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Abstract

Most branch and bound (B&B) algorithms for continuous global op-
timization work with hyper-rectangles, although some work in the 1970’s
dealt with simplexes. More recently, Žilinskas et al have considered branch
and bound for Lipschitz optimization, giving examples of how symmetry
can be used and how algorithms can be made efficient. Here, in the spirit
of that work, we consider simplex-based branch and bound algorithms
in which mathematically rigorous ranges on functions and constraints are
computed using interval arithmetic. We tie the subdivision process neatly
to the actual geometry, and we give formulas for reasonably tight bounds
on ranges.

1 Introduction

We consider the general global optimization problem

minimize ϕ(x)

subject to ci(x) = 0, i = 1, . . . ,m1,

gi(x) ≤ 0, i = 1, . . . ,m2,

where ϕ : Rn → R and ci, gi : Rn → R,

(1)

A common general deterministic approach, that is, a class of “complete”
algorithms [16] for finding the global optimum is the class of branch and bound

∗Submitted: (insert date); Revised: (insert date); Accepted:(insert date).

1

skarhbet@louisiana.edu
rbk@louisiana.edu


2 Sam Karhbet and Ralph Baker Kearfott, Simplicial Branch and Bound Tools

(B&B) methods, in which an initial domain is adaptively subdivided, and each
sub-domain is analyzed. This approach has the structure outlined in Algo-
rithm 1. One fairly general analysis of such an algorithm is [11].

Input : An initial region D(0), the objective ϕ, the constraints C, a
domain stopping tolerance εd, and a limit M on the
maximum number of regions to be allowed to be processed.

Output: OK = true and the best upper bound ϕ for the global
optimum, and the list C within which all optimizing points
must lie, if the algorithm completed with less than M
regions considered, and OK = false if the algorithm could
not complete.

1 Initialize the list L of regions to be processed to contain D(0);
2 Determine an upper bound ϕ on the global optimum;
3 i← 1;
4 while L 6= ∅ do
5 i← i+ 1;
6 if i > M then return OK = false;
7 Remove a region D from L;
8 Bound: Determine if D is not infeasible, and if it is not proven to

be infeasible, determine a lower bound ϕ on ϕ over the feasible

part of D;
9 if D is infeasible or ϕ > ϕ then return to Step 7;

10 Possibly compute a better upper bound ϕ;
11 if a scaled radius diam of D satisfies diam(D) < εd then
12 Store D in C;
13 Return to Step 7;

14 else
15 Branch: Split D into two or more sub-regions whose union is

D;
16 Put each of the sub-regions into L;
17 Return to Step 7;

18 end

19 end
20 return OK = true, ϕ, and C (possibly empty);

Algorithm 1: General Branch and Bound Structure

The predominant shape of region D in branch and bound algorithms follow-
ing the structure of Algorithm 1 is a box x, that is, a rectangular parallelepiped
defined by independent lower bounds xi and upper bounds xi on each coordi-
nate,

x = {x ∈ Rn | xi ≤ xi ≤ xi, 1 ≤ i ≤ n} ,

while the predominant method of branching has been bisection of one of the
coordinate directions, say the i-th one, to form two new boxes, one for which
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xi ≤ xi ≤ (xi + xi)/2 and one for which (xi + xi)/2 ≤ xi ≤ xi. This subdi-
vision method has been popular because of its simplicity, because a sub-region
provides clear error bounds on individual parameters, and because bounds on
the coordinates occur naturally in many problems.

However, other region shapes also have advantages and have been considered.
One alternative region is an n-simplex

S = 〈P0, P1, . . . , Pn〉 ,

the convex hull of n+1 points Pi ∈ Rn that do not lie in a hyperplane of dimen-
sion less than n. (For example, 2-simplexes are triangles, while 3-simplexes are
tetrahedra.) Proceeding from century-old work at the foundation of algebraic
topology, namely the use of simplicial complexes to approximate manifolds [1],
Stenger [23] proposed a B&B method for computing the topological degree, a
method subsequently enhanced with more elegant formulas by Stynes [25, 26]
and the present author [7, 8, 9, 10]. Although designed to numerically calcu-
late the topological degree, the basic process in these was a B&B algorithm for
finding all solutions to certain related nonlinear systems of equations, using a
heuristic to decide when to branch. An advantage of simplexes in that context
was the simple relationship between an n-simplex and its boundary. This au-
thor nonetheless moved away from using simplexes, in favor of boxes, because of
the difficulty of enclosing large volumes with simplexes for n larger and because
boxes are more natural when dealing with individual coordinate bounds, and
when bounding ranges with interval arithmetic.

Due to certain advantages, simplexes as domains in B&B algorithms have
received renewed scrutiny in more recent work. For example, the feasible region
is a subset of a simplex if the variables satisfy

non-negativity constraints xi ≥ 0, 1 ≤ i ≤ n (2)

and a

normalization condition

n∑
i=1

xi = 1. (3)

Similarly, if the problem is symmetric in the sense that, if, in addition to non-
negativity constraints, (x∗1, . . . , x

∗
n) is an optimizer, then the point obtained by

switching two parameters x∗i ↔ x∗j is also an optimizer, we may impose

symmetry-breaking constraints 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn, (4)

and the resulting feasible set is a subset of a simplex. There are numerous
variations of these conditions, such as when some of the coordinates satisfy
non-negativity and normalization constraints. Such conditions in the context
of simplex-based B&B have been considered recently by Žilinskas et al [18, 19,
20, 28, 30], while the Paulavčius and Žilinskas monograph [17] brings together
these results.

Paulavčius and Žilinskas consider a standard (Delaunay) triangulation of a
hyper-rectangle x ∈ Rn into n! simplexes whose vertices are subsets of the set
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of 2n extreme points of x, and use any linear constraints to eliminate those sim-
plexes in the triangulation that are infeasible, prior to the branch and bound
process. They give details for efficient B&B algorithms based on subdividing
the longest edge of the simplex in the branching step and use of heuristic es-
timation of Lipschitz constants used in the bounding step. In particular, two
function evaluation / branching schemes are proposed and implemented in the
branching and bounding steps: evaluation at the barycenters of the simplexes,
forming three sub-simplexes by trisecting the longest edge along with evaluation
at barycenters of faces, or forming two sub-simplexes by bisecting the longest
edge along with evaluation at vertices of simplexes.

Here, in the spirit of Paulavčius and Žilinskas, we investigate simplex-based
B&B algorithms in contexts in which the feasible region is best described by
a simplex. However, we develop representations that allow interval evaluations
(and hence mathematically rigorous bounds on ranges) with relatively small
overestimation. In §2, we present an appropriate way to represent the simplexes,
we derive an associated relatively sharp mean-value type interval extension, and
we present our branching process related to these representations.

A possible alternative, particular to polynomial and rational functions, to
the more general techniques presented here, is use of Bernstein polynomial rep-
resentations over simplices, since the range of the polynomial is bounded by the
Bernstein coefficients. Nataraj et al (see [21] etc.) have used this property in
B&B algorithms in which D is a box, and they have proposed relatively efficient
ways of computing the coefficients, as in [22]. Meanwhile, Garloff et al, perhaps
starting with [4] with Bernstein coefficients over a simplex but continuing to
the recent analysis of Bernstein coefficients over a simplex [2, 6, 27], have shown
that computation of Bernstein coefficients over a simplex can be done as simply
as over a box. We will compare the sharpness and efficiency of this alternative
in future work.

2 Representations and Subdivisions

The non-negativity constraints (2) combined with the normalization constraint (3)
define one kind of simplex, whereas non-negativity combined with the symmetry-
breaking constraints (4) and an upper bound on xn defines another kind of sim-
plex. The non-negativity constraints are common in practical problems, while
the normalization constraint, if not explicit, is satisfied, with variable scaling, by
any linear constraint all of whose coefficients are non-zero and of the same sign.
Both symmetry-breaking and normalization may be present, in which case the
set of all x satisfying both (2) and (3) is simply the n−1 dimensional simplex in
Rn whose vertices are the coordinate vectors ei, 1 ≤ i ≤ n, that is, the convex
hull of the points {ei}ni=1 ⊂ Rn, a structure that can be used.

Any symmetry or normalization conditions are incorporated into the de-
scription of the initial simplex, with the feasible region defined by (2) or (3)
consisting precisely of that simplex; this is easily achievable. Thus, if we subdi-
vide this simplex, any resulting sub-simplexes will also satisfy these constraints,
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just as all sub-boxes of a box satisfying bound constraints satisfy the bound
constraints, and we wish to take advantage of special methods for subdividing
simplexes. Ideally, for computational purposes we would choose a represen-
tation for this simplex that simultaneously sharply describes the geometrical
region (without overestimation), leads to little overestimation when used in in-
terval evaluation, and allows sharp description of the subregions formed from
branching, using the same fixed coordinate system. There are various possibili-
ties, although none we have envisioned to-date leads simultaneously to a sharp
description of the geometry, easy branching, and little additional overestimation
in the interval evaluations.

Here, we have elected to represent each simplex in the subdivision locally,
with its own barycentric coordinates, and we use a special scheme to limit
overestimation. Our technique is general, not depending on how the initial
simplex is constructed, and is relatively computationally efficient. A simple
implementation stores O(n2) information for each element in the list L in the
branch and bound process, but, using ideas and data structures such as in [7],
this storage can be reduced at the cost of additional overhead in processing the
L and possible additional difficulties in parallelization.

2.1 Notation

Let S denote an arbitrary simplex. The vertex representation of S is written

S = 〈P0, . . . , Pn〉 (5)

where the Pi are the set of n-vectors Pi = (pi,1, . . . , pi,n}ni=0 ⊂ Rn consisting of
the vertices of S; that is, S consists of the convex hull of the n+ 1 points Pi.

Given a simplex S, the (i, j)-th edge σi,j of S is the convex hull of Pi and
Pj , that is,

σi,j = {tPi + (1− t)Pj | 0 ≤ t ≤ 1} . (6)

A simplex S = 〈P0, . . . , Pn〉 consists precisely of the set of points

S =

{
n∑
i=0

µiPi
∣∣ n∑

i=0

µi = 1, µi ≥ 0, 0 ≤ i ≤ n

}
, (7)

where the µi are the barycentric coordinates.
We denote the unit cube [0, 1]n by C(n) and we denote C(n) \ (0, . . . , 0) by

C(n)
0 .

We use the common notation for intervals and interval vectors, as [13].

2.2 Interval Bounds for a Function over a Simplex

The set of points in a simplex S ⊂ Rn is described sharply using barycentric
coordinates. However, objectives and constraints are most commonly expressed
in terms of rectangular coordinates, corresponding to hyper-rectangles in Rn,
whereas the barycentric coordinates, although sharply describing the simplex,



6 Sam Karhbet and Ralph Baker Kearfott, Simplicial Branch and Bound Tools

have limits defined by an equality constraint and n inequality constraints. Use
of interval arithmetic to obtain ranges of a function f over a simplex would
suffer from overestimation, not only due to interval dependency, but also due to
evaluation over a region including more than just the simplex. One approach
would be to use bounds µi ∈ [0, 1] along with constraint propagation, but lim-
iting values from the constraint propagation still overestimate in general. Here,

we propose a many-to-one nonlinear map β : C(n+1)
0 → S that is onto S, and

we compute relatively sharp bounds on the range f(S) using special mean-value

extensions of f(β(C(n+1)
0 )) combined with an alternate extension of that portion

of C(n+1) around (0, . . . , 0).

Given (λ0, . . . , λn) ∈ C(n+1)
0 , we map it to the set of barycentric coordinates

by

(µ0(λ), . . . , µn(λ)) = γ(λ) =
1∑n
i=0 λi

(
λ0, . . . , λn

)
, (8)

and define β by

β(λ) =

n∑
i=0

µi(λ)Pi. (9)

The image of β is exactly S, although it is not injective. The preciseness of
the image gives β the potential to avoid excessive overestimation when using
interval arithmetic to bound the range of f over S, while lack of injectivity
does not necessarily result in overestimation. Essentially we will use an interval

extension of f ◦ β over a subset of C(n+1)
0 , and separate extensions near inverse

images of the vertices Pi (λi = 0, λj ≥ 1/n for j 6= i).
The basic extension is the well-known

mean value extension: f(x) ∈ f(x̌) +

n∑
i=1

∂f

∂xi
(x)(x− x̌) ∀x ∈ x when x̌ ∈ x,

(10)
where ∂f/∂xi(x) is an interval extension for the i-th partial derivative of f
over the box x. This extension is exact when f is quadratic, and provides sharp
bounds to second-order as the diameter of x tends to 0; see, for example, the
monograph [15, p. 47] or the text [14, p. 68ff] for additional explanation and
references to earlier work.

To obtain reasonable bounds for a function f over a simplex S, we combine
(8), (9), and (10). We begin with a box λ = ([λ1, λ1], . . . , [λn, λn]), where
[λi, λi] ⊆ [0, 1] for 1 ≤ i ≤ n. Observe that γ maps ((0, 1], . . . , (0, 1]) in a many-
to-one fashion precisely onto the entire set of admissible barycentric coordinates
µ, but with a singularity at (0, . . . , 0).

To reduce overestimation in the range of a function f over S, first make the
following assumptions.

Assumption 1. In bounding f over S:

1. Suppose the rectangular coordinates describing S have been translated so
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the barycenter of S is at the origin

1

n+ 1

n∑
i=0

Pi = (0, . . . , 0) ∈ Rn.

2. Suppose the range of f has been translated so f(0, . . . , 0) = 0.

With those assumptions, it is advantageous to work directly with the barycen-
tric coordinates µ and a mean-value extension. In particular, we have

f
( n∑
i=0

µiPi

)
∈ f(0) +

n∑
i=0

∂f

∂µi
(S)µi =

n∑
i=0

∂f

∂µi
(S)µi, (11)

where ∂f
∂µi

(S) is an interval enclosure for ∂f
∂µi

over S. Assuming f is given

in terms of the rectangular coordinates x ∈ Rn (where the coordinates x are
possibly offset to center them on the barycenter of S), we have

∂f

∂µi
(x(µ)) =

n∑
j=1

∂f

∂xj
(x(µ))

∂xj
∂µi

(µ) =

n∑
j=1

∂f

∂xj
(x(µ))pi,j , (12)

where pi,j is the j-th coordinate of the i-th vertex Pi of S. We let f j = [f, f ]

represent an interval enclosure for ∂f
∂xj

over S, define

f̌j(p) =


f
j

if p ≥ 0,

f j if p < 0,

f j if 0 ∈ p,

and combine (11) and (12) to obtain

f
( n∑
i=0

µiPi

)
∈

n∑
i=0

( n∑
j=1

f jpi,j
)
µi

⊆
[ n∑
i=0

n∑
j=1

pi,j f̌j(pi,j)µi,

n∑
i=0

n∑
j=1

pi,j f̌j(−pi,j)µi
]

=
[ n∑
i=0

Liµi,

n∑
i=0

Uiµi
]
, (13)

where Li = Inf
(∑n

j=1 pi,j f̌j(sgn(pi,j))
)

and Ui = Sup
(∑n

j=1 pi,j f̌j(−sgn(pi,j))
)
.

Thus, given good bounds on the partial derivatives of f with respect to the rect-
angular coordinates, we can obtain a lower bound for f over S by solving the
linear program

minimize

n∑
i=0

Liµi subject to

n∑
i=0

µi = 1 and µi ≥ 0 for 0 ≤ 0 ≤ n, (14)
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and an upper bound for f over S can be obtained by solving

maximize

n∑
i=0

Uiµi subject to

n∑
i=0

µi = 1 and µi ≥ 0 for 0 ≤ i ≤ n. (15)

Notice, however, that the minimum in (14) is Li` , where i` = argmin0≤i≤n Li,
and occurs at vertex Pi` , while the maximum in (15) is Uiu , where iu =
argmax0≤i≤n Ui, and occurs at vertex Piu .

In what follows, we use this terminology:

Definition 2.1. Let S ⊂ Rn be an n-simplex, and let x ⊂ Rn be the smallest
box enclosing S (that is, x is the interval hull of S), and let f be a function
whose range is to be enclosed over S.

1. A naive extension or NE of f over S is the interval evaluation of the
expression representing f with vector interval argument x.

2. The box mean value extension or BMVE of f over S is the mean value
extension (10) of f over x.

3. The simplex mean value extension or SMVE of f over S is the set of
bounds computed using (13), (14) and (15).

4. In examples, we compare our naive extension, the BMVE, and the SMVE
to the exact range of f over S, which in some instance we may compute
by rigorously globally optimizing f subject to the set of linear inequality
constraints defining S.

5. Another alternative to bounding the range of f over S is to bound the
range of f over x using slopes instead of interval extensions of the partial
derivatives of f . In our comparisons, we use Hansen’s technique [5], the
Hansen interval extension or HSE.

Example 1. Let f(x1, x2) = x2
1 + x3

2, and let S =
〈
(−1, 0), ( 1

2 ,−1), ( 1
2 , 1)

〉
. S

can be described with the constraints − 2
3x1 − 2

3 − x2 ≤ 0, − 2
3x1 − 2

3 + x2 ≤ 0,
x1 − 1

2 ≤ 0, and the range of f over S can be determined to be [−.75, 1.25]
(e.g. by optimizing f and −f with a rigorous global optimizer such as GlobSol
[12]). The enclosing rectangle for S is x = ([−1, 1

2 ], [−1, 1]), and a naive interval
evaluation over x gives [−1, 2], whereas a mean value extension over x (BMVE),
using naive interval extensions1 of the partial derivatives over x ∂f

∂x1
∈ [−2, 1],

∂f
∂x2
∈ [0, 3] gives f ∈ [−2, 1][−1, 0.5] + [0, 3][−1, 1] = [−4, 5], while the HSE,

holding x2 constant in ∂f
∂x1

, gives the same enclosure as the BMVE for this
example. In contrast, using (14) and (15) (the SMVE) gives

L0 = (−1)(1) + 0 = −1, L1 = 1
2 (−2) + (−1)(3) = −4,

L2 = 1
2 (−2) + (1)(0) = −1,

U0 = (−1)(−2) + 0 = 2, U1 = 1
2 (1) + (−1)(0) = 1

2 ,

U2 = 1
2 (1) + (1)(3) = 3.5,

1which in this case happen to be the exact ranges
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giving an enclosure [−4, 3.5] for the range of f over S, significantly better than
the mean value extension over x but not requiring a global optimization. For
this example, however, the naive interval extension over S, although not the
exact range, gives the tightest bounds. Summarizing, we have:

NE BMVE HSE SMVE ER

[−1, 2] [−4, 5] [−4, 5] [−4, 3.5] [−.75, 1.25]

Example 2. Let f(x1, x2) = 0.25x2
1 + x1 + x2 + 0.25x1x2 + 0.25x3

2, and let S
be as in Example 1. Computing as in Example 1, we obtain the following:

NE BMVE HSE SMVE ER

[−2.5, 2.25] [−3.375, 2.625] [-2.875, 2.375] [−1.75, 2.625] [−.8125, 1.9375]

For this function, the SMVE gives a lower bound better than the naive interval
extension, but a worse upper bound than the naive interval extension. The HSE
gives a lower upper bound than the SMVE in this case because of the form of f
and the position of S relative to the coordinate axes.

In fact, we expect the SMVE to always be contained in the BMVE, and for
the SMVE to be better than the naive interval extension for small diameter S,
or more generally when f is approximately linear over S. Depending on f and
the shape of S, the SMVE could provide much sharper bounds than the BMVE.
(However, depending on S, use of slopes rather than interval derivatives in the
BMVE may be superior to the SMVE with interval derivatives.)

Example 3. Let f be as in Example 2, but let

S = 〈(−0.25, 0), (0.125,−0.25), (0.125, 0.25)〉 .

The bounds, rounded out, are:

NE BMVE HSE SMVE ER

[−0.520, 0.411] [−0.551, 0.411] [−0.536, 0.403] [−0.282, 0.411] [−0.235, 0.391]

Example 4. Here, we look at a simplex none of whose sides are aligned with the
coordinate axes. Let f be as in Example 2, but let S = 〈(−2, 0), (2,−3), (0, 3)〉.
The bounds are:

NE BMVE HSE SMVE ER

[−13.25, 14.25] [−30.25, 30.25] [−28.25, 28.25] [−26.25, 24.75] [−8.25, 9.75]

If we take a smaller similar simplex, namely

S = 〈(− 1
4 , 0), ( 1

4 ,−
3
8 ), (0, 3

8 )〉,

we obtain the following (rounded out):

NE BMVE HSE SMVE ER

[−0.662, 0.678] [−0.743, 0.743] [−0.657, 0.657] [−0.305, 0.438] [−.235, .389]

We observe a tighter enclosure for the SMVE relative to the BMVE, on both
ends, although none of the enclosures approximate the exact range well. This is
due to the bounds on the partial derivatives of f over the enclosing box, rather
than the simplex.
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To obtain tighter enclosures, we can apply SMVE to the partial derivatives of
f , then apply SMVE to f itself using tighter bounds on the partial derivatives.
or to the partial derivatives of f , although that requires use of second-order
partial derivatives, and, if advantageous, we may use the Hansen slope technique
to obtain initial bounds on both f and its partial derivatives.

Example 5. Let f be as in Examples 2, 3 and 4, and let S be the smaller simplex
in Example 4. Then ∂f

∂x1
= 1

2x1 + 1
4x2 + 1, ∂f

∂x2
= 1

4x1 + 3
4x

2
2 + 1, and naive

interval evaluations over the box x = ([− 1
4 ,

1
4 ], [− 3

8 ,
3
8 ]) give ∂f

∂x1
∈ [0.781, 1.22]

and ∂f
∂x2
∈ [0.937, 1.17]. Applying SMVE to ∂f

∂x1
and ∂f

∂x2
then gives ∂f

∂x1
∈

[0.875, 1.10] and ∂f
∂x2
∈ [0.789, 1.274], giving an improvement in ∂f

∂x1
but not in

∂f
∂x2

. Intersecting the naive and SMVE values for ∂f
∂x1

and ∂f
∂x2

and using them
to compute the SMVE for f gives f ∈ [−0.274, 0.438], a further improvement to
the lower bound over the SMVE in Example 4, but no additional improvement
to the upper bound.

The SMVE may be applied recursively to higher-order partial derivatives,
resulting in a trade-off between computational work and sharpness of enclosures
for f over S.

Definition 2.2. The recursive SMVE, or RSMVE with k recursions (k ≥ 1) is
the SMVE where partial derivatives used in the SMVE are themselves obtained
with the SMVE, up to order k.

If, for example, f is quadratic, one need of course only apply recursion
down to k = 1, and the SMVE will give exact bounds on the first order partial
derivatives of f over S; however, the RSMVE may still not give exact bounds
on the range of f over S.

Example 6. Let S be the smaller simplex in Example 4, but let

f(x1, x2) = 0.25x2
1 + x1 + x2 + 0.25x1x2 + 0.5x2

2,

a quadratic function. We obtain the following (rounded out to 3 digits):

NE HSE SMVE RSMVE ER

[−0.649, 0.735] [−0.844, 0.844] [−0.344, 0.540] [−0.297, 0.516] [−.235, .446]

These examples illustrate that the SMVE can help in reducing the overes-
timation in converting from rectangular to simplicial coordinates, although, as
with other interval extensions, it does not completely do away with overestima-
tion. Overestimation for some f is inevitable when a polynomial time algorithm
is used to enclose a range.

When the simplex S does not have barycenter at the origin and when f is
not actually zero at the barycenter of S, roundoff error needs to be carefully
taken into account, for a mathematically rigorous result, when translating the
coordinates of the vertices of S and when evaluating f at the barycenter.

Algorithm 2 summarizes computation of the SMVE.
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Input : A simplex S = 〈P0, . . . , Pn〉 ⊂ Rn and a function f : S → R.
Output: Mathematically rigorous bounds f = [f, f ] on the range of

f over S computed with the SMVE scheme.
1 Determine the bounding box x for S by examining the components of

the Pi;
2 Compute a mathematically rigorous enclosure b for the barycenter of
S;

3 Form enclosures for the translated coordinates: P̌ i ← Pi − b,
0 ≤ i ≤ n, and denote by P̌ i,j , P̌ i,j and P̌ i,j the the enclosure for

the j-th coordinate of P̌ i, its lower, and its and upper bound,
respectively;

4 Compute an enclosure f b for f(b), e.g. by intersecting a naive interval
evaluation with a mean value extension over x;

5 Compute enclosures f j 1 ≤ j ≤ n, for the partial derivatives of f over

S;

6 f ←∞; f ← −∞;

7 for i = 0 to n do
8 Li ← 0; Ui ← 0;
9 for j = 1 to n do

10 if P̌ i,j > 0 then fU ← f j ; fL ← f
j
;

11 else if P̌ i,j < 0 then fU ← f
j
; fL ← f j ;

12 else fU ← f j ; fL ← f j ;

13 Li ← Li + P̌ i,jfL; Ui ← Ui + P̌ i,jfU ;

14 end

15 f ← min{f, Li}; f ← max{f, Ui};
16 end

17 return f = [f, f ];

Algorithm 2: Computing an SMVE for a function

For simplicity (and possibly for a balance between computation effort and
sharpness of enclosure), the recursive SVME is not incorporated into Algo-
ritnm 2.

Example 7. Let f be as in Example 6, but let

S = 〈(1, 3), (1.2, 3.4), (0.6, 3.8)〉 .

We obtain:

NE HSE SMVE ER

[8.64, 13.72] [8.27, 13.83] [9.22, 12.49] [9.50, 12.28]

In these computations, the NE, and hence the HSE, SMVE, and HSMVE
all depend on the form in which the expression for f is written, due to the
subdistributivity of interval arithmetic.
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2.3 Conversion Between Simplex Representations

A simplex S ⊂ Rn can be represented either in terms of its n+ 1 vertices or as
the feasible set of n+1 inequalities of the form Ax ≥ b for some A ∈ Rn+1×n and
b ∈ Rn+1. During the subdivision process in a branch and bound algorithm,
it is most convenient to work with the vertex representation S. However, in
constraint propagation as a filter to contract or eliminate individual subregions
encountered during the B&B process, it is useful to include the condition that
a point x belong to the subregion S being considered to do so, the constraint
propagation itself most easily uses the inequality, or halfspace representation
Ax ≥ b. Thus, conversion between the two representations is useful. Further-
more, in mathematically rigorous algorithms, it is important that the floating
point data computed for either representation correspond to a simplex that
contains the actual simplex. Here, we present formulas and algorithms for such
mathematically rigorous conversions.

We denote the vertex representation, or V-representation of the simplex S
by SV (the convex hull of its vertices), and the halfspace represention, or H-
representation of the simplex, by SH. Each row aix ≥ bi of Ax ≥ b in the
halfspace representation represents a half space corresponding to the side of a
hyperplane containing a face of S in which S lies, i.e. a supporting hyperplane
for S.

More generally, this dual characterization of polytopes (and polyhedra) is
explored in depth in standard texts [29]. Here, we freely refer to a simplex using
either characterization. We form n+ 1 halfspaces with interval coefficients that
enclose S. We first briefly review a conversion from SV to SH in real arithmetic.

In real arithmetic, the corresponding halfspace representation of a simplex
is determined as follows: Given a simplex S = 〈P0, P1, . . . , Pn〉, denote its i-th
face by S¬i = 〈P0, P1, . . . , Pi−1, Pi+1, . . . , Pn〉, where Pi is not a vertex of S¬i.
Choose an arbitrary vertex of S¬i and denote it by P̃0, and denote the remaining
vertices of S¬i with P̃j , so

S¬i = 〈P̃0, P̃1, . . . , P̃n−1〉.

Letting Π denote the hyperplane containing the face S¬i, computing a nontrivial
solution a>i = (ai1, ..., ain)> of the system (P̃1 − P̃0)>

...

(P̃n−1 − P̃0)>

 ai = 0

gives a normal vector that defines Π − P̃0. Te offset bi from translating Π by
P̃0 is bi = a>i P̃0 so Π = {x ∈ Rn : a>i x = bi}. The sign of the corresponding
inequality constraint is then determined from the side of the hyperplane Π upon
which the point Pi lies; we replace the equals sign in a>i x = bi with “≥” or “≤”
based on whether a>i (Pi − P̃0) > 0 or a>i (Pi − P̃0) < 0, respectively. (In real
arithmetic, one of the strict inequalities is guaranteed provided ai 6= 0 and the
vertices of S are affinely independent.)
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Negating any inequalities of the form a>i x ≤ bi, for example, one obtains the
halfspace representation of S as {x ∈ Rn : Ax ≥ b}, where the i-th row of A is
a>i (or −a>i ) and each entry of b is bi (or −bi). This gives the real arithmetic
conversion from SV to SH.

In finite-precision arithmetic, we instead seek a rigorous enclosure of S =
{x : Ax ≥ b}, with our starting point as a collection of boxes P 0, P 1, . . ., P n

such that for each j = 0, 1, . . . , n, the exact vertex Pj of S is contained in the
box P j . That is, SV = 〈P0, P1, . . . , Pn〉 is contained in the convex hull of the
n+ 1 boxes P 0, P 1, . . ., P n.

Figure 1: A simplex S and the convex hull of the boxes P j containing its vertices Pj .

The enclosure for the simplex comes from an intersection of “interval-halfspaces”
Hi, i = 0, 1, . . . , n; each interval-halfspace contains the simplex S, as is the case
with its real arithmetic analog. An interval-halfspace for our purposes is defined
as a linear inequality using interval coefficients in place of real coefficients for
the normal vector defining the halfspace. We analogously represent an interval-
halfspace using an interval dot product:

Hi := {x : a>i x ≥ bi}

=
⋂
ai∈ai

{x : a>i x ≥ bi}.

Here, bi is a scalar; the underline notation is to suggest that in our relaxation
of S, we seek to have bi ≤ bi where bi is the scalar from the corresponding
real halfspace {x : a>i x ≥ bi}. An interval dot product between two intervals
x and y is taken as an interval-valued extension x>y which contains all of the
pointwise evaluations {x>y : x ∈ x, y ∈ y} of the real-valued dot product. The
inequality x ≥ y with the usual symbol ≥ overloaded for intervals is taken to
mean that inf x ≥ supy. These notations subsume the special case of one of
the intervals taken as a real scalar (the real scalar is identified with an interval
whose endpoints are equal).

In real arithmetic, Hi itself is an intersection of a finite number of (real)
halfspaces; we are in effect constructing a polyhedral enclosure of the simplex.
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These n + 1 interval-halfspaces Hi can then be immediately applied to obtain
a floating-point-defined simplex Sfl which rigorously contains the true simplex
S, successfully accounting for the original roundoff error in specifying the co-
ordinates of its vertices. The inclusion S ⊂ Sfl is immediate, for if S ⊂ Hi =⋂
ai∈ai

{x : a>i x ≥ bi} (i = 0, 1, . . . , n), we can simply take n+1 floating number

vectors afl(i) ∈ ai so that, in particular, S ⊂
⋂n
i=0{x : a>fl(i)x ≥ bi} := Sfl. i.e.,

S is contained in a verified floating-point defined simplex.
Computing an enclosure for ai parallels the procedure followed in real arith-

metic; this is done by obtaining an enclosure of a nonzero solution ai of (P̃ 1 − P̃ 0)>

...

(P̃ n−1 − P̃ 0)>

 ai = 0.

The boxes P i 3 Pi for the vertices Pi of S are used to enclose a real num-
bered vertex, accounting for round-off error; therefore the boxes of the vertices
should have nearly zero width, thereby making the interval coefficient matrix
above regular in practice. We do not verify the regularity of the matrix here.
However, we check if the interval row vectors in the coefficient matrix above are
nonzero before proceeding.

Using a floating-point algorithm such as QR factorization or singular value
decomposition, one can obtain an approximate nonzero solution ai to the system
above (e.g., taking ai with unit length). Enclosing ai in a box a(0) away from the
origin, apply an interval Newton iteration to the system Mz = 0, z>z− 1 = 0,
with initial box a(0) 3 ai, and where M is the coefficient matrix above. This
generates an enclosure ai for a nonzero normal vector of the halfspace corre-
sponding to the face S¬i. Enclosures were obtainable for simplices in dimensions
as high as n = 500; numerical experiments in low dimensions are shown in the
tables below. We remark that it also possible in low dimensions (n < 10) to
apply the modified Gram-Schmidt procedure; orthogonalization of

(P̃ 1 − P̃ 0)>

...

(P̃ n−1 − P̃ 0)>

(P i − P̃ 0)>


can sometimes be done by using the orthogonalized vector from the last row
(P i − P̃ 0)> as a candidate for ai, although a separate verification of 0 /∈ ai is
recommended to immediately rule out a possible degenerate case that may cause
the corresponding interval-halfspace Hi = {x : a>i x ≥ bi} to have measure zero
in Rn, thereby preventing a nondegenerate n-simplex from being contained in
Hi.

After obtaining an enclosure ai for the normal vector ai that excludes the
zero vector, we verify the orientation of the enclosure ai by interval computa-
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tions; we check whether a>i (P i− P̃ 0) > 0 or ai
>(P i− P̃ 0) < 0. We replace ai

with −ai in the latter case.
In real arithmetic, the exact value of bi is bi = a>i P̃0. It suffices to decrease

bi until it is verified that a>i P j ≥ bi for j = 0, 1, . . . , n. This process is guaran-

teed once the sign of ai
>(P i − P̃ 0) has been determined in the previous step.

In practice, decreasing the infimum of a>i P̃ 0 several times by an amount pro-
portional to the maximum magnitude of the coordinates of the vertices S will
suffice if the enclosures for the vertices have near zero-width.

At this stage, the interval computations a>i P j ≥ bi for j = 0, 1, . . . , n prove
that S ⊂Hi. We elaborate on this point in the following proposition.

Proposition 2.1. Let Hi = {x : a>i x ≥ bi} be an interval-halfspace. Verifica-
tion of a>i P j ≥ bi (j = 0, 1, . . . , n) implies S ⊂ conv {P 0,P 1, . . . ,P n} ⊂Hi.

Proof. This follows from the interpretation of the interval dot product a>i P j as
an interval which contains the set of pointwise evaluations {a>i y : ai ∈ ai, y ∈
P j} along with the interval inequality a>i P j ≥ bi implying that for all c ∈
a>i P j , c ≥ bi. Therefore, in particular, we have that for all ai ∈ ai, and for
the (true) vertex Pj ∈ P j , a

>
i Pj ≥ bi. i.e., Pj ∈ {x : a>i x ≥ bi} for each

ai ∈ ai, or Pj ∈
⋂
ai∈ai

{x : a>i x ≥ bi} = Hi. Passing to the convexity of Hi,
we have that S = 〈P0, P1, . . . , Pn〉 ⊂ Hi. A repeat of this argument gives us
S = 〈P0, P1, . . . , Pn〉 ⊂ conv {P 0,P 1, . . . ,P n} ⊂Hi.

As remarked earlier, the interval-halfspace Hi can then be immediately ap-
plied to rigorously contain S (as well as conv {P 0,P 1, . . . ,P n}) using a floating-
pointed defined halfspace.

After the verifications have completed, the simplex S is enclosed in an in-
tersection of a finite number of interval-halfspaces Hi (which is, in turn, an
intersection of a finite number of real halfspaces), represented by the interval
system of linear inequalities; the system is compactly written asx :

 a>1
...

a>n+1

x ≥

 b1
...

bn+1


 = {x : Ax ≥ b}.

A diagram of a simplex S and its interval-based enclosure is in Figure 2. For
illustrative purposes, the enclosure is exaggerated using wide boxes for both the
vertices and for each normal vector box ai.

We provide a couple of numerical examples that compare the results of a
floating-point algorithm that generates the halfspace representation of a sim-
plex along with an interval-based enclosure. The enclosures were generated in
Matlab using the Intlab toolbox for interval computations. The implemented
script follows the outline above; safechecks using return flags were incorporated
throughout to indicate a failure to verify any computations. In each example,
we have that S = {Ax ≥ b} ⊂ {Ax ≥ b}; in particular, A ∈ A and b ≥ b. The
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(a) An n-simplex S enclosed in the
polyhedron {Ax ≥ b} =

⋂n
i=0 Hi.

Each interval-halfspace Hi = {a>i x ≥
bi} corresponds to the thick borders of
one color.

(b) A verified floating-point enclosure
Sfl of S.

Figure 2: Uncertain vertices and rigorous halfspace enclosure

floating-point and interval examples display approximately unit normal vectors
for each row a>i and a>i of A and A, respectively.

The subscript-superscript notation used in the table refers to an interval
whose tail-end digits differ. The interval [23.456891877, 23.456891956], for ex-
ample, is denoted by 23.456891956

877. As a special case of this notation, we
append the subscripts with an addition or subtraction symbol. The nota-
tion is analogous to the mid-radius format; this is used for some intervals
whose bounds have trailing 9’s. For example, [5.99999, 6.00001] is denoted by
[6.00000− 0.00001, 6.00000 + 0.00001] = 6.00000+1

−1, while [−6.00001,−5.99999]

= −6.00000+1
−1. Digits that differ between the two representations are under-

lined.

2.4 The Subdivision Process

We subdivide by bisecting an edge. Since, upon repeated such bisections, the
barycentric coordinates of the resulting sub-simplexes are not related in a simple
way to the barycentric coordinates of the original simplex, we use local barycen-
tric coordinates, particular to each sub-simplex. For this, computing the interval
extensions requires knowledge of the vertices Pi of each sub-simplex. This can
be done with storage of n2 floating point numbers at the current simplex, along
with information on which edge was bisected (necessitating two small integers)
at each node in the search tree.
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S 〈(−2, 0), (2,−3), (0, 3)〉

A -0.948683298050515 -0.316227766016838

0.832050294337843 -0.554700196225230

0.599999999999999 0.800000000000000

b -0.948683298050517

-1.664100588675688

-1.200000000000000

A -0.9486832980505 10
20 -0.3162277660168 30

40

0.8320502943378 50
40 -0.5547001962252 20

30

0.6000000000000 +1
−1 0.8000000000000 +1

−1

b -0.948683298051520

-1.664100588676690

-1.200000000001010

Table 1: A 2-simplex S = {Ax ≥ b} ⊂ {Ax ≥ b}.

3 Summary, Future Work, and Perspectives

Inspired by recent work dealing with sampling algorithms based on simplicial
subdivisions, we have begun an investigation of the use of simplicial subdivisions
in mathematically rigorous interval-based algorithms. We have proposed and
evaluated tools for bounding ranges over simplices and for rigorously converting
between simplex representations, tools beneficial in simplex-based branch and
bound algorithms. We have a crude implementation of such an algorithm, but
have not completed this work yet.

Simplex-based branch and bound algorithms have potential advantages when
the feasible set of the optimization problem is constrained to lie within a sim-
plex. However, such advantages may be outweighed by disadvantages in the
process. Use of simplices has been shown to be advantageous in branch-and-
bound algorithms with function ranges based on statistical sampling; see [18].
In such sampling algorithms, simplices bring one more quickly to an upper ε-
approximation to the global optimum. However, in mathematically rigorous
algorithms, one still needs to obtain a rigorous lower bound, which sampling
alone does not provide.

Processing simplicies as individual subregions in a branch-and-bound pro-
cess suffers from a volume limitation relative to rectangular subregions. Since
an n-simplex contains 1/n! times the volume of its corresponding rectangular
enclosure, we hypothesize that even if one were to obtain an exact evaluation
procedure for an objective function over a simplex, the fact that a rectangular
evaluation processes n! times as much volume may make a simplicial interval
branch-and-bound procedure not competitive with traditional rectangular in-
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S 〈(−15,−45,−30, 0), (−15, 0, 0, 15), (15, 45,−45, 30), (30, 0,−75, 15), (0, 0, 0, 0)〉

A -0.629940788348713 0.251976315339484 -0.377964473009228 -0.629940788348712

0.395559497062417 -0.342818230787429 0.316447597649934 0.791118994124834

-0.587445337490969 0.430793247493376 -0.352467202494582 -0.587445337490968

0.629940788348711 -0.377964473009228 0.251976315339484 0.629940788348713

-0.000000000000002 0.316227766016838 -0.000000000000002 -0.948683298050514

b 0.000000000000008

-0.000000000000022

0.000000000000033

0.000000000000021

-14.230249470757674

A -0.6299407883487 10
20 0.2519763153394 90

80 -0.3779644730092 20
30 -0.6299407883487 10

20

0.3955594970624 20
10 -0.3428182307874 20

30 0.3164475976499 40
30 0.7911189941248 40

30

-0.5874453374909 60
70 0.4307932474933 80

70 -0.3524672024945 80
90 -0.5874453374909 60

70

0.6299407883487 20
10 -0.3779644730092 20

30 0.2519763153394 90
80 0.6299407883487 20

10

0.0000000000000 +1
−1 0.3162277660168 40

30 0.0000000000000 +1
−1 -0.9486832980505 10

20

b -0.000000000000990

-0.000000000001060

-0.000000000000950

-0.000000000001070

-14.230249470758660

Table 2: A 4-simplex S = {Ax ≥ b} ⊂ {Ax ≥ b}.

terval branch-and-bound algorithms.
Another possible drawback to using simplicies comes from memory usage:

Each n-simplex (subregion) is defined by n + 1 interval vectors or 2n(n + 1)
floating point numbers, whereas a rectangular subregion requires only one in-
terval vector of length n or 2n floating point numbers. This could be a limiting
factor for larger n.

We will be able to draw more definite conclusions after further investigation.
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