interpreted the internal
representations to obtain both floating point and internal values.

The LINPACK routines DGECO and DGESL were used in Step 1 of the box-setting
phase, and in Step 1e, 2e, 1f and 2f of the search phase to compute the preconditioners.
(See the algorithm and its explanation in §6.1.)

The Sun Fortran 90 compiler version 1.2 was used on a Sparc Ultra model 140
with optimization level 0. Execution times were measured using the routine DSECND.
All times are given in CPU seconds.

8. Numerical Results. We present the numerical results in Table 8.1 and some
statistical data in Table 8.2.

The column labels of Table 8.1 are as follows.
Problem: names of the problems identified in §7.1.
n: number of independent variables.
Success: whether the algorithm was successful.
Degree: yopological degree returned by the algorithm.
CPU Time: CPU time in seconds of the algorithm.
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Table 8.1
Numerical Results

Problem n Success Degree CPU Time Time Ratio
Example 2 2 Yes 2 0.0761
Example 3

(ε = +10−6) 2 Yes 2 0.0511
Example 3

(ε = −10−6) 2 Yes 2 0.0513
Example 4 5 Yes 2 0.6806
Example 4 10 Yes 2 3.3403 4.91
Example 4 20 Yes 2 19.440 5.82
Example 4 40 Yes 2 140.34 7.22
Example 4 80 Yes 2 1123.6 8.01
Example 4 160 Yes 2 8891.3 7.91
Example 4 320 Yes 2 65395.5 7.36

Time Ratio: This only applies to Example 4. It’s the ratio of two successive CPU
times.

The column labels of Table 8.2 are as follows.
Problem: names of the problems identified in §7.1.
n: number of independent variables.
Ninfl: number of inflations the algorithm did in Step 1f or 2f for the indicated face

xn, xn, yn or xy (see explanation of the computational complexity of the
algorithm in §6.2).

Nproc: number of intervals the algorithm processed in Step 1g or 2g for the indicated
face xn, xn, yn or xy (see explanation of the computational complexity of
the algorithm in §6.2).

We can see from Table 8.1 that the algorithm was successful on all the problems
in the test set. The algorithm is of order O

(

n3
)

. But the are many O
(

n3
)

and O
(

n2
)

steps. Some steps have many O
(

n3
)

and O
(

n2
)

substeps, and some of the substeps
still have many O

(

n2
)

structures. So, when n was small, those lower order structures
had significant influence on the CPU time. But, when n was large, the O

(

n3
)

terms
dominated. We can see this from the time ratios of Example 4 in Table 8.1.

In Table 8.2, for all the problems, there were two faces of xn, xn, yn and yn for
which Ninfl = 0. This is because the algorithm verified that un < 0 on each of those
two faces in Step 1b or 2b, and returned a degree contribution of each of those two
faces as 0. So, the algorithm didn’t proceed to Step 1f or 2f. For the same reason,
Nproc = 0 for those two faces. For the remaining two faces for which the algorithm
did proceed to Step 1f or 2f, Ninfl is small.

In Step 1g or 2g which immediately follows the inflations, Nproc = 0 for Example 2
and Example 3. This is because the inflations had covered the whole interval yn. (See
the algorithm in §6.1 and the explanation of its computational complexity in §6.2.)
More significant is that Nproc = 2 in Example 4 regardless of small n or large n. This
is because only one interval was processed to verify that F̃¬un = 0 has no solutions
when xn ∈ xl

n and only one interval was processed to verify that F̃¬un = 0 has
no solutions when xn ∈ xu

n. (See the algorithm in §6.1 and the explanation of its
computational complexity in §6.2.) This means that the algorithm was quite efficient.
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Table 8.2
Statistical Data

Ninfl Nproc

Problem n xn xn yn yn xn xn yn yn

Example 2 2 6 6 0 0 0 0 0 0
Example 3

(ε = +10−6) 2 2 2 0 0 0 0 0 0
Example 3

(ε = −10−6) 2 2 2 0 0 0 0 0 0
Example 4 5 0 0 5 5 0 0 2 2
Example 4 10 0 0 5 5 0 0 2 2
Example 4 20 0 0 4 4 0 0 2 2
Example 4 40 0 0 4 4 0 0 2 2
Example 4 80 0 0 4 4 0 0 2 2
Example 4 160 0 0 4 4 0 0 2 2
Example 4 320 0 0 3 3 0 0 2 2

9. Conclusions and Future Work. When we tested the algorithm, we took
advantage of knowing the true solutions. (See §7.1.) For this reason, we set w(xk)
and w(yk), 1 ≤ k ≤ n − 1 somewhat arbitrarily. But we plan to have the algorithm
eventually compute these, based on the accuracy of the approximate solution obtained
by a floating point algorithm and the accuracy of the quadratic model.

We presented an algorithm which was designed to work for the case that the rank
deficiency of the Jacobian matrix at the singular solution is one. But the analysis
in §5 and the algorithm in §6.1 can be generalized to general rank deficiency. Also,
at present, it is assumed that the second derivatives ∂2fn

∂xk∂xl
, 1 ≤ k ≤ n, 1 ≤ l ≤ n

don’t vanish simultaneously at the singular solution. In fact, the analysis in §5 and
the algorithm in §6.1 can be generalized to the general case that the derivatives of
fn of order 1 through r (r ≥ 2) vanish simultaneously at the singular solution. But
computing higher order derivatives may be expensive. Those two generalizations can
also be combined, i.e. any rank deficiency and any order of derivatives of fn that
vanish. We will pursue these generalizations in the future.

Another future direction of this study is to apply the algorithms to bifurcation
problems and other physical models.
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