
A Preconditioner Selection Heuristic for Efficient

Iteration with Decomposition of Arithmetic

Expressions for Nonlinear Algebraic Systems

R. B. Kearfott and Xiaofa Shi∗

Abstract

We have recently considered decomposing a system of nonlinear equations by
defining new variables corresponding to the intermediate results in the evalua-
tion process. In that previous work, we applied both a derivative-free component
solution process and an interval Gauss–Seidel method to the large, sparse system
of equations so obtained.

An analysis of the component solution process indicates when a linearized
Gauss–Seidel step is necessary, and how to make it more effective. In this paper,
we will present preliminary results on an improved, efficient hybrid algorithm
combining the component solution process with only an occasional Gauss–Seidel
step on a single component.

1 Introduction, Background, and Motivation

The general goal of this paper is to find, with certainty, approximations to all
solutions of the nonlinear system

F (X) =

 f1(x1, x2, ..., xn)
...

fn(x1, x2, ..., xn)

 = 0, (1)

where bounds xi and xi are known such that

xi ≤ xi ≤ xi for 1 ≤ i ≤ n.

We write X = (x1, x2, ..., xn)T , and we denote by B the box given by the above
inequalities on the variables xi.

∗This work was supported in part by National Science Foundation grants CCR-9203730
and DMS 9216120.

1

A general approach to such problems is to transform the nonlinear system
F (X) = 0 to the interval linear system

F′(Xk)(X̃k −Xk) 3 −F (Xk), (2)

where F′(Xk) is a suitable interval expansion of the Jacobi matrix over the box
Xk (X0 = B) and Xk ∈ Xk represents a predictor or initial guess point. A pre-
conditioned interval Gauss–Seidel method may then be used to compute a new
interval x̃k for the k-th variable. The method in [10] uses this, in combination
with a nonlinear solution process.

The method considered here is an improvement of the prototypical approach
explained in [10]. The general approach makes use of both interval arithmetic
and techniques of automatic differentiation. For brevity, we assume familiarity
with techniques of interval arithmetic; see [1], [13] or [14] for introductions. We
also assume that the reader has access to [10], where examples of the prototypical
approach are worked.

Our method uses the intermediate quantities obtained through evaluation of
arithmetic expressions. Our technology for obtaining and storing such expres-
sions is essentially the backward mode of automatic differentiation, as explained
in the review [5] or the proceedings [4]. However, our use of the intermediate
quantities differs from that in straightforward (or “straightbackward”) auto-
matic differentiation: we store interval values of the intermediate quantities.
We then recompute those intermediate quantities that depend on quantities
that have changed due to relationships defined in the original equations, due to
an interval Gauss–Seidel step, or due to bisection; we intersect the recomputed
values with the original values, continuing the process until stationary. Thus, in
contrast to usual automatic differentiation, we must view the defining relation-
ships for the intermediate quantities as functional relationships, rather than as
linearly ordered arithmetic operations.

This approach is very similar to that underlying the software described in [2],
but our terminology differs. The main substantive difference is that, in addition
to re-solving for the intermediate quantities and using bisection, we occasionally
apply preconditioned interval Gauss–Seidel steps to the expanded system of
equations obtained by treating each intermediate quantity as a variable. Such
linear algebra (either on the expanded system or on the original system 2) is
necessary when the system of equations is highly coupled1. Without such steps,
even linear systems such as that in Example 1 in §5 below require a large amount
of computation. This is obviated in the software of [2] with an extremely friendly
environment in which users can interactively change intervals while exploring
problems.

Our method is an improvement of that in [10], since far fewer expensive
preconditioned interval Gauss–Seidel steps are used. In particular, in the algo-

1essentially, when the Jacobi matrix is not a row and column permutation of a diagonally
dominant matrix

2

rithm of [10], an entire sweep of the interval Gauss–Seidel method was applied,
whereas here an interval Gauss–Seidel step is applied only to a selected coordi-
nate whose index is heuristically chosen. Additionally, our algorithm here uses
extended intervals in cases of division by zero-containing intervals, etc., whereas
the algorithm in [10], for programming simplicity, did not. Also, our selection
of coordinate to bisect (when bisection is necessary) differs here from that in
[10].

A brief introduction to the underlying ideas and terminology appears in §2.
We explain our heuristic for determining the variable for the interval Gauss–
Seidel step in §3. Our algorithm appears in §4, while numerical results appear
in §5. Conclusions and future directions then appear.

2 Outline of Underlying Ideas

We write X = (x1,x2, ...,xn)T for Xk, lb(x) or x for the lower bound of the
interval x, ub(x) or x for the upper bound of the interval x, and f′ij for the
interval in the i-th row and j-th column of F′ = F′(X). Similarly, we write
X = (x1, x2, ..., xn)T and F = F (X) = (f1, f2, ..., fn)T , so that (2) becomes

F′ · (X̃−Xk) 3 −F. (3)

Suppose Yk = (yk1, yk2, ..., ykn) is the preconditioner for xk. The preconditioned
Gauss–Seidel method may then be stated as

Algorithm 2.1 (Preconditioned Gauss–Seidel method)

1. Compute Yk · F′(X̃−Xk) and −YkF . Then compute

x̃k = xk −

 n∑
i=1

ykifi +

n∑
j=1
j 6=k

(
n∑

i=1

ykif
′
ij

)
(xj − xj)

/ n∑
i=1

ykif
′
ik (4)

2. If x̃k ∩ xk = ∅, then return, indicating that there is no root of F in X.

3. Replace xk by xk ∩ x̃k.

As explained in [8] and [11], the preconditioner Yk is used to minimize the width
of x̃k represented by (4). Yk can be computed by solving an L-P problem, as
indicated in [8] and [11].

The Decomposition Process and the Code List

In this paper, a code list is used to represent the system of equations. The
code list is essentially the list of elementary operations required to evaluate the

3

Operation 1: xp = axq + bxr
Operation 2: 0 = axq + bxr
Operation 3: 0 = axq + b
Operation 4: xp = xqxr
Operation 5: xp = x2q

Table 1: Some operation codes for a code list.

function. Such code lists are commonly used in automatic differentiation; see
[5] or [4]. We explain the main idea of the decomposition process and the code
list here.

Our code list is in the following format:

Operation number P Q R A B,

where P , Q and R are variable indices and A and B are possible constants
associated with the operation. Operation numbers are listed in Table 1. For
example, we could decompose the equation

x3 − 3x2 + 2x = 0

as follows.

y1 = x

y2 = y21

y3 = y1y2

y4 = y3 − 3y2

y4 + 2y1 = 0

Examining Table 1, where we list operation numbers, we see the corresponding
code list to be:

1 4
5 2 1 0 0. 0.
4 3 1 2 0. 0.
1 4 3 2 1. − 3.
2 0 4 1 1. 2.

The 1 and 4 in the first row are the numbers of equations in the original system
and the expanded system, respectively.

Forward Substitution and “Solving Analytically”

4

In the above example, after decomposing the equation, we compute y1, y2,
y3 and y4 from the expanded equations by forward substitution. For example,
suppose the interval value of x is x = [−1, 0]; then we compute the remaining
intervals as follows:

y1 = x = [−1, 0]
y2 = y2

1 = [0, 1]
y3 = y1y2 = [−1, 0] · [0, 1] = [−1, 0]
y4 = y3 − 3y2 = [−1, 0]− 3 · [0, 1] = [−4, 0]

From the last equation in the expanded system, we have
y4 = −2y1

Solving for y4 in this way, we get
y4 = −2y1 = −2 · [−1, 0] = [0, 2].

This is the meaning of solving analytically. Narinyani, Semenov, et al. use a
similar technique in their “subdefinite” computations. Their work is embodied
in the software package Unicalc, introduced in [2].

A FORTRAN-90 software system for automated generation and use of the
code list, as well as a complete description of the code list itself, will be described
in [12].

3 A Heuristic for Variable Selection

In our algorithm, we do not apply (4) to each variable k, but we choose a
particular k likely to lead to progress. Ideally, such an index k would satisfy

w(x̃k)

w(xk)
= min

1≤l≤n

w(x̃l)

w(xl)
, (5)

where w(xk) is the width of the interval xk.

Here, we consider the relative decrease w(x̃k)
w(xk)

, rather than w(x̃k) itself, to

take account of scaling: Otherwise, if w(xk) were already small, k could possibly
be chosen even though a preconditioned Gauss-Seidel step would not decrease
the width much. If w(xk) were large, w(x̃k) may still be large, and hence k
could possibly not be chosen, even if a Gauss–Seidel step would cause a large
decrease in width.

From (4), we have

w(x̃l) = w

 n∑
j=1
j 6=l

(
n∑

i=1

ylif
′
ij

)
(xj − xj)

 (6)

provided lb(
∑n

i=1 ylif
′
il) = 1. Thus,

5

w(x̃l) ≤
n∑

j=1
j 6=l

∣∣∣∣∣
n∑

i=1

ylif
′
ij

∣∣∣∣∣w(xj)

≤
n∑

j=1
j 6=l

n∑
i=1

∣∣f′ij∣∣w(xj) ‖Yl‖1

≤ ‖Y‖
n∑

j=1
j 6=l

n∑
i=1

∣∣f′ij∣∣w(xj), (7)

where
∣∣f′ij∣∣ = max{

∣∣f′ij∣∣ , ∣∣f′ij∣∣}, Y =
(
Y T
1 , Y

T
2 , ..., Y

T
n

)T
is the preconditioner for

the whole system, and where we assume xj ∈ xj for every j.
Our heuristic involves replacing the relative decrease of (5) by the right

member in (7) divided by w(x̃l). Doing so, we do not need to obtain Yk to

determine the estimates of the relationships among the w(x̃l)
w(xl)

. We may thus

choose k such that∑n
j=1
j 6=k

∑n
i=1

∣∣f′ij∣∣w(xj)

w(xk)
= min

1≤l≤n

∑n
j=1
j 6=l

∑n
i=1

∣∣f′ij∣∣w(xj)

w(xl)
. (8)

Another factor we should consider here is, if the intervals f′ik all contain 0 for
i = 1, 2, ..., n, then the preconditioner Yk does not exist. Thus, if we denote by
J the set of all indices l such that f′il do not contain 0 for at least one i, then
we choose k such that∑n

j=1
j 6=k

∑n
i=1

∣∣ f′ij∣∣w(xj)

w(xk)
= min

l∈J

∑n
j=1
j 6=l

∑n
i=1 |fij |w(xj)

w(xl)
. (9)

4 Our Algorithms

In this section and the next, we present two algorithms that combine the com-
ponent solution process with an occasional Gauss–Seidel step on a single com-
ponent. We then use numerical examples to compare these algorithms with the
algorithm discussed in [10].

As mentioned in the introduction, our algorithm first computes ranges exact
to within roundout error on the inverses of elementary operations and functions
to solve for each variable in each equation containing it. Then, when no vari-
able can be changed by this process, we apply a preconditioned Gauss–Seidel
method to the linear system (2) for a selected variable xi0 . If the width of
xi0 is decreased, we compute all xi’s in each equation which contains xi0 . If

6

some additional xi are changed, we repeat this process. A generalized bisec-
tion method will be used if none of the variables can be changed by either the
variable solution process or the Gauss–Seidel step on the selected variable.

Algorithm 4.1

0. (Input the initial data.)

a) Input M , the number of equations in the original system;

b) Input N , the number of equations in the expanded system;

c) Input the code list and the initial box B.

As in the example in §2, we place the M equations corresponding to
the original system at the end of the code list.

d) Input ε, a convergence tolerance.

e) Use forward substitution to compute xM+i for 1 ≤ i ≤ N −M , and
thus get the initial box X0 for the expanded system.

1. (Scan all the variables in the last M equations.)

For i = 1, 2, ..., n, if xi is contained in one of the last M equations in the
expanded system, store i in V.

2. (Solve for some variables analytically from the equations con-
taining them.)

Do for l ∈ V while V 6= ∅.
For each equation index j such that xl occurs in the j-th equa-
tion, do

a) Solve the j-th equation analytically for each variable xi con-
tained in the j-th equation2, obtaining new bounds x̃i.

b) If x̃i∩xi = ∅, return, indicating that there is no root of F (X)
within the box given by X= (x1,x2, ...,xn)T .

c) If [w(xi)− w(x̃i ∩ xi)]/w(xi) is bigger than a tolerance, say
ε0, then

(i) Store i in the stack V.

(ii) Replace3 xi by x̃i ∩ xi.

End do.

2We do not solve for xi in the j-th equation if we had just solved for some other variable
in that equation, because no improvement in xi could then be made.

3Since x̃i may be an extended interval, this step may produce two intervals, and two
corresponding boxes Xk. In this case, one of the boxes is pushed onto a stack S, and will be
considered later in step 3.

7

End do.

End if.

3. (Complete processing a sub-box, get a new sub-box.)

If the widths w(xi) are each less than ε for i = 1, 2, ...,M , then

a) Store Xk on a list L of root-containing boxes.

b) If the stack S of sub-boxes yet to be considered (and produced from
bisection or arithmetic operations) is empty, return indicating con-
vergence.

c) If S is nonempty, take a box from it, put the corresponding compo-
nents in the list V of changed variables, then return to step 2.

4. (Continue derivative-free iteration if possible.)

If V is nonempty, repeat steps 2 and 3.

5. (Apply a preconditioned Gauss–Seidel step if necessary.)

If V is empty, then

a) Compute the Jacobi matrix F′ over Xk, and select index k = k0 as
described in §3.

b) Compute the preconditioner Yk0 , apply the interval Gauss–Seidel
method to the preconditioned system, and get a bound x̃k0 on xk0 .

c) If x̃k0
∩ xk0

= ∅, return, indicating that there is no solution of the
system F (X) = 0 within the box Xk.

d) If [w(xk0) − w(x̃k0 ∩ xk0)]/w(xk0) ≥ ε0, put k0 into V, and then go
to step 2.

End if.

6. (Do a bisection as a last resort.)

If V is empty, then

a) Bisect xk0 .

b) Store one of the boxes, with corresponding changed coordinate infor-
mation on S.

c) Put k0 into V, make the other box the current box, and then go to
step 2.

End if.

7. Return.

8

Remark 1. In the algorithm discussed in [10], a preconditioner was computed
for all variables, after the substitution/iteration process. In contrast, in Algo-
rithm 4.1 above, we only compute the preconditioner for a single variable. We
thus save a factor of N in this method, where N is proportional to the number
of operations required to evaluate the functions. Perhaps, however, a few more
boxes may be produced.
Remark 2. The reason we only scan the last M equations in step 1 is because
forward substitution is used to obtain initial intervals in the other equations.
Hence no additional information relating the interval sizes could be obtained
from them. For example, suppose we compute x3 by x3 = x1 + x2. Then

x1 ⊆ x̃1 = x3 − x2 and x2 ⊆ x̃2 = x3 − x1.

Thus, we will get nothing new by setting

x1 = x1 ∩ x̃1 and x2 = x2 ∩ x̃2.

Remark 3. Sometimes the derivative-free process converges slowly. Thus, to
make the overall iteration more efficient, we introduce a tolerance ε0 in part c)
of step 2 and in part d) of step 5, and check the approximate condition

[w(xi)− w(x̃i ∩ xi)]/w(xi) ≥ ε0, (10)

instead of checking the exact condition xi 6= x̃i ∩ xi.
Numerical tests show that, if an L-P preconditioner has previously been

computed for a particular variable, the same preconditioner usually works well
if we wish to solve for the same variable later in the computation. Thus, in
step 5, if Yi0 has been computed when step 5 was previously entered, we use
the previous Yi0 . We then only recompute Yi0 if its previous values do not work
well. In other words, we replace step 5 by the following

Step 5′. Apply the preconditioned Gauss–Seidel method with the pre-
vious preconditioner Yi0 .

a) Compute the Jacobi matrix F′ over Xk and select index i0 as described
in §3;

b) Apply the interval Gauss–Seidel method to the preconditioned linear sys-
tem with the previous preconditioner Yi0 , if Yi0 is available.

(i) If Yi0 has been computed before, use it to precondition the linear
system, and get a bound x̃i0 on xi0 ;

(ii) If x̃i0 ∩ xi0 = ∅, return, indicating that there is no root of F (X)
within Xk;

(iii) If [w(xi0)− w(x̃i0)]/w(xi0) ≥ ε0, store i0 into V, go to step 2;

9

(iv) If V is empty, compute Yi0 and store it in the i0-th row of matrix Y.
Apply the preconditioned Gauss–Seidel method to get a bound x̃i0

on xi0 .

We will refer to the algorithm so obtained as Algorithm 4.2.
Remark 4. Of course, the matrix Y could require too much storage if the
system took a large number of operations to evaluate. In such an instance, we
may wish to only store several preconditioner rows (say, the last three distinct
ones that have been computed). This should lead to a reasonable algorithm, for
our experiments indicate that often only several variables are selected as step 5
a) is repeatedly executed.

5 Experimental Results

Our preliminary results will be based on the following illustrative examples.

Example 1:

F (X) =

 f1(x1, x2, x3)
f2(x1, x2, x3)
f3(x1, x2, x3)

 =

 9x1 + 10x2 + 11x3 − 30
12x1 + 13x2 + 11x3 − 36
13x1 + 11x2 + 14x3 − 38

 = 0

with initial box B=

(
x1

x2

)
=

(
[−20, 20]
[−20, 20]

)
. The system has one solution

within the initial box B. This example is interesting because, though linear, the
matrix is not a permutation of a diagonally dominant matrix, or an interval H-
matrix. Thus, iteration without preconditioning cannot succeed, even with the
decomposition technique of §2. The situation is analogous to that of the classical
Gauss–Seidel method applied without preconditioner. This is why we include
this seemingly trivial example: our algorithm attempts to avoid preconditioner
computation, but uses a heuristic to determine when to apply a preconditioner.

Example 2:

F (X) =

[
f1(x1, x2)
f2(x1, x2)

]
=

[
x31 + x21x2 + x22 + 1
x31 − 3x21x2 + x22 + 1

]
= 0

with initial box B =

(
x1

x2

)
=

(
[−200, 200]
[−200, 200]

)
. The system has one solution

within the initial box B. This simple example’s interest lies in the fact that there
is substantial interval dependency in the individual equations in the system and
between the equations, and was introduced in [10] to illustrate the advantages
of decomposition of arithmetic expressions.

Example 3:

F (X) =

[
f1(x1, x2)
f2(x1, x2)

]
=

[
4x31 − 3x1 − x2

x21 − x2

]
= 0

10

with initial box B =

(
x1

x2

)
=

(
[−2, 2]
[−2, 2]

)
. The system has three solutions in

the initial box B. This is Example 2 in [10], and is thus useful for comparison
of the present algorithm with the process of [10].

Example 4:

fi(X) = xi + xn+1

 ∑
1≤j≤n

xj − n− 1

 , 1 ≤ i ≤ n− 1, and

fn(X) = (1− xn+1)xn + xn+1

 ∏
1≤j≤n

xj − 1

 ,

with n = 5 and initial box [−2, 2]5. This is Brown’s almost linear function, used
in [8] to illustrate when the inverse-midpoint preconditioner is inadequate, but
a linear programming preconditioner will work, and reported as problem 4 in
[6]. It is also useful to test the behavior of implementations as the dimension
increases.

Example 5:

f1 = 5x91 − 6x51x
2
2 + x1x

4
2 + 2x1x3

f2 = −2x61x2 + 2x21x
3
2 + 2x2x3

f3 = x21 + x22 − 0.265625

with initial box [−0.6, 0.6] × [−0.6, 0.6] × [−5, 5]. This is problem 12 in [6].
Since it has 12 solutions in the box, it tests the ability of enclosure algorithms
to separate solutions.

Numerical Results:
The goal of the coordinate selection heuristic of §3 is to reduce the total

number of expensive preconditioner row computations, without affecting the
number of steps required in the overall root isolation algorithm. In fact, the
primary difference between Algorithm 4.1 and the overall procedure in [10] is
the use of this heuristic. The overall procecure in [10] computed preconditioners
for all rows for, roughly speaking, n times as many preconditioner computations
as in Algorithm 4.1 or Algorithm 4.2. There are other differences. For example,
to simplify implementation, we did not use extended (Kahan) interval arithmetic
in the forward substitution process in [10], so that the only place two boxes were
produced was after bisection.

We have implemented Algorithm 4.1 and Algorithm 4.2 in Fortran–SC (also
known as ACRITH–XSC, [15]), to be run on an IBM 3090. For Algorihm 4.2,
we report

EDIM the dimension of the expanded system,

11

NBOX the total number of boxes X processed,

NBIS the total number of coordinate bisections (step 6 of Algorithm 4.1 or
Algorithm 4.2),

NPRE the total number of preconditioner rows computed in step 5 of Algo-
rithm 4.1 or in step 5′ of Algorithm 4.2,

NJACROW the total number of evaluations of a row of the expanded Jacobi
matrix,

NRESID the total number of re-computations of a component of a residual
for an equation in the expanded system.

NCOMPONENT the total number of re-computations of a coordinate in the
substitution-iteration process in step 2, and

CPURAT the percentage of CPU time spent in computing preconditioners.

Except for the CPU percentage, these performance measures are insensitive to
details of the implementation and the machine, and furthermore indicate the
effectiveness of the heuristic proposed in §3. Our preconditioner computations
use an interior point method devised and programmed by our co-worker Milind
Dawande, and similar to that in [3]. This code has been chosen to take ad-
vantage of the extreme sparsity in the Jacobi matrix for the expanded system,
but is still under development. In our algorithms, beginning with that of [8],
we have observed large differences in execution time depending on the linear
programming solver used in the preconditioner computations.

Comparisons with previous implementations are difficult. Our algorithms
here were implemented using ACRITH-XSC, but many of our previous exper-
iments used the portable arithmetic and framework of INTBIS. In the experi-
ments in [10], we coded the arithmetic in the function-specific routines by hand,
using subroutine calls for each operation. Though we use a code list in the
present experiments and generic function routines to interpret this code list, we
must create the code list by hand. To compare our results with those of [8],
we either need to use polynomial systems in power form representation, as in
INTBIS [9] or hand-code the operations as function calls. For these reasons, we
have only compared the present computations to those of [10] on examples 2
and 4. We will soon remedy these shortcomings; see §6.

In all of the experiments, we took the preconditioner decision tolerance to
be ε0 = 0.2 and the domain tolerance (minimal box width) to be ε = 10−6.

Results for Algorithm 4.2 appear in Table 2. Several conclusions are evident.
First, solving for one component in terms of one or two others in an equation
in the expanded system is very inexpensive compared to preconditioner compu-
tations. Thus, the preconditioner heuristic appears crucial to the algorithm’s
efficiency. Second, the portion of time spent in preconditioner computations is

12

Prob. no. 1 2 3 4 5

EDIM 9 9 5 17 20
NBOX 1 15 13 10 314
NBIS 0 0 2 5 101
NPRE 1 0 3 25 208

NJACROW 9 0 15 425 4160
NRESID 9 0 15 1734 4220

NCOMPONENT 817 373 1218 5337 28492
CPURAT 58% 53% 40% 79% 92%

Table 2: Results of Algorithm 4.2 for the five examples.

Prob. / Algorithm 4 / 4.1 4 / 4.2 5 / 4.1 5 / 4.2

EDIM 17 17 20 20
NBOX 10 10 315 314
NBIS 5 5 100 101
NPRE 70 25 214 208

NJACROW 1190 425 4280 4160
NRESID 1190 1734 4280 4220

NCOMPONENT 2536 5337 20085 19900
CPURAT 95% 79% 93% 92%

4.2/4.1 40% 98%

Table 3: Algorithm 4.1 versus Algorithm 4.2 for Example 4 and Example 5.

still excessive, and the preconditioner computation can possibly be improved.
For example, in the results in [8], use of an optimized linear programming solver
reduced total CPU times by a factor of 10. Also, the LP problems become sin-
gular as the widths of components tend to zero; this may be bothersome for our
particular interior point method. A solution would be to use an inverse midpoint
preconditioner, perhaps on a subsystem, when a number of variable widths are
small. Another factor is that the advantages of interior point methods usually
do not appear on small problems such as those from these examples.

Table 3 gives results analogous to Table 2, but for Algorithm 4.1. We only
give results for problems 4 and 5, since the two algorithms gave identical results
for the first three problems, and we repeat the results for Algorithm 4.2, for
comparison. The last row of the table, labelled 4.2/4.1 gives the ratios of CPU
times. In Example 4, using the old preconditioners resulted in substantially less
CPU time, despite double the number of solutions for a component. In contrast,

13

Prob. no. / Method 2 / Prev. 2 / This 3 / Prev. 3 / This

EDIM 7 9 5 5
NBOX 1 15 4 13
NBIS 0 0 3 2
NPRE 35 0 35 3

NJACROW 110 0 34 15
NRESID 220 0 68 15

NCOMPONENT 64 373 470 1227
CPURAT 57.2% 53% 13% 41%

Table 4: Comparisons with the overall procedure in [10].

using the old preconditioners for Example 5 had little effect, but did not hurt.
Table 4 compares Algorithm 4.2 to the overall scheme in §4 of [10], for Ex-

ample 2 and Example 3. In the previous implementation in [10], we used a dense
linear program solver that was specially designed to solve preconditioner com-
putation problems; that solver is much faster on these particular problems. Also
note the difference in dimensions between the results from [10] and the present
results: we used slightly different code lists, due to slight differences in our set
of implemented elementary operations. Also, note that no preconditioners were
required in Example 2 in the present method. This is due to the use of extended
arithmetic in the component solution process in the present method, but not
in the previous one. It is nonetheless evident from the table that the precon-
ditioner selection heuristic is effective at increasing the algorithmic efficiency,
despite increased numbers of solutions for components.

6 Conclusions and Future Work

Preconditioners are, in general, required for efficient interval solution of nonlin-
ear systems of equations, unless the system exhibits a diagonally dominant or
similar structure. We will discuss such conditions in a separate paper. However,
because of their computation expense, such preconditioners should be computed
only when necessary. We have proposed a heuristic in this paper to decide when
to compute the preconditioners.

Our preliminary experiments presented above indicate that this heuristic
is effective, but the effectiveness of the entire algorithm has not been conclu-
sively demonstrated. Our present experiments are constrained by the present
software environment. We used a very restricted programming environment in
the experiments in [10]; essentially, we hand-coded each function in terms of
subroutine calls. Thus, rerunning that code on other problems is constrained

14

by the time we can spend programming. The present experiments, though in
a somewhat more flexible environment, suffer from similar problems. We are
presently developing a portable Fortran 90 environment where code lists are
automatically generated (through operator overloading), and where algorithmic
building blocks, such as preconditioner computation and solving for a compo-
nent, are modularized in a simple way. When this environment is completed and
tested, our experimentation and algorithmic research will proceed more quickly.
In particular, we will be able to do flexible experimentation, and will be able to
flexibly try different algorithmic combinations, such as preconditioning either
the original system or the expanded system. We will also be able to directly and
carefully compare using the expanded system to the basic algorithm in [9] and
[8]. Finally, we hope to compare different ways of parsing the original system
into elementary operations, and to explore possible user-defined operations for
increased efficiency.

We expect to find the expanded system to be of use. We also expect to
find the preconditioner heuristic to be of use in many problems, both with the
expanded system and the original system.

References

[1] Alefeld, Götz, and Herzberger, Jürgen, Introduction to Interval Computa-
tions, Academic Press, New York,1983.

[2] Babichev, A. B., Kadyrova, O. B., Kashevarova, T. P., and Semenov, A. L.,
UniCalc - A Tool for Solving Tasks with Inexact and Incompletely Defined
Data, in INTERVAL-92, Proceedings, Vol. 2, pp. 7–7, 1992.

[3] Fourer, R. and Mehrotra, S., Solving Symmetric Indefinite Systems in an
Interior-Point Method for Linear Programming , Technical Report No. 92-
01, 1992.

[4] Griewank, A. and Corliss, G. F., ed., Automatic Differentiation of Algo-
rithms: Theory, Implementation, and Application, SIAM, Philadelphia,
1991.

[5] Iri, M. and Kubota, K., Methods of Fast Automatic Differentiation and
Applications, Technical Report No. RMI 87-02, University of Tokyo, De-
partment of Mathematical Engineering and Instrumentation Physics, 1987.

[6] Kearfott, R. B., Some Tests of Generalized Bisection, ACM Trans. Math.
Software 13 (3), pp. 197–220, 1987.

[7] Kearfott, R. B., Interval Newton / Generalized Bisection When There are
Singularities near Roots, Annals of Operations Research 25, pp. 181–196,
1990.

15

[8] Kearfott, R. B., Preconditioners for the Interval Gauss–Seidel Method ,
SIAM J. Numer. Anal. 27 (3), pp. 804–822, 1990.

[9] Kearfott, R. B., and Novoa, M., INTBIS, A Portable Interval New-
ton/Bisection Package (Algorithm 681), ACM Trans. Math. Software 16
(2), pp. 152–157, 1990.

[10] Kearfott, R. B., Decomposition of Arithmetic Expressions to Improve the
Behavior of Interval Iteration for Nonlinear Systems, Computing 47, pp.
169–191, 1991.

[11] Kearfott, R. B., Hu, C. Y., Novoa, M. III, A Review of Preconditioners for
the Interval Gauss–Seidel Method , Interval Computations 1 (1), pp. 59–85,
1991.

[12] Kearfott, R. B., A Fortran-90 Interval Arithmetic, Nonlinear Equations,
Nonlinear Optimization, and List-Handling Environment , preprint, 1993.

[13] Moore, R. E., Methods and Applications of Interval Analysis, SIAM,
Philadelphia, 1979.

[14] Neumaier, A., Interval Methods for Systems of Equations, Cambridge Uni-
versity Press, Cambridge, England, 1990.

[15] Walter, W. V., ACRITH-XSC a Fortran-like language for verified scientific
computing., in Scientific Computing with Automatic Result Verification,
Academic Press, New York, 1993.

16

