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We present a portable software package for finding all real roots of a system of nonlinear equations 
within a region defined by bounds on the variables. Where practical, the package should find all roots 
with mathematical certainty. Though based on interval Newton methods, it is self-contained. It 
allows various control and output options and does not require programming if the equations are 
polynomials; it is structured for further algorithmic research. Its practicality does not depend in a 
simple way on the dimension of the system or on the degree of nonlinearity. 

Categories and Subject Descriptors: G.1.5 [Numerical Analysis]: Roots of Nonlinear Equations- 
systems of equations 

General Terms: Algorithms, Design, Reliability, Verification 

Additional Key Words and Phrases: All solutions, generalized bisection, global constrained optimi- 
zation, interval arithmetic, interval Newton methods 

1. INTRODUCTION AND PURPOSE 

Interval Newton methods in conjunction with generalized bisection are one 
approach which can be used to find all solutions to a system of nonlinear 
equations. Specifically, it can find, with certainty, approximations to all solutions 
of the nonlinear system: 

fi(Xl7 X2, * * * 7 &a) = 07 lSiSr2, (1.1) 

where bounds oi and bi are known such that: 

aj I Xj I bj for 1 5 i 5 n. 

This approach can, even when implemented in machine arithmetic, obtain results 
for (1.1) with mathematical certainty. (See, e.g., [lo] for a discussion of this; see 
[l] or [ 121 for an introduction to the concepts, and [13] for recent reviews and 
references.) 
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Drawbacks to interval Newton methods in general include lack of universal 
hardware and software support for interval arithmetic. The INTBIS package, 
however, is self-contained, conforms to the ANSI 1977 FORTRAN standard, and 
contains thorough in-line documentation. Furthermore, its output formats and 
other aspects of the algorithm can be controlled without recompiling, and no 
programming is required when the functions fi are polynomials. Users do not 
need a knowledge of interval arithmetic. Nonetheless, INTBIS is sufficiently 
modularized and documented to be useful as a test bed for new algorithmic ideas. 
INTBIS also stores and (optionally) prints various quantities useful for tracing 
algorithmic performance. 

2. A BRIEF DESCRIPTION 

The principal subroutine is structured on Algorithm 2.5 in [63 (see also [ll]). 
The entire package is similar to the code described in [7], with the following 
differences. 

(1) We use simulated directed roundings in the interval arithmetic. The 
installer provides a rigorous estimate for the number of units in the last place by 
which the stored result of one of the four elementary arithmetic operations or 
exponentiation can be in error. The package then produces interval results that 
contain the true results. The effect is a relatively simple and transportable, yet 
rigorous, interval arithmetic. With such a scheme, INTBIS can be guaranteed 
not to miss any roots. 

(2) We use the interval Gauss-Seidel method with extended interval arithmetic 
(cf. [4] and [5]) in lieu of the Krawczyk method in [7]. The former is usually 
more efficient and flexible. 

(3) We need to evaluate the components fi at points in R” during the interval 
Gauss-Seidel process. We have found it necessary to use interval arithmetic with 
our simulated directed roundings to do these computations; otherwise, roundoff 
errors would occasionally cause INTBIS to fail to find roots in the initial region. 

(4) We have changed the criteria for deciding whether to iterate the interval 
Newton (i.e., interval Gauss-Seidel) process or to bisect a coordinate interval 
instead. We now examine the ratio of volumes of the original region to the region 
after application of the interval Gauss-Seidel step, where we ignore dimensions 
for which the box widths are smaller than the stopping diameter. (Note that this 
only affects division of the box into smaller boxes in which Newton’s method is 
guaranteed to converge. Once such smaller boxes are obtained, the classical 
Newton’s method is used to get accurate point approximations to the roots.) 

(5) We use a more efficient scheme to choose which coordinate interval to 
bisect. In particular, let X be the box defined by the inequalities in (l.l), let fi (X) 
be an interval extension of fi evaluated at X, and let F(X) be the interval column 
vector whose elements are the fi(X). Let J(X) be a corresponding interval 
extension of the Jacobian matrix, and let [Ji,j,i, Ji,j,z] be the interval in the 
(i, j)th entry. Then, in contrast to the scheme in Section 2 of [7], we define 
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We then bisect in the coordinate with index j for which sj is maximum. This 
coordinate direction is, roughly, the one in which the values of the fi change most 
rapidly; its choice for bisection introduces an implicit scaling. 

We note that INTBIS is sufficiently modularized to allow interval Newton 
methods, other than the interval Gauss-Seidel, and to allow alternate coordinate 
selection schemes, with modest modifications. 

In designing INTBIS, we have balanced simplicity, clarity, and ease of use and 
modification against efficiency. 

3. STRUCTURE 

There are 38 routines, which occupy approximately 250 kilobytes; over half of 
these files consists of comments. The package is organized into 

(i) the primary package; 
(ii) the interval arithmetic subpackage; and 

(iii) the stack and linked list management subpackage. 

Additionally, the package references modules from LINPACK, see [2]. The 
package also requires the routine DlMACH to obtain floating point machine 
constants. This routine is part of the SLATEC library, and is also available from 
NETLIB, see [3]. 

The interval arithmetic subpackage includes subroutines ADD, MULT, 
POWER, RNDOUT, SCLADD, SCLMLT, SIMINI, SUB, XDIV, XINT, and 
XSCLSB. Users may replace these with machine-specific ones if they so desire. 

The stack management subpackage includes subroutines ADDBOX, ALLOC, 
DELBOX, FREE, POP, and PUSH. 

The driver routine is GENBIS, where array storage is allocated. Input occurs 
mainly in INPUT, whereas output occurs mainly in OUTPUT and ERROUT. 
(The only other I/O is in GENBIS.) 

Subroutine ROOTS embodies the main algorithm, whereas subroutine 
FTESTH indexes storage for the interval Gauss-Seidel routine HNSNG and for 
the coordinate selection routine PVSLCT. The routine HNSNG calls POLFUN 
for interval function values and calls POLJAC for interval Jacobian matrix 
values. 

Subroutine OUTPUT calls routine NEWTON, which performs the classical 
Newton method. Subroutine NEWTON in turn calls POLFSC and POLJSC, 
which do noninterval function and Jacobian matrix evaluations. 

See Figure 1 for a calling diagram for the major routines. 
The routines POLFUN, POLJAC, POLFSC, and POLJSC work with polyno- 

mial systems in a general format. However, the interval arithmetic subpackage 
contains the essential elements for writing both more efficient and specialized 
routines and for writing routines that involve evaluation of more general tran- 
scendental functions. Otherwise, only GENBIS need be modified, since these 
subroutine names are passed as arguments. 

The first author is developing portable FORTRAN77 interval routines for the 
elementary transcendental functions, which can be used with GENBIS with or 
without the aid of a precompiler. Including such routines in INTBIS in a way 
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Fig. 1. Main structure and routines in INTBIS. 

that does not require programming would make the package substantially larger 
and more complicated. However, the first author will send these routines and 
advice on their use upon request. 

Also, ambitious users may easily supply their own coordinate selection scheme 
and interval Newton method, since these functions are isolated in the external 
routine FTESTH, which the driver routine GENBIS passes as an argument. 

Another routine of interest is DIAMCP; the scaled distance between two 
numbers in the domain of F is computed there. Users may wish to alter the 
scaling. 

Additional auxiliary routines in INTBIS include BISECT, CHKLST, 
DELLST, DVSBIN, ERRHND, EXPAND, and XINFO. 

4. INSTALLATION 

Installation involves 

(i) making sure input and output units are correct and possibly supplying 
appropriate attachments; 

(ii) possibly adjusting the size of workspace parameters; 
(iii) possibly setting machine-dependent constants; and 
(iv) making sure the package has access to the appropriate LINPACK routines. 

Doing this involves making only several small changes in the code in well-marked 
and isolated places. Complete details appear in a file that is distributed with the 
package. 

5. USE 

INTBIS may be used by itself, or an alternate driver routine to GENBIS may be 
supplied. Output is controlled with a flag and ranges from no output to debugging 
and performance related output. Another flag selects four possible formats for 
output of floating point vectors. 

ACM Transactions on Mathematical Software, Vol. 16, No. 2, June 1990. 



156 l R. Baker Keatfott and M. Novoa, III 

Several flags also control variation of the algorithm. For example, expansion 
and deletion steps as described in [6] and [7] may be omitted. Such steps help to 
reduce redundancy and increase efficiency when roots occur on boundaries, but 
may cause unusual behavior with singular roots. The algorithm also optionally 
retains the regions such steps have rejected. 

The user sets control flags, tolerances, and a bound on the total amount of 
work in the configuration file. The tile CONFIG.BIS is a sample file which can 
be used as a template; see the documentation in INPUT. 

The package is set up to solve polynomial systems of equations (see Section 3, 
above). We use tableau input to describe such a system; the portion of our input 
file associated with the equations has exactly the same format as that for the 
routine CONSOL in [14]. An example file (usable as a template) appears in 
INPUT; also see the file TOMS86AL.DTl. 

If INTBIS is embedded in a larger code, it is probably easiest to use the 
supplied driver GENBIS as a template for the program that calls ROOTS. In 
such contexts, a call to OUTPUT after the call to ROOTS will determine the 
number of roots NINLST and will produce a pointer array INDBOX which gives 
addresses of the roots; see the documentation in the header to OUTPUT. 

Without modification, INTBIS should perform well on many small systems of 
equations. If property installed, the only way INTBIS should fail is by not 
completing within the bounds on the amount of work or storage. A larger number 
of equations and variables does not necessarily imply a larger amount of work, 
but the precise amount of work seems less predictable in larger dimensions; see 
[lo] and the references therein for a discussion of this. Systems that combine 
high nonlinearity, strong coupling, and a large number of terms pose more of a 
problem. For such systems, INTBIS may not be practical with the default routines 
POLFUN and POLJAC, but may work better if these are replaced; see [15]. Also, 
other schemes are available for systems with patterns in the nonlinearity or 
singularities; see [8] and [9]. 

Finally, we point out that the software interval arithmetic in INTBIS is slower 
than the best low-level implementations, where such are available. With good 
compiler support for interval arithmetic, the user can replace subroutines 
HNSNG, POLFUN, and POLJAC to effect a substantial speedup. 
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