
ALGORITHM 681
INTBIS, a Portable Interval Newton/Bisection
Package

R. BAKER KEARFOTT AND MANUEL NOVOA III
University of Southwestern Louisiana

We present a portable software package for finding all real roots of a system of nonlinear equations
within a region defined by bounds on the variables. Where practical, the package should find all roots
with mathematical certainty. Though based on interval Newton methods, it is self-contained. It
allows various control and output options and does not require programming if the equations are
polynomials; it is structured for further algorithmic research. Its practicality does not depend in a
simple way on the dimension of the system or on the degree of nonlinearity.

Categories and Subject Descriptors: G.1.5 [Numerical Analysis]: Roots of Nonlinear Equations-
systems of equations

General Terms: Algorithms, Design, Reliability, Verification

Additional Key Words and Phrases: All solutions, generalized bisection, global constrained optimi-
zation, interval arithmetic, interval Newton methods

1. INTRODUCTION AND PURPOSE

Interval Newton methods in conjunction with generalized bisection are one
approach which can be used to find all solutions to a system of nonlinear
equations. Specifically, it can find, with certainty, approximations to all solutions
of the nonlinear system:

fi(Xl7 X2, * * * 7 &a) = 07 lSiSr2, (1.1)

where bounds oi and bi are known such that:

aj I Xj I bj for 1 5 i 5 n.

This approach can, even when implemented in machine arithmetic, obtain results
for (1.1) with mathematical certainty. (See, e.g., [lo] for a discussion of this; see
[l] or [121 for an introduction to the concepts, and [13] for recent reviews and
references.)

Authors’ address: Department of Mathematics and Statistics, University of Southwestern Louisiana,
Lafayette, LA 70504-1010.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1990 ACM 009%3500/90/0600-0152 $01.50

ACM Transactions on Mathematical Software, Vol. 16, No. 2, June 1990, Pages 152-157

Algorithm 661: INTBIS l 153

Drawbacks to interval Newton methods in general include lack of universal
hardware and software support for interval arithmetic. The INTBIS package,
however, is self-contained, conforms to the ANSI 1977 FORTRAN standard, and
contains thorough in-line documentation. Furthermore, its output formats and
other aspects of the algorithm can be controlled without recompiling, and no
programming is required when the functions fi are polynomials. Users do not
need a knowledge of interval arithmetic. Nonetheless, INTBIS is sufficiently
modularized and documented to be useful as a test bed for new algorithmic ideas.
INTBIS also stores and (optionally) prints various quantities useful for tracing
algorithmic performance.

2. A BRIEF DESCRIPTION

The principal subroutine is structured on Algorithm 2.5 in [63 (see also [ll]).
The entire package is similar to the code described in [7], with the following
differences.

(1) We use simulated directed roundings in the interval arithmetic. The
installer provides a rigorous estimate for the number of units in the last place by
which the stored result of one of the four elementary arithmetic operations or
exponentiation can be in error. The package then produces interval results that
contain the true results. The effect is a relatively simple and transportable, yet
rigorous, interval arithmetic. With such a scheme, INTBIS can be guaranteed
not to miss any roots.

(2) We use the interval Gauss-Seidel method with extended interval arithmetic
(cf. [4] and [5]) in lieu of the Krawczyk method in [7]. The former is usually
more efficient and flexible.

(3) We need to evaluate the components fi at points in R” during the interval
Gauss-Seidel process. We have found it necessary to use interval arithmetic with
our simulated directed roundings to do these computations; otherwise, roundoff
errors would occasionally cause INTBIS to fail to find roots in the initial region.

(4) We have changed the criteria for deciding whether to iterate the interval
Newton (i.e., interval Gauss-Seidel) process or to bisect a coordinate interval
instead. We now examine the ratio of volumes of the original region to the region
after application of the interval Gauss-Seidel step, where we ignore dimensions
for which the box widths are smaller than the stopping diameter. (Note that this
only affects division of the box into smaller boxes in which Newton’s method is
guaranteed to converge. Once such smaller boxes are obtained, the classical
Newton’s method is used to get accurate point approximations to the roots.)

(5) We use a more efficient scheme to choose which coordinate interval to
bisect. In particular, let X be the box defined by the inequalities in (l.l), let fi (X)
be an interval extension of fi evaluated at X, and let F(X) be the interval column
vector whose elements are the fi(X). Let J(X) be a corresponding interval
extension of the Jacobian matrix, and let [Ji,j,i, Ji,j,z] be the interval in the
(i, j)th entry. Then, in contrast to the scheme in Section 2 of [7], we define

ACM Transactions on Mathematical Software, Vol. 16, No. 2, June 1990.

154 l R. Baker Kearfott and M. Novoa, III

We then bisect in the coordinate with index j for which sj is maximum. This
coordinate direction is, roughly, the one in which the values of the fi change most
rapidly; its choice for bisection introduces an implicit scaling.

We note that INTBIS is sufficiently modularized to allow interval Newton
methods, other than the interval Gauss-Seidel, and to allow alternate coordinate
selection schemes, with modest modifications.

In designing INTBIS, we have balanced simplicity, clarity, and ease of use and
modification against efficiency.

3. STRUCTURE

There are 38 routines, which occupy approximately 250 kilobytes; over half of
these files consists of comments. The package is organized into

(i) the primary package;
(ii) the interval arithmetic subpackage; and

(iii) the stack and linked list management subpackage.

Additionally, the package references modules from LINPACK, see [2]. The
package also requires the routine DlMACH to obtain floating point machine
constants. This routine is part of the SLATEC library, and is also available from
NETLIB, see [3].

The interval arithmetic subpackage includes subroutines ADD, MULT,
POWER, RNDOUT, SCLADD, SCLMLT, SIMINI, SUB, XDIV, XINT, and
XSCLSB. Users may replace these with machine-specific ones if they so desire.

The stack management subpackage includes subroutines ADDBOX, ALLOC,
DELBOX, FREE, POP, and PUSH.

The driver routine is GENBIS, where array storage is allocated. Input occurs
mainly in INPUT, whereas output occurs mainly in OUTPUT and ERROUT.
(The only other I/O is in GENBIS.)

Subroutine ROOTS embodies the main algorithm, whereas subroutine
FTESTH indexes storage for the interval Gauss-Seidel routine HNSNG and for
the coordinate selection routine PVSLCT. The routine HNSNG calls POLFUN
for interval function values and calls POLJAC for interval Jacobian matrix
values.

Subroutine OUTPUT calls routine NEWTON, which performs the classical
Newton method. Subroutine NEWTON in turn calls POLFSC and POLJSC,
which do noninterval function and Jacobian matrix evaluations.

See Figure 1 for a calling diagram for the major routines.
The routines POLFUN, POLJAC, POLFSC, and POLJSC work with polyno-

mial systems in a general format. However, the interval arithmetic subpackage
contains the essential elements for writing both more efficient and specialized
routines and for writing routines that involve evaluation of more general tran-
scendental functions. Otherwise, only GENBIS need be modified, since these
subroutine names are passed as arguments.

The first author is developing portable FORTRAN77 interval routines for the
elementary transcendental functions, which can be used with GENBIS with or
without the aid of a precompiler. Including such routines in INTBIS in a way
ACM Transactions on Mathematical Software, Vol. 16, No. 2, June 1990.

Algorithm 681: INTBIS l 155

Fig. 1. Main structure and routines in INTBIS.

that does not require programming would make the package substantially larger
and more complicated. However, the first author will send these routines and
advice on their use upon request.

Also, ambitious users may easily supply their own coordinate selection scheme
and interval Newton method, since these functions are isolated in the external
routine FTESTH, which the driver routine GENBIS passes as an argument.

Another routine of interest is DIAMCP; the scaled distance between two
numbers in the domain of F is computed there. Users may wish to alter the
scaling.

Additional auxiliary routines in INTBIS include BISECT, CHKLST,
DELLST, DVSBIN, ERRHND, EXPAND, and XINFO.

4. INSTALLATION

Installation involves

(i) making sure input and output units are correct and possibly supplying
appropriate attachments;

(ii) possibly adjusting the size of workspace parameters;
(iii) possibly setting machine-dependent constants; and
(iv) making sure the package has access to the appropriate LINPACK routines.

Doing this involves making only several small changes in the code in well-marked
and isolated places. Complete details appear in a file that is distributed with the
package.

5. USE

INTBIS may be used by itself, or an alternate driver routine to GENBIS may be
supplied. Output is controlled with a flag and ranges from no output to debugging
and performance related output. Another flag selects four possible formats for
output of floating point vectors.

ACM Transactions on Mathematical Software, Vol. 16, No. 2, June 1990.

156 l R. Baker Keatfott and M. Novoa, III

Several flags also control variation of the algorithm. For example, expansion
and deletion steps as described in [6] and [7] may be omitted. Such steps help to
reduce redundancy and increase efficiency when roots occur on boundaries, but
may cause unusual behavior with singular roots. The algorithm also optionally
retains the regions such steps have rejected.

The user sets control flags, tolerances, and a bound on the total amount of
work in the configuration file. The tile CONFIG.BIS is a sample file which can
be used as a template; see the documentation in INPUT.

The package is set up to solve polynomial systems of equations (see Section 3,
above). We use tableau input to describe such a system; the portion of our input
file associated with the equations has exactly the same format as that for the
routine CONSOL in [14]. An example file (usable as a template) appears in
INPUT; also see the file TOMS86AL.DTl.

If INTBIS is embedded in a larger code, it is probably easiest to use the
supplied driver GENBIS as a template for the program that calls ROOTS. In
such contexts, a call to OUTPUT after the call to ROOTS will determine the
number of roots NINLST and will produce a pointer array INDBOX which gives
addresses of the roots; see the documentation in the header to OUTPUT.

Without modification, INTBIS should perform well on many small systems of
equations. If property installed, the only way INTBIS should fail is by not
completing within the bounds on the amount of work or storage. A larger number
of equations and variables does not necessarily imply a larger amount of work,
but the precise amount of work seems less predictable in larger dimensions; see
[lo] and the references therein for a discussion of this. Systems that combine
high nonlinearity, strong coupling, and a large number of terms pose more of a
problem. For such systems, INTBIS may not be practical with the default routines
POLFUN and POLJAC, but may work better if these are replaced; see [15]. Also,
other schemes are available for systems with patterns in the nonlinearity or
singularities; see [8] and [9].

Finally, we point out that the software interval arithmetic in INTBIS is slower
than the best low-level implementations, where such are available. With good
compiler support for interval arithmetic, the user can replace subroutines
HNSNG, POLFUN, and POLJAC to effect a substantial speedup.

BIBLIOGRAPHY

1. ALEFELD, G., AND HERZBERGER, J. Introduction to Interval Computations. Academic Press,
New York, 1983.

2. DONGARRA, J. J., MOLER, C. B., BUNCH, J. R., AND STEWART, G. W. LZNPACK Users’Guide.
SIAM, Philadelphia, 1979.

3. DONGARRA, J. J., AND GROSSE, E. Distribution of mathematical software via electronic mail.
ACM SIGNUM Newsl. 20,3 (July 1985), 45-47.

4. HANSEN, E. R., AND GREENBERG, R. I. An Interval Newton method. Appl. Math. Comput. 12
(1983), 89-98.

5. HANSEN, E. R., AND SENGUPTA, S. Bounding solutions of systems of equations using interval
analysis. BIT 21 (1981), 203-211.

6. KEARFOTT, R. B. Abstract generalized bisection and a cost bound. Math. Comput. 49,179 (July
1987), 187-202.

7. KEARFOTT, R. B. Some tests of generalized bisection. ACM Trans. Math. Softw. 13, 3 (Sept.
1987).

ACM Transactions on Mathematical Software, Vol. 16, No. 2, June 1990.

Algorithm 681: INTBIS - 157

8. KEARFOTT, R. B. On handling singular systems with interval Newton methods. In Proceedings
of the Twelfth IMACS World Congress on Scientific Computation, 1988.

9. KEARFOTT, R. B. Preconditioners for the interval Gauss-Seidel method. SIAM J. Numer. Anal.
27,3 (June 1990).

10. KEARFOTT, R. B. Interval arithmetic methods for nonlinear systems and nonlinear optimization:
An introductory review. In Impacts of Recent Computer Aduances on Operations Research. Elsevier,
New York, 1989.

11. MOORE, R. E., AND JONES, S. T. Safe starting regions for iterative methods. SIAM J. Numer.
Anal. 24, 6 (Dec. 1977), 1051-1065.

12. MOORE, R. E. Methods and Applications of Interval Analysis. SIAM, Philadelphia, 1979.
13. MOORE, R. E., ED. Reliability in Computing. Academic Press, New York, 1988.
14. MORGAN, A. P. Solving Polynomial Systems using Continuation for Engineering and Scientific

Problems. Prentice-Hall, Englewood Cliffs, N.J., 1987.
15. RATSCHEK, H., AND ROKNE, J. G. Computer Methods for the Range of Functions. Horwood,

Chichester, England, 1984.

Received August 1988; revised April 1989; accepted May 1989

ACM Transactions on Mathematical Software, Vol. 16, No. 2, June 1990.

