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0 Introduction

Consider the following nonlinear system

F (X) =







f1(x1, x2, ..., xn)
...

fn(x1, x2, ..., xn)





 = 0, (1)

where bounds xi and xi are known such that

xi ≤ xi ≤ xi, for 1 ≤ i ≤ n.

We write X = (x1, x2, ..., xn)T and denote by B the box given by the above inequalities
on the variables xi.

A general approach to such problems is to transform the nonlinear system F (X) = 0
to the interval linear system:

F ′(Xk)(X̃k − X̌k) 3 −F (X̌k), (2)

where F ′(Xk) is a suitable interval expansion of the Jacobi matrix over the box Xk

(X0 = B) and X̌k ∈ Xk represents a predictor or initial guess point.

The general goal is to verify existence/uniqueness/non-existence of solutions in the
box, and find all existing solutions.

1 What is a preconditioner? Why precondition-
ing?

Consider an interval linear system:

A(X − X̌) = b.

We may multiply a matrix or a row vector Y to both sides of the above system.
The matrix or the row vector Y is called a preconditioner. The main reason for
preconditioning is to get improvement when solving the interval linear system.
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Example 1 Consider:
[

1 [−1, 0]
1 1

] [

x1

x2

]

=
[

0
0

]

.

with initial box [−1, 1]× [−1, 1].

When we apply Gauss–Seidel steps to the above system, we obtain

x1 = −[−1, 0] · x2 = [−1, 1],

x2 = −x1 = [−1, 1].

Since neither coordinate interval has changed, the Gauss–Seidel method does not bring
any improvement for this example.

On the other hand, let

Y =
[

2/3 1/3
−2/3 2/3

]

.

If we multiply both sides of the system by Y , we have
[

1 [−1/3, 1/3]
0 [2/3, 4/3]

] [

x1
x2

]

=
[

0
0

]

.

Now, if we apply Gauss–Seidel steps, we obtain

x1 = −[−1/3, 1/3] · x2 = [−1/3, 1/3],

x2 = 0.

For x1, we obtain a smaller interval. For x2, we get an even better result, a point.

This example tells us that preconditioners are necessary for interval Gauss–Seidel
steps.

In this paper, we will concentrate on optimal preconditioners, computed row-by-row,
only. A preconditioned interval Gauss–Seidel method may be used to compute a new
interval x̃k for the k-th variable. Suppose Yk = (yk1, yk2, ..., ykn) is the preconditioner
for xk.

Algorithm 1 (Preconditioned Gauss–Seidel method)

1. Compute YkF ′ · (X̃ − X̌) and −YkF . Then compute

x̃k = x̌k −







n
∑

i=1

ykifi +
n

∑

j=1
j 6=k

(

n
∑

i=1

ykif
′
ij

)

(xj − x̌j)







n
∑

i=1

ykif
′
ik

. (3)
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2. If x̃k ∩ xk = ∅, then return, indicating that there is no root of F in X.

3. Replace xk by xk ∩ x̃k.

2 Four different preconditioners

1. CW preconditioner

A preconditioner Y 0
k for xk is called a CW preconditioner, if

w(x̃0
k) = min

Yk

w(x̃k),

where w(x) is the width of interval x, and

x̃k = x̌k −







n
∑

i=1

ykifi +
n

∑

j=1
j 6=k

(

n
∑

i=1

ykif
′
ij

)

(xj − x̌j)







n
∑

i=1

ykif
′
ik

.

Let x̃i = x̌k −
ni(Yi)
di(Yi)

. Then the CW preconditioner Y 0
k can be computed by solving

the following optimization problem:

min
di(Yi)=1

w(ni(Yi)).

2. EW preconditioner

Let x̃i = x̌k −
ni(Yi)
di(Yi)

. If 0 ∈ di(Yi) and ni(Yi) > 0, then Kahan arithmetic gives

ni(Yi)
di(Yi)

=
(

−∞,
ni(Yi)
di(Yi)

]

⋃

[

ni(Yi)
di(Yi)

,∞
)

.

A preconditioner Y 0
k for xk is called an EW preconditioner if it is a solution of the

following optimization problem:

max
ni(Yi)=1

w
([

1
di(Yi)

,
1

di(Yi)

])

.

3. CM preconditioner
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A preconditioner Y 0
k for xk is called a CM preconditioner, if

|x̃0
k − x̌k| = min

Yk

|x̃k − x̌k|.

Let x̃i = x̌k −
ni(Yi)
di(Yi)

. Then the CM preconditioner Y 0
k can be computed by solving

the following optimization problem:

min
di(Yi)=1

|ni(Yi)|.

4. EM preconditioner

Let x̃i = x̌k −
ni(Yi)
di(Yi)

. If 0 ∈ di(Yi) and ni(Yi) > 0, then

ni(Yi)
di(Yi)

=
(

−∞,
ni(Yi)
di(Yi)

]

⋃

[

ni(Yi)
di(Yi)

,∞
)

.

A preconditioner Y 0
k for xk is called an EM preconditioner if it is a solution of the

following optimization problem:

max
ni(Yi)=1

min
{

− 1
di(Yi)

,
1

di(Yi)

}

(4)

However, 0 ∈ di(Yi) implies

min
{

− 1
di(Yi)

,
1

di(Yi)

}

=
1

max{|di(Yi)|, |di(Yi)|}

=
1

|di(Yi)|
,

and 1/|di(Yi)| is maximum when |di(Yi)| is minimum. Thus, Problem (4) can be
replaced by

min
ni(Yi)=1

|di(Yi)|. (5)

For CW preconditioners, we have the following existence proposition. For the other
preconditioners, similar results can be obtained.

Proposition 1 (Hu [1]) There exists a CW preconditioner Yk if and only if at least
one element of the k-th column of A does not contain 0.

For each type of preconditioner discussed here, a nonlinear optimization problem is
invoked in its definition. Fortunately, these nonlinear optimization problems can be
simplified into linear programming problems. Thus, to obtain a preconditioner, we
only need to solve a linear programming problem. Details can be found in [7].
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3 Applications

CW preconditioners minimize the width of x̃k, are appropriate for finding solutions of
nonlinear systems. CM preconditioners minimize the absolute value of x̃k − x̌k, and
are appropriate for verifying existence or uniqueness of solutions.

EW and EM preconditioners maximize the width and the absolute value of the gap
that splits x̃k − x̌k, respectively. They are appropriate for verifying that there is no
solution in the initial box.

Example 2 Consider:

fi(X) = xi +
∑

1≤j≤n

xj − n− 1, 1 ≤ i ≤ n− 1,

fn(X) =
∏

1≤j≤n

xj − 1,

with n = 5 and initial box X = [0, 0.5]× [0, 0.5]× [0, 0.5]× [0, 0.5]× [0, 17].

The mean value extension, with a slope matrix, over the initial box is:

F (X) =













[−6, 13.5]
[−6, 13.5]
[−6, 13.5]
[−6, 13.5]

[−1.996, 0.0625]













.

However, there is no root in the initial box. When the EM preconditioner is used, this
fact is discovered right after the first preconditioner is applied, but the CW and CM

preconditioners will not show that there is no root.

In experiments to date, we have not found cases where existence could be verified
with CM preconditioners, but not CW preconditioners. The reason is that the CW

preconditioners and the CM preconditioners are the same if we choose the midpoint
as the predictor point x̌k. This is stated formally in the following theorem.

Theorem 1 In (3), if we choose X̌ = (x̌1, x̌2, · · · , x̌n)T to be the midpoint of X, then
the CW preconditioners and the CM preconditioners are the same.

Proof: If X̌ = (x̌1, x̌2, · · · , x̌n)T is chosen to be the midpoint of X, then X̃ will be
symmetric about 0 (see [12]). Thus, w(x̃k) = |x̃k − xk|. Therefore, the CW and the
CM preconditioners are the same. 2
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