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This paper addresses the task of reliably finding approximations to all solutions to a system of 
nonlinear equations within a region defined by bounds on each of the individual coordinates. Various 
forms of generalized bisection were proposed some time ago for this task. This paper systematically 
compares such generalized bisection algorithms to themselves, to continuation methods, and to hybrid 
steepest descent/quasi-Newton methods. A specific algorithm containing novel “expansion” and 
“exclusion” steps is fully described, and the effectiveness of these steps is evaluated. A test problem 
consisting of a small, high-degree polynomial system that is appropriate for generalized bisection, 
but very difticult for continuation methods, is presented. This problem forms part of a set of 17 test 
problems from published literature on the methods being compared; this test set is fully described 
here. 
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1. MOTIVATION, PURPOSE, AND SCOPE 
We consider the following general problem: 

Find, with certainty, approximations to all solutions of the nonlinear system: 

fAXI X2, . * * 2 &L) = 0, 15iSn, 0.1) 

where bounds oi and bi are known such that: 

ai I Xi 5 bi for 1 5 i 5 n. 

We write F(X) = 0, where F = (fi, f2, . . . , fn) and X = (2tI, x2, . . . , x,). We 
denote the box given by the inequalities on the variables xi by 3. 

Here, we assume n is of moderate size (so that sparsity is not a consideration). 
Relevant properties of methods for solving (1.1) include 

(i) computational efficiency, 
(ii) mathematical reliability, 
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(iii) computational reliability, 
(iv) efficiency of implementation, and 
(v) range of application. 

Computational efficiency deals with the total number of computer operations in 
order to solve (l.l), and generally includes both evaluation of the residuals on 
the left-hand side of (1.1) and intrinsic overhead in the method. By mathematical 
reliability, we mean the existence of theorems which state that, under simplifying 
assumptions and in exact arithmetic, the method will solve (1.1). When we say a 
method is computationally reliable, we mean the method is stable when imple- 
mented in floating-point systems and heuristics introduced in the implementa- 
tion, but not in the theory, are effective. A method is efficient to implement 
when it is simple from a computer programmer’s point of view, and when its 
performance is not sensitive to details of the implementation or to “tuning.” 
Range of application deals with the types of problems for which the method 
works (e.g., just a single equation in a single variable, just polynomial equations, 
etc.). 

Clearly, there are conflict and interplay between these properties, so that just 
one method is probably not “best” for all problems. However, a good algorithm 
should be strong in several of the areas. 

Some alternate techniques for solving (1.1) include: (i) random search; (ii) an 
exhaustive grid search on the box [aI, bl] X [u2, b,] X . . . x [a,, b,]; (iii) Newton’s 
method with repeated random starts; (iv) ad hoc methods, such as the Jenkins- 
Traub method for finding all roots of a single polynomial; (v) homotopy contin- 
uation methods; and (vi) pure interval Newton methods. Random search is 
neither mathematically nor computationally reliable. Grid search can be made 
mathematically and computationally reliable, although it is computationally very 
inefficient. Newton’s method with repeated random starts, or “globalized” quasi- 
Newton methods, are sometimes used as exploratory tools. However, such meth- 
ods are not mathematically reliable for solving (1.1) in general when there is 
more than one solution. Specialized methods can be reliable, efficient, and easily 
implemented, but with a limited range of application. 

Homotopy continuation methods can solve variants of (1.1) effectively in many 
instances (cf., [20]). For example, if the variables are complex, all solutions (not 
just those in a bounded region) are desired, and the system consists of polynomial 
equations, then such methods are recommended. Such methods are also recom- 
mended for specific systems where significant a priori analysis can be performed. 
Nonetheless, if just real roots within a particular region are required, then 
homotopy continuation methods can be relatively expensive. Furthermore, state- 
of-the-art implementations involve both numerous heuristics and mathematical 
sophistication, and some early methods are computationally unreliable. 

The method presented in this paper makes use of an interval Newton method 
(though the basic root inclusion test is general and could possibly also be 
implemented with alternate techniques). However, pure interval Newton methods 
(without a bisection component) may have difficulty with (1.1) when there is 
more than one solution or when the Jacobian matrix F’(X) is singular for 
numerous X E B. 
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In this paper, we intend to show that generalized bisection is a competitive 
method for solving (1.1) in terms of all five of the desirable attributes. Generalized 
bisection is an exhaustive search for roots, and necessarily is computationally 
and mathematically reliable (cf., [ll]). However, the search proceeds by adap- 
tively and nonuniformly subdividing the domain of the variables into regions 
that are (ideally) just small enough such that Newton’s method starting in any 
of the subregions will converge to a unique root within that subregion. In that 
sense, bisection is optimal. 

The method in this paper employs an interval form of Newton’s method [13] 
and is thus similar to algorithms proposed by Moore et al. [15], Hansen (see 
[6, 7,8,9], etc.), Alefeld et al. [2], etc., although we do not emphasize the interval 
arithmetic aspects of the method. Here, we test the method on 17 problems that 
include artificial and real-world examples from the literature on quasi-Newton 
methods, homotopy continuation methods, other bisection methods, etc. This 
test set has been chosen to illustrate the strengths and weaknesses of our 
generalized bisection method vis a vis other methods. We thus hope to convince 
persons wishing to solve (1.1) that generalized bisection has its place in their 
store of tools. 

In Section 2 of this paper, we briefly describe the mathematical framework of 
the method. Some particulars of the implementation are presented in Section 3. 
In Section 4, we give the test set. The numerical results are shown in Section 5. 
In Section 6, we give conclusions and directions for further study. 

2. THE BASIC METHOD 

A careful analysis of the basic ideas underlying generalized bisection is given 
in [ll]; here we describe these ideas in the context of our specific algorithm. 

Our generalized bisection algorithm consists of 

(i) a geometrical bisection process, 
(ii) a root inclusion test, and 

(iii) a binary search algorithm. 

In the results presented here, the geometrical bisection process is similar to 
that given in [6], [15], etc. To each box 

B = [al, hl x [aa bzl x ..a x [an, bnl cw 

we find k such that 

k = max (bj - cj), (2.2) 
lsjsn 

we set 

mk = (uk + &l/2, (2.3) 

then we form two boxes B1 and Bz such that 

B1 = [al, h] x [Uz, bz] x -** x [mk, bk] x *** x [Urn b] 

BP = [Ul, bl] x [Uz, bz] x -** x [Uk, mk] x .** x [U,, b,]. 
(2.4) 
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That is, we cut the box B into two boxes Bi and B2 by cutting in the coordinate 
direction in which B is longest. (Note that the coordinate index k may be chosen 
by “pivot” strategies other than (2.2); however, for well-scaled problems, (2.2) 
works reasonably well and also has the advantage of simplicity.) Important 
aspects of the geometrical bisection process are (i) as it is iterated on B1 and Bz, 
the diameters of the resulting boxes tend to zero at a known rate; and (ii) the 
boxes do not get arbitrarily “thin.” 

Our root inclusion test is a function TF which associates to each box B the 
values “true, ” “false,” and “unknown.” Defined formally in [ 111, it has the 
following properties: 

(i) TF(B) = “true” implies that there is a unique solution of the system (1.1) 
within B, and Newton’s method or one of its variants will converge to that 
solution from any starting point in B. 

(ii) TF(B) = “false” implies that there are no solutions of the system (1.1) 
within B. 

(iii) If the diameter of B is sufficiently small, if any solutions of (1.1) lie 
sufficiently far, relative to the size of B, from the boundary of B; and if the 
Jacobian matrix of the residual function F as in (1.1) is nonsingular at any 
solutions of (l.l), then TF(B) = “true” or T&B) = “false.” 

Here, the root inclusion test is similar to that in [13]. In particular, our root 
inclusion test is based partly on computing intervals [ci, di] such that 

where 

aj 5 Xj 5 bj, 1 5 j 5 n. 

Thus, if, for any i, ci > 0 or di < 0, then fi cannot vanish in the box B, and we set 
TF(B) = “false.” To compute TF(B) = “true” when there is a solution of (1.1) 
within B, we compute similar bounds on the partial derivatives of the fi- Using 
these bounds, we obtain a box B such that all images of points in B under a 
single application of the chord method (with a specified iteration matrix inde- 
pendent of the point) are contained in B. (The chord method is an iteration of 
the form Xk+i t Xk - YF(Xk), where Y is held fixed relative to X,, and is only 
an approximate inverse to F’(Xk); see [23], p. 181.) Thus, if B C B, the Schauder 
fixed point theorem and the fact that stationary points of the chord method 
correspond to solutions of (1.1) show that there is a solution of (1.1) in B. 
Furthermore, if the norm of a certain matrix is less than one, then this solution 
is unique, and the chord method will converge to it. Details are given in Section 
3 and in [13]. 

The bisection process and the root inclusion test define a binary search 
algorithm naturally: The siblings of B are B1 and BP, while the internal nodes of 
the binary tree correspond to subboxes of B that are labeled “unknown.” Here, 
we use a depth-first search. Our algorithm also differs from similar bisection 
algorithms in that we sometimes “expand” the box when it appears that solutions 
occur too near its boundary to conclude that they are inside or outside. A full 
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description and rigorous justification of this process in a general setting are given 
in [ll], while the essentials of the algorithm are repeated below. 

3. IMPLEMENTATION DETAILS 

The code is based upon Algorithm 2.6 in [ll]; for clarity we present a particular 
version here. Below, each BL produced from B at level L in the bisection process 
is assumed to have the same form as B in (2.1), i.e., 

BL = [a!, bf] x [ak, b$] x . . - x [a:, bk]. 

Furthermore, the diameter of BL is defined by 

(3.1) 

d(BL) = max 1 bf - a; ], 
Ir-jn 

WV 

In the algorithm, a number 6 must be input. In the theory in [ll], c is such 
that TF(BL) = “true” if: (i) d(BL) < E and solutions of (1.1) lie sufficiently far 
from the boundary of BL; and (ii) the distance between solutions of (1.1) is at 
least t/2. In practice, E may be chosen heuristically to be the smallest allowable 
box dimension. If this is done, there is no danger of entirely missing roots, but 
we run the risk that two roots that are closer than E to each other may be 
approximated by the same small box. 

Additionally, a number TV is input such that, if 

for every (xl, x2, . . . , x,) such that 

a: 5 Xj 5 bf , 

(3.3) 

then the box BL is accepted as though TF(BL) were “true.” The reason tF is 
needed is to stop the refinement process near solutions of (1.1) at which the 
Jacobian matrix is singular. In theory, the root inclusion test based on an interval 
Newton method that is implemented here must fail at such solutions. (See [ll] 
for conditions under which a general root inclusion test will work.) Also, in 
theory, use of tF to stop the algorithm could give points at which the residuals fi 
are small but which do not actually correspond to roots. In the main experiments 
in Section 5, we chose tF = 10-l” and t = 10M5; in all cases, all of the roots were 
properly isolated. Only in the case of Powell’s singular function (see problem 3 
in Section 4) did the algorithm give boxes in which the residuals were small but 
in which there were not actually roots. Those five boxes were clustered around 
the actual quadruple root, at which the Jacobian matrix was null. 

Algorithm 3.1 (Generalized bisection based on boxes) 

1. (Initialization phase) 
(a) Set: L c 1. 
(b) Set:B’cB. 
(c) Input the numbers c and CF as described above. 

‘2. (Subdivision phase) 
(a) Form Bf and B$ as in (2.4). 
(b) BLfl c Bf. 
(c) L c L + 1. 
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3. (Test phase and storage of roots) 
(a) Compute d(BL). 
(b) If d(BL) < t/4 and BL has nonnull intersection with a box B’ in list L such that 

d(BL) + d(B’) < $2 then go to Step 5. Otherwise, continue to Step 3 (c). 
(c) Compute Tp(B”). 
(d) If Tp(BL) = ‘unknown’ and d(BL) 2 t/16, then return to Step 2. 
(e) If TF(BL) = ‘false’, then go to Step 5. 
(f) If TF(B’) = ‘true’ or ] f&q, x2, . . . , x,) ] < LF for each i and (xl, x2, . . . , x,) as in 

(3.3), then: 
(i) IfLBiLhrt ;ll intersection with every box B’ E L with d(B’) < t/4, then store 

(ii) Go to Step 5. 

4. (Adjustment step for roots on a boundary: in this case TF(BL) = ‘unknown’ and 
d(BL) < c/16). 
(a) Replace BL by the box Bi with same midpoints as BL but four times as large: 

Bk = [r??, @] x [G$, @] x . . . x [cl;, F;] 
where 

2 = mjL + 4 (a; - mf), 
i$ = mjL + 4 (bf - mf), 

where 
mf = (a: + bF)/2. 

(b) Delete from L all B’ E L for which B’ n Bt is nonempty and d(B’) < c/4. 
(c) Store Bt in list L. 

5. (Backtrack to less subdivided boxes) 
(a) If L = 1, then exit with the list L. 
(b) If BL was Bf-‘, then: 

(i) Set: BL c Bi-l. 
(ii) Go to Step 3. 

(c) L + L - 1. 
(d) Return to Step 5(a). 

We conclude this section with some details concerning the computation of TF. 
Various methods of obtaining the bounds ci and di in (2.5) are possible. For 

example, if bounds on the partial derivatives of the fi are known, then the mean 
value theorem may be used. We have, however, elected to think in terms of 
interval arithmetic extensions to the function F since we find it conceptually 
natural, especially when the fi are polynomials, and since most ways of computing 
the ci and di can be viewed in terms of interval extensions of the fie 

Thorough introductions to interval mathematics are given in [14] and in [l]. 
For the uninitiated, we summarize the salient ideas here. Interval arithmetic 
consists of the set of intervals [a, b] where a and b are real numbers, and 
extensions of the four elementary operations “+“, “-“, “*“, and “/,, such that 

[aI, bl] op [a~, b,] = (3~~ op x2: al % x1 5 b, and u2 I x2 I b2), (3.4) 

where op is “+“, “-“, “*“, or “/“. 
For example, [ai, bl] - [u2, bz] = [al - bz, b1 - u2], while the other operations 

are also given by fairly simple rules. Thus, if the fi are polynomials, these rules 
can be used to compute the bounds ci and di. (We note, however, that the 
distributive law does not hold for interval arithmetic, and that the ci and di are 
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generally sharper the more highly factored the polynomial is; see, e.g., [14, Sect. 
2.31). More generally, an interval extension to a function f of n variables over a 
box B as in (2.1) is a function f such that j(B) is an interval and 

lfbl, x2, *. .f x,) :ej I Xj 5 bj for all jl C j(B) (3.5) 

In order to determine TF(B) = “true,” we use the Krawczyk test as explained 
in [13]. In particular, if B is as in (2.1) and mj = (oj + bj)/B, then define 

y= (ml, m2, . . . . m,) and 
Y an approximation to [F’(y)]-l (3.6) 

where F’(y) is the Jacobian matrix of the residual function F at y. We then 
define the box B by 

B = K(B) = y - YF(y) + (I - YF’(B))(B - y). (3.7) 

In (3.7), I is the identity matrix, and the last term of the right member is 
evaluated using standard rules of matrix-vector addition and multiplication, but 
with interval arithmetic. (In such calculations, a real number 3/j is taken to be a 
degenerate interval [ yj, yj]). Also note that the term y - YF( y) is simply the 
image under Newton’s method of the point y. In fact, a mean value theorem 
argument in [13] shows that B contains all images of B under the chord method 
with iteration matrix Y. Also, it is shown in [13] that if B C B and ]] I - YF’(B) 11 
< 1, then there is a unique solution of (1.1) within B and the chord method based 
on the iteration matrix Y will converge to that solution from any starting point 
within B. Here, the norm of the interval matrix I - YF’(B) is computed as the 
infinity norm, where each interval entry [a, b] is replaced by max( ] a I, ] b I 1. 
Thus, 

TF(B) = ‘he if B C B and I] I - YF’(B) II < 1, 

TF(B) = ‘false’ if 0 < Ci or 0 > di for some i as in 
(2.5) or if B n B is empty. (3.8) 

T,(B) = ‘unknown’ otherwise. 

In the actual computations, we iterate (3.7), replacing B by B n B until 
the diameter of B is less than c/4, provided the relative ratio D of d(B) and 
d@ n B) obeys 

D I 1 - (f, 1’n. (3.9) 

(The rationale for this procedure is that if (3.9) does not hold, then, on average, 
the value of the solution is refined more efficiently with bisection than with 
iteration of (3.7).) The tolerance t/4 ensures that every box in list L will have 
diameter at most t/4, so that the diameters need not be checked in Steps 3(b), 
3(f), 3(i), and 4(b). We counted function and Jacobian evaluations in this iteration 
within the overall total. A more sophisticated version of the code would use the 
standard floating-point Newton method in lieu of iteration of (3.7) (once the first 
line of (3.8) is satisfied, which ensures convergence), for a savings in execution 
time. 

We mention here that more sophisticated versions of the right-hand side of 
(3.7) have been proven to also lead to root inclusion tests (see [9] and [16]). Also, 
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Neumaier develops a general theory of when interval Newton methods based on 
interval inverses of matrices lead to root inclusion tests in [22]. Incorporation of 
these methods should lead to somewhat more efficient codes than that reported 
on here; they will be included in future versions. 

To actually do the interval arithmetic, we designed subroutines that implement 
the rules implied by (3.4) in floating-point arithmetic. We then programmed the 
functions comprising F and F' and the expression in (3.7) manually by calling 
these subroutines. This scheme differs from true interval floating-point arith- 
metic because directed roundings are not used to obtain rigorous bounds on the 
round-off errors in the floating-point computations. However, in this nonlinear 
equation context, the intervals are usually large compared to the round-off errors, 
and we did not encounter difficulties due to round-off error. Also, directed 
rounding is difficult to access from standard FORTRAN 77, and general packages 
that include a software implementation of directed rounding execute more slowly 
than our scheme. 

We note that alternate approaches to interval floating-point arithmetic include: 
(i) use of a precompiler that supports the interval data type (cf., [3]) in conjunc- 
tion with a subroutine package (cf., [25]); and (ii) use of a compiler, such as 
CDC’s M77 compiler or Pascal-SC, that supports an interval data type. We 
believe the first alternative would result in execution times similar to those 
reported here (i.e., about 200 times slower than floating-point arithmetic; see [3] 
and [25]), whereas the second alternative would result in execution that is an 
order-of-magnitude faster (with the interval arithmetic about five times slower 
than normal floating-point arithmetic). Either of these alternatives would make 
the code easier to use. 

A code based on programming the residuals and bounds on their derivatives in 
standard floating-point arithmetic in conjunction with direct application of the 
Mean Value Theorem would also be easier to use. However, that may result in 
bounds in (2.5) that are not as sharp, and hence in larger L in Algorithm 3.1 and 
in slower execution times. 

4. THE TEST SET 

The 17 test problems were chosen from diverse published reports of computa- 
tional tests. These included tests of quasi-Newton methods [18]; a Garcia- 
Zangwill continuation method [ 191, a simplicial bisection method [5]; a “simple” 
box bisection method [21]; a problem arising from robot kinematics [12]; a 
problem arising from a technique for analyzing bifurcation points [lo]; and a 
problem used to test an interval Newton method that is somewhat more sophis- 
ticated than (3.7), 191. The methods in these tests are fundamentally different 
from one another, the computing machinery used varied, and measures of 
efficiency differed from report to report. However, all of the problems can be 
considered variants of (1.1). Our goal in the choice of the test set was to enable 
us to begin to sort out the strong and weak points of generalized bisection in 
relation to these other methods. We now give the test problems by category. We 
do not give full descriptions of the problems, some of which have appeared various 
times in published experiments, but we cite references where appropriate. 
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4.1 Problems Used to Test a Homotopy Method ([19]) 

1. Cubic-Parabola: 

4x: - 3X* - x2 = 0 
XT -x2=0 

Initial Box: [-2, 21 X [-2, 21 
Remark: This problem has three solutions in the box. It poses a problem 

for the noninterval version of Newton’s method, but the Jacobian 
is well-conditioned at the solutions. 

2. A counterexample to a method of Branin: 

4(X, + x2) = 0 
4(X1 + x2) + (x1 - XZ)[(Xl - 2)2 + x; - l] = 0 

Initial box: [-2, 21 X [-2, 21 
Remark: This problem has one solution in the box, and does not cause 

particular trouble for generalized bisection. 
3. Powell’s singular function: 

Xl + 10x2 = 0 
&(x, - xp) = 0 
(x2 - 2X,)2 = 0 

diG(x, - x4)2 = 0 

Initial box: [-2, 214 
Remarks: This problem has a single solution at (0, 0, 0, 0). However, the 

Jacobian matrix is null at this solution, and it poses a severe test 
of most methods. 

4. Brown’s almost linear system: 

fi = Xi + f: Xj - (n + 1) = 0, 
i=l 

fn = kl xi [ 1 -l=O 

Initial box : n = 5 and box is [ -2,2] 5. 
Remark: There are two roots within the box. The Jacobian matrix is ill- 

conditioned at these roots. This function is found both in [19] 
and in 1211. 

4.2 Problems Used to Test a “Simple” Box-Bisection Method ([20]) 

5-8. A family of linear systems: 

fi = x1 - .5 = 0 
f2 = -axI + x2 f .5(a - 1) = 0 

where 
a = l/tan(&) and f15 = O”l’, 19~ = l”, & = lo”, 

and d8 = 30”. 
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Initid box: [O, l] x [O, l] 

Remarks: This system represents two lines crossing at angle 0,. In the 
bisection method in [21], small 0, posed more of a problem due 
to “clustering.” 

9. Circle-circle intersection: 

fi = (Xl - XT)’ + (x2 - xi)’ - r2 = 0 
f2 = (X1 - x?")" + (x2 - .q2 - (3 - xyo)2 = 0 

where xy= 100,0= l',,YO= -100, 

with xg = .5 + (x? - 5) tan@), and 
r2 = (5 - x0)2(1 + tan2(0)). 1 

Initial box: [0, l] X [0, 11. 

Remarks: These equations represent two intersecting circles with centers 
at xyand x4”. The linearization of the equations at one of the 
solution points is system no. 5 above. The values of x?, x?‘, and 
6’ given here caused the most problems for the box bisection 
method in [21]. 

10. Combustion chemistry problem ([12]): 

where 

fi = (YlX2X4 + (Y2X2 + cY3XlX4 + Ly4X1 + (Y5X4 = 0 
f2 = hX2X4 + p2X123 + fi3XlX4 + p4X3X4 

+ @5X3 + /%X4 + P7 = 0 

f3 = 2:: - X2 = 0 

f4 = xf - x3 = 0 

and 

al = -1.697 . 107, LYZ = 2.177 . 107, a3 = 0.55, 
a!4 = 0.45, cY5 = -1.0, 

p1 = 1.585 . 1014, p2 = 4.126 . 107, 
p3 = -8.285 . 106, p4 = 2.284 . 107, 
& = -1.918 . 107, Ps = 48.4, and p7 = -27.73 

Initial box: [0, l] X [0, l] X [0, l] X [0, l] 

Remarks: This real-world problem represents hydrocarbon combustion with 
excess fuel. It was originally posed as a system of two cubits; we 
could solve it directly in that form. However, we have chosen the 
system of quadratics since this form was used in 1211. The 
problem has been successfully solved via continuation methods. 
It has a unique solution within the nonnegative unit box, but has 
other, nonphysical solutions in larger domains. 
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11. A robot kinematics problem ([24]): 

+ Ly3Xl + LyqX2 + (Y5X4 + 0&3X7 + Ly7 = 0 
f2 = %3xl3c3 + aSx2x3 

where 

+ (YlOxl + (Yllx2 + al2x4 + (Y]3 = 0 

f3 = ~14&$3 + (Yl5xl + (Y161t2 = 0 

f4 = q7x1 + al&x2 + a19 = 0 

f5 = XT + xf - 1 = 0 
f6 = x; + x: - 1 = 0 
fy = xg + 37; - 1 = 0 
f* = x; + xg - 1 = 0 

a1 = 4.731 . 10-3, q = -.3578, a3 = -.1238, 
a4 = -1.637 . 10-3, a5 = -.9338, ct!g = 1.0, 
a7 = -.3571, q, = .2238, as = .7623, 

a10 = .2638, al1 = -.7745 . 10-l, (~12 = -.6734, 
a13 = -.6022, a14 = 1.0, (~15 = .3578, 
(Y16 = 4.731 - 10-3, al7 = -.7623, al8 = .2238, 
al9 = .3461 

Initial box: [-1, 11’. 
Remarks: This problem has been solved successfully via continuation 

methods. It has 16 solutions within the given box. 

4.3 A Test Problem for a Numerical Bifurcation Technique ([lo]) 

12. A high-degree polynomial system: 

fl = 5x! - 6$x; + x1x; + 2x1x3 = 0 
f2 = -2x:x2 + 2xqxz + 2x2x3 = 0 
f3 = x: + x; - .265625 = 0 

Initial box: [-.6,6] X [-.6, .6] X [-5, 51 
Remarks: This problem has 12 real solutions, which are all within the 

given box. However, it has 126 complex solutions, counting 
multiplicities, and a solution of very high multiplicity at infinity. 
Thus, it causes trouble for most homotopy continuation meth- 
ods. The system corresponds to (2.3) in [lo], with u1 = (1, O)T, 
~~=(0,.5)~,a~=x~=x,a~=x~=2(X-.5),andA=x~. 

4.4 Problems Used to Test a Simplicial Method of Bisection ([5]) 

13. The 3-dimensional identity: 

fi=Xi=O, lliS3 

Initial box: [-.25, .25] X [-.25, .25] X [-.25, .25] 
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987. 



208 - FL Baker Kearfott 

Remarks: This is a very easy problem for our method. However, we include 
it for comparison with the method in [5]. The initial box is chosen 
to be the same scale as the initial simplex in [5], but has 6 times 
the volume. 

14. Two intersecting parabolas: 

fl = x:: - 4x2 = 0 
f2 = xg - 2x1 + 4x2 = 0 

Initial box: [-4, 41 x [-4, 41 
Remarks: This system has two solutions within the given box. The topolog- 

ical index at the solution x1 = 0, x2 = 0, is -1, whereas the 
topological index at the solution x1 = 1.695, x2 21 .7186 is +l. 
Thus the topological degree with respect to any region containing 
both roots must be 0; this fact would cause topological degree- 
based bisection methods to fail to find either root. 

15. Rosenbrock’s function: 

fi=l-ni=o 
fi = lO(Xz - xl) = 0 

Initial box: [-4, 41 X [-4, 41 
Remarks: This problem also appears in [ 181 and in previous literature. 

16. A variable-dimension system of quadratics: 

fi = (Xi - 0.1)’ + Xi+1 - 0.1 = 0 
for IliSn-1; 

fn = (x, - 0.Q2 + x1 - 0.1 = 0. 
Initial box: [-.2, .214 (n = 4) 
Remarks: This simple system of quadratics can be used to test the effects 

of increasing the dimension on bisection methods. Since its 
Jacobian matrix is sparse, it can also be used to debug techniques 
for handling structured problems. Its Jacobian matrix is well- 
conditioned at the two real roots of x1 = .l, 1 5 i 5 n and xi = 
-.9, 1 I i 5 n. The topological index of the first root is -1, 
while the topological index of the second root is +l. Note that it 
is easily reducible to a single polynomial equation of degree 2”. 

4.5 A Problem Used to Test an Improved Interval Newton Method ([9]) 

17. Broyden’s banded function: 

fi = X1(2 + 5X”) + 1 - j;J. Xj(1 + Xj), 1 I i 5 n, 

where 
Ji = {i: j # i, max(1, i - 5) I j 5 min(n, i + 1)) 

Initial box: [-1, 115 (n = 5). 
Remarks : This problem also appears in [18] and elsewhere, and is slightly 

more difficult than problem 16 above. 
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5. NUMERICAL RESULTS 

We have organized the numerical results to do the following: 

(A) Compare our generalized bisection method with published numerical results 
on homotopy continuation methods. 

(B) Compare our generalized bisection method with the “simple” bisection 
method in [21]. 

(C) Compare our generalized bisection method with published results on the 
simplicial method of bisection in [5]. 

(D) Compare the interval Newton portion (i.e., (3.7)) of our generalized bisection 
method to the improved interval Newton method in [8]. 

(E) Compare our generalized bisection method to MINPACK, which is an 
established software package for the hybrid (quasi-Newton and steepest 
descent with trust regions or “dogleg”) methods. 

(F) Present the behavior of our method on a high-degree polynomial system. 
(G) Compare our generalized bisection method with the expansion and deletion 

steps (Steps 3(b), 3(f) substep (i), and 4(a)-4(b) of Algorithm 3.1) to the 
generalized bisection method obtained by omitting this step (and simply 
storing small boxes in the list L). 

Homotopy continuation is similar to Algorithm 3.1 in the sense that it seeks 
to find all solutions (but differs in that bounds are not placed on the desired 
portion of the solution set). In comparison (A), we assume that only the 
real solutions are desired. In the case where all complex solutions are needed, 
and not just solutions within a specified box, the continuation methods may do 
better, since the paths that converge to nonreal solutions then do not represent 
overhead. 

The box bisection method in [21] is qualitatively like Algorithm 3.1, but with 
a root inclusion test TF that never takes on the value “true.” With neither that 
part of the inclusion test nor expansion and exclusion steps, expensive “cluster- 
ing” occurs. We illustrate with comparison (B). Also, two important real-world 
problems appear in [al] and thus in our comparisons. 

The method in [5] was devised with a similar philosophy as Algorithm 3.1. It 
has the advantage of requiring only low-accuracy function evaluations (and no 
Jacobian matrix evaluations), and the disadvantage of relying more heavily on 
heuristics. Using the systems of equations in [5], we weigh the relative merits of 
that method and ours in comparison (C). 

Considerable work has been published on interval Newton methods which are 
improvements to (3.7) in the sense that the component intervals of the image 
box B have smaller widths. Such a method is reported on in 191. Thus our 
comparison (D) will help to gauge the importance of such improvements, and 
will indicate how much our method can be improved by using them instead of 
(3.7). (We used (3.7) since it is easier to program and is efficient with minimal 
software or hardware support for interval arithmetic.) 

Modules from the MINPACK package are perhaps the most widely available 
high-quality software for solving nonlinear systems of equations. The advantages 
of the general mathematical approach embodied in MINPACK are applicability 
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to large, sparse systems and economy for appropriate problems. However, the 
approach is often not well-suited to finding all solutions, and it works best when 
the function has only one solution and ] F ] 2 has only one local minimum. Our 
comparison (E) is meant to show that generalized bisection can possibly be used 
in a general way, performing reasonably well on problems that, after initial 
exploration, can be solved by other methods. 

Our algorithm differs from similar bisection methods in the box expansion 
step (Step 4 of Algorithm 3.1), and in the deletion steps in Steps 3(b) and 3(f) 
substep (i). The purpose of Step 4 is to eliminate ambiguity in the root-inclusion 
test in the case that solutions happen to occur near the boundary of one of the 
boxes. This could lead to listing many boxes corresponding to the same solution 
or to large numbers of boxes with very small diameters; the problem would 
increase with dimension. Comparison (G) helps us to determine the effect of the 
expansion and rejection steps on the algorithm’s efficiency and on its ability to 
reject unwanted boxes. 

In all cases, in Algorithm 3.1 we chose the domain tolerance t to be 10m5 and 
the range tolerance EF to be 10-l’. This allows the root-inclusion test to work 
rigorously in cases where the problem is near a problem with a quadratic 
singularity. 

We ran Algorithm 3.1 for all problems on a Zenith 150 IBM PC compatible 
with a 4.77 mhz clock and an 8087 numeric coprocessor; the code was compiled 
with IBM Professional Fortran. 

5.1 Comparison with a Continuation Method 

In order to compare with continuation methods, we use the published results in 
[19], and tabulate results with problems 1, 2, 3, and 4. We can only obtain an 
idea of the relative behavior of these techniques since (1) numerous problem 
types have been omitted. (2) improvements have been made to the continuation 
method in [19] (cf., [20]), and (3) since improvements can be made in our method 
of bisection. 

Because bisection and continuation are qualitatively so different, some idea of 
the relative overhead of each in solving these problems would be desirable. 
However, all of our experiments were on a Zenith 150 (IBM PC compatible) with 
a numeric coprocessor (8087) chip, with code compiled by the IBM Professional 
Fortran compiler, whereas the results in [19] were obtained from an IBM 3033 
with code compiled with the Fortran “H” compiler. To get a very rough idea of 
the total number of instructions executed, we used the LINPACK benchmark 
timings of these machines and compilers reported in [4]; based on this benchmark, 
the IBM PC executes floating-point operations 150 times slower than the IBM 
3033. Thus, in Table 5.1, the actual CPU times in hours:min.:sec. for the PC 
appear in the column “CPU Equivalent,” whereas the times reported in 1191 
multiplied by 150 appear there. Also, for the PC results, the time before and after 
the bisection process during which I/O occurred was not counted. 

We also note redundant or spurious roots in Table 5.1. For problems 1 and 2, 
there were complex roots that did not correspond to real roots. These were found 
by the continuation method. 
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Table 5.1. A very rough comparison of CPU times for bisection versus continuation, 
on an IBM PC compatible.* 

Problem 
no. 

Redundant/spurious roots Equivalent CPU Times 

n Bisection Continuation Bisection Continuation 

1 2 0 3 0:00:05 0:01:24 
2 2 0 1 0:00:05 0:00:57 
3 4 4 0 0:07:41 0:02:05 
4 5 0 0 1:OB:OO 0:05:27 

* The times reported for continuation were not actual times on an IBM PC (see the text). 

Table 5.2. Comparison of the numbers of function evaluations and Jacobian evaluations for 
bisection and a continuation method.* 

Problem 
NFCALL NJCALL Equivalent NFCALL 

no. Bisection Continuation Bisection Continuation Bisection Continuation 

1 80 - 66 888 1,060 2,664 
2 62 - 53 636 840 1,908 
3 2,114 - 1,597 676 42,510 3,380 
4 10,108 - 8,013 1,240 250,865 7,440 

* For the continuation method, the actual NFCALL and NJCALL were abstracted from the tables 
in [19]. The “equivalent NFCALL” values are computed to hopefully represent a more accurate 
measure of the total work (see the text). 

In problem 3, Algorithm 3.1 returned a “cluster” of 5 roots around the root 
(0, 0, 0, O), at which the Jacobian matrix is null; the theory in [ll] excludes such 
clusters only when the roots are not singular. The clustering at singular roots 
should be less severe when the range tolerance EF is set smaller relative to the 
domain tolerance E. 

In addition to CPU time, we report the number of evaluations of the residual 
function F and the number of evaluations of the Jacobian matrix of F for both 
bisection and the continuation method. Since the function and Jacobian evalu- 
ations for bisection were interval evaluations, whereas continuation uses simple 
floating-point arithmetic, the two methods are also difficult to compare with 
these quantities. With an efficient software implementation, interval arithmetic 
runs five times slower than floating-point arithmetic. (If interval arithmetic is 
implemented in hardware, it runs at roughly the same speed as floating-point 
arithmetic.) Thus, to get a (conservative) “equivalent” number of evaluations, 
we multiply the number of interval evaluations in the bisection method by 5. In 
the case of both bisection and continuation, we multiply the number of Jacobian 
evaluations by n and add to the number of function evaluations to translate 
Jacobian evaluations to rough numbers of function evaluations for the types of 
problems solved here. (We make no attempt to keep track of the linear algebra 
and other overhead.) These results appear in Table 5.2. 

In Tables 5.1 and 5.2, we note that bisection seems very reasonable for 
problems 1 and 2, but had more trouble than the continuation method on prob- 
lems 3 and 4. This is due to the singularity and ill-conditioning, respectively, 
at the roots being found. 
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5.2 Comparison with a “Simple” Bisection Method 

In this section, we compare the behavior of Algorithm 3.1 to the “simple” bisection 
algorithm in [21], utilizing problems 5 through 11. Problems 5 through 8 are 
linear systems with varying degrees of a type of ill-conditioning, and were used 
to test the code tried in [21] and to illustrate a difficulty inherent in the “simple” 
approach. Since the root-inclusion test in Algorithm 3.1 is partially based on an 
interval Newton method, Algorithm 3.1 solved all of these systems in one step; 
the method in [21] took widely varying numbers of steps depending on the 
conditioning parameter 8. Problem 9 appears in [21] with an aim similar to that 
in problems 5 through 8, and exhibits an ill-conditioning similar to that in 
problem 5. 

The method in [21] is similar to Algorithm 3.1 in that it tests boxes for the 
possibility of including a root, and subdivides boxes that may contain further 
roots. Its crucial difference is that the inclusion test never signals “true,” but 
only “false” or “unknown,” and all boxes with label “unknown” are subdivided 
further. (Additionally, the search is breadth-first instead of depth-first, and the 
subdivision is by halving all coordinate directions simultaneously to yield 2” sub- 
boxes for each initial box.) As is explained in [21], this leads to a “clustering” of 
numerous boxes around the actual solution. (Algorithm 3.1 should behave 
similarly if TF were altered to never signal “true.“) 

Because this is the information that appears in [21], and because of the nature 
of the methods, we compare the methods based on the total number of boxes 
tested. We also report the total number of boxes in the final cluster for the 
method in [21]. (In all cases, Algorithm 3.1 gave a unique box for each root in 
the specified region). For problems 5 through 8, we compute the total number of 
boxes in “simple” bisection from a formula given in [21], in order to achieve 
a diameter reduction of 2-16 = 1.5 x 10e5. (In all cases, Algorithm 3.1 required a 
diameter reduction of 10V5.) In problems 10 and 11, the total number of boxes 
tested is not available for the “simple” method, but some additional details are 
given in [21]. In all of the problems, the initial boxes were identical for both the 
“simple” method and for Algorithm 3.1: They were [0, 11” for problems 5 through 
10 and [-1, 118 for problem 11. The results appear in Table 5.3. 

5.3 Comparison with a Published Simplicial Bisection Method 

Computational experiments for a special simplicial bisection method are reported 
in [5]. The overall idea is similar to that in [ll] (and the algorithm here) in the 
sense that polygonal regions in R” are successively “bisected” and a test is used 
on the regions to determine whether or not roots exist. However, in [5] the 
regions are simplices, and bisection is by bisecting the longest edge. Also, the 
analog of the root inclusion test for the initial simplex in the algorithm in [5] is 
based on computing the Brouwer degree of the simplex; this is a generalization 
of the sign change test in the classical bisection method, and hence will not 
always indicate “true” when there are roots in the simplex. Also, in [5], the 
Brouwer degree is not computed for each simplex, but a heuristic based on a 
linearization of F is employed where possible. Moreover, the method for compu- 
tation of the Brouwer degree there contains a heuristic parameter. 
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Table 5.3. Comparison of the total number of boxes tested and the number of boxes in the &nal 
“cluster” with a “simple” bisection method that has an inclusion test that never signals “true.” 

Problem 
no. 

Stopping Final no. boxes Total no. boxes 
to1. in cluster tested 

n 3.1 other 3.1 other 3.1 other 

5 2 lo-+ ‘p 
6 2 1o-5 2-16 
7 2 1o-5 2-16 
8 2 1o-5 2-N 
9 2 1o-5 2-15 

10 4 1o-5 2.48 
11 8 lo+ 2-45 

1 6,900 1 35,814 
1 118 1 1,318 
1 14 1 384 
1 6 1 84 
2 6,896 11 398,597 
1 38 373 unknown 

16 22,968 485 unknown 

Computational results on problems 13, 14, 15, and 16 appear in [5]. In that 
algorithm, only low accuracy function evaluations (and no Jacobian evaluations) 
are required. For a rough comparison, we report function evaluations, Jacobian 
evaluations, and “equivalent function evaluations” for Algorithm 3.1: As in 
Table 5.2, the equivalent function evaluations are defined to be 5 x (NFCALL + 
n x NJCALL). (The factor of 5 is to roughly take account of the difference 
between floating-point and interval arithmetic). 

In [5], a domain-stopping tolerance and a range-stopping tolerance are used. 
In all cases, the range-stopping tolerance was set to 10V8, while the domain- 
stopping tolerance in the runs we transcribe here was either 10m5 or 10e6. In 
Algorithm 3.1, the domain-stopping tolerance 6 was set to 10e5, while the range- 
stopping tolerance tF was set to 10-l’. We suspect that the algorithm in [5] will 
do relatively better for larger tolerances, since the convergence is linear, while 
iteration of (3.7) can lead to faster convergence. Also, singularity at the root itself 
should affect the method in [5] relatively less. 

In addition to the stopping tolerance, the volume of the initial box in Algo- 
rithm 3.1 and the volume of the initial simplex in the simplicial bisection 
algorithm of [5] affect the total amount of work. This makes the algorithms 
difficult to compare, since the unit box in n-space contains n! times the volume 
of the unit n-simplex. (Also, in our opinion, it is easier to formulate an initial 
box for an application than to formulate an initial simplex.) For our comparisons, 
we took boxes containing the simplices in [5], with roughly the same diameters, 
and we did not try to take account of the differences in containing volumes. The 
initial boxes and corresponding initial simplices appear in Table 5.4. 

The results appear in Table 5.5. In problem 14, there are two roots in the 
initial box and the initial simplex, and the Brouwer degree over the entire simplex 
is 0, causing the method in [5] to fail; when the simplex S = ((5, i), (-5, 0), 
(0, -$)), which only contains one root, was tried, that method found the unique 
root in S in 45 function evaluations. 

5.4 Comparison with an Improved Interval Newton Method 

Hansen et al. have been working on interval Newton methods (of which the 
iteration implicit in (3.7) is an example) for some time. In particular, in [8] they 
publish a more sophisticated such method that should be competitive from the 

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987. 



214 l R. Baker Keatfott 

Table 5.4. Comparison of Algorithm 3.1 with a simplicial bisection method.* 

Problem 
no. 

Domain 
NFCALL NJCALL 

Equivalent 
to1. NFCALL 

n 3.1 other 3.1 other 3.1 other 3.1 other 

13 3 1o-5 
14 2 1o-5 
15 2 lo+ 
16 4 lo+ 

1o-6 1 106 1 
lo+ 49 fail 45 
1o-5 2 70 2 
lo+ 4 132 4 

- 
- 

20 106 
695 fail 

30 70 
100 132 

* See the text for an explanation of “equivalent NFCALL.” (NFCALL and NJCALL are the number 
of function and number of Jacobian matrix evaluations, respectively.) Also see Table 5.5 for 
information related to the tolerances. 

Table 5.5. Initial boxes for Algorithm 3.1 and initial simplices for the simplicial algorithm. 

Problem 
no. 

Initial Box 
(Algorithm 3.1) 

Initial Simplex 
(Simplicial Algorithm) 

13 [-.25, .25J3 ((-.25, 0, 0), (0, -.25, 0), (0, 0, -.25)) 
14 L-4, 412 ((3.zf,3.TF), (-3.3, O), (0, -3X)) 
15 L-4, 412 ((3.Ti,3.3), (-3.3, O), (0, -3.3)) 
16 [-.2, .2]’ ((.2, .2, .2, a t-.2, QO, Oh 

(0, -.2,0,0), ao, -.2,0), (0, o,o, -2)) 

point of view of numbers of function and numbers of Jacobian evaluations; in 
[16], Moore and Qi show that this method both leads to a root inclusion test and 
is more efficient than the test based on (3.7) and (3.8), which is presently 
implemented in our codes. We compare Algorithm 3.1 with results presented 
there for problem 17. 

Under certain conditions, the algorithm in [8] performs “real” inner iterations, 
which consist of iterations of the chord method with floating-point (and not 
interval) arithmetic. Thus, in addition to numbers of function and numbers of 
Jacobian evaluations, we also report the numbers of “real” function evaluations. 

In both [8] and in our experiments, the initial box was [-1, 115. In [B], the box 
diameter for stopping (i.e., the domain tolerance) was set to 10e8, whereas we 
used our standard tolerance of 10e5. The results appear in Table 5.6. 

Table 5.6 indicates that (3.7) can be improved via the techniques in [8]. (In 
particular, there is possibly a gain in speed of about 3, which could be taken into 
account in interpreting the other comparisons here.) Careful comparison on more 
problems will prove useful. 

5.5 Comparison with Quasi-Newton Software 

Here, we compare Algorithm 3.1 to the routine HYBFLJl from MINPACK 
(cf., [17]) on problems 3, 4, 15, and 17, which are problems 2, 8, 1, and 14, 
respectively, in the standard test set distributed with MINPACK (cf., [18]). 

The standard test driver for MINPACK supplies starting points and tolerances 
(see [18]). For each of the problems appearing here, there were three starting 
points; we report the results for each point separately. The relative domain-error 
tolerance is computed in the driver to be the square root of the machine epsilon, 
about lo-‘, while the components of the three starting vectors for each problem 
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Table 5.6. Comparison with an algorithm using a more sophisticated interval Newton method.* 

Algorithm 3.1 Hansen/Greenberg algorithm 

NFCALL 216 88 
NJCALL 149 46 
NRFCALL - 47 

* Results are for problem 17. NFCALL is the number of interval function evaluations, NJCALL is 
the number of interval Jacobian matrix evaluations, and NRFCALL is the number of function 
evaluations using noninterval floating-point arithmetic. 

Table 5.7. Comparison of Algorithm 3.1 with the routine HYBRJl in MINPACK.* 

Problem 
no. 

NFCALL NJCALL Time in min: set 

3.1 #l #2 #3 3.1 #l #2 #3 3.1 #l #2 #3 

3 2,114 123 116 122 1,597 7 6 6 7:41 0:15 0:14 0:14 
4 10,108 13 14 16 8,013 2 2 2 68:OO 0:02 0:02 0:02 

15 2 16 7 7 2 3 1 1 O:.l 0:.8 0:.3 0:.3 
17 216 18 23 33 149 1 2 2 1:26 0:.3 0:.4 0:.5 

*The heading #i denotes the ith starting point in the standard test driver for HYBRJl, for i = 
1, 2, 3. 

are on the order of 1, 10, and 100. For Algorithm 3.1, we used our standard 
tolerance of 10e5, and we used the initial boxes listed with the problems in 
Section 4. Since the components of the roots are on the order of 1 and since the 
algorithms converge superlinearly near the roots, the tolerances are roughly 
comparable. The initial boxes are roughly comparable to the first HYBRJl 
starting points; additional testing with larger boxes will be required to rigorously 
compare with the other two points. 

Problem 4 is exceptional because there are two solutions in the initial box 
input to Algorithm 3.1. For all three initial guesses, HYBRJl converged to 
(1, 1, 1, 1, l), whereas Algorithm 3.1 found both solutions. 

We compiled MINPACK with IBM Professional Fortran and ran the standard 
test driver on the Zenith 150. Since this was the identical treatment as in 
Algorithm 3.1, elapsed times are meaningful. (The elapsed times are the times 
spent in HYBRJl, where no I/O is performed, and in the non-I/O portions of 
Algorithm 3.1.) We additionally report numbers of function and Jacobian matrix 
evaluations; in the case of Algorithm 3.1, these were interval evaluations, whereas 
these were evaluations in standard double-precison arithmetic in the MINPACK 
results. The results appear in Table 5.7. 

Here, as with the other comparisons, we emphasize that our goal is to demon- 
strate range of applicability, and not to prove superior efficiency of one method 
over another. 

The exceptionally poor showing of Algorithm 3.1 for problems 3 and 4 is due 
to its inability to efficiently handle singularity or near-singularity. (Note, how- 
ever, that problem 4 had two solutions, one of which HYBRJl didn’t find.) The 
good showing of Algorithm 3.1 on problem 15 is due to the fact that one 
component is linear and one component is quadratic; this leads to small intervals 
in (3.7). 
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Table 5.8. Performance of Algorithm 3.1 on 
Problem 12 (a high-degree polynomial system).* 

Domain error tolerance: 1o-5 
Range error tolerance: 10-‘O 
Number of roots in box: 12 
Number of function evaluations: 1,339 
Number of Jacobian matrix evaluations: 1,019 
Number of roots redundantly listed: NONE 
CPU time on a Zenith 150: 3 min. 48 sec. 

*See the text for information about continuation 
method performance on this problem. 

5.6 Performance on a High-Degree Polynomial System 

Problem 12 in the form presented is difficult for continuation methods, due to 
the large number of paths and the large multiplicity of the solution at infinity 
([lo]; also A. P. Morgan (personal conversation)). We present the results for 
Algorithm 3.1 in Table 5.8. 

To get an idea of how a continuation method may behave on this problem, we 
ran a sophisticated code (embodying improvements over that in [19]) for solving 
polynomial systems of equations; we used the standard tolerances supplied with 
the code. This method is fully documented in [20]. The code successfully found 
the 12 real solutions while it traversed the 126 paths. However, due to excessive 
numbers of steps, it terminated prematurely on many of the paths leading to the 
singular solution at infinity (in projective space). The total number of corrector 
iterations for all paths was 109,053; this should be roughly the number of function 
and Jacobian evaluations. The code was run on an IBM 3090-200 after having 
been compiled with VS Fortran, and took approximately 201 seconds. The 
LINPACK benchmark ran 1,054 times as fast on the 3090-200 as on the IBM 
PC; based on this, it appears that Algorithm 3.1 found the 12 real roots about 
900 times as fast as the algorithm from [20]. However, we must note that: (i) the 
LINPACK benchmark may not accurately represent the speed difference for this 
problem; (ii) the algorithm from [20] really found 126 roots, counting multiplic- 
ities (so that, per root, continuation was just as fast); (iii) we evaluated the 
function for the continuation method with a general routine that made the 
function easier to input than for Algorithm 3.1, but which may have multiplied 
the execution time by a significant factor; and (iv) problem 12 can be reduced to 
make the effort expended by the continuation method less. We let the reader 
draw conclusions. 

5.7 Results With and Without the Expansion Step 

Among box bisection methods, Algorithm 3.1 is unique due to Step 3(b), 
Step 3(f) substep (i), and Step 4(a)-4(b). The main purpose of these steps is to 
avoid redundant listing of roots in a rigorous fashion so that no roots are missed. 
They will also reduce the total size of the search tree (and thus reduce execution 
time). The latter effect is limited, however; if these steps are bypassed, the boxes 
will continue to be bisected until they are at most a factor of 4 smaller than 
otherwise. Here we compare Algorithm 3.1 with and without these steps. 

In Tables 5.9 and 5.10, we list results for all 17 problems in the test set. 
Table 5.9 deals with the computational work performed by the variants of the 
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Table 5.9. Comparison of the computational effort of Algorithm 3.1 with and without the 
expansion and rejection steps (“w” denotes “with the step” and “w/o” denotes “without the step”). 

CPU NF NJ NT NL 

# w w/o W w/o W w/o W w/o W w/o 

1 00:06 00:06 80 80 66 66 47 47 24 24 
2 00:05 00:05 62 62 53 53 39 39 20 20 
3 08:Ol OS:21 2,114 2,133 1,597 1,613 1,180 1,199 600 600 
4 68:12 68:12 10,108 10,108 8,013 8,013 7,571 7,571 3,786 3,786 
5 0o:oo 00 : oo* 1 1 1 1 1 1 1 1 

6 0o:oo 00 : oo* 1 1 1 1 1 1 1 1 

7 0o:oo 00 : oo* 1 1 1 1 1 1 1 1 
8 0o:oo oo:oo* 1 1 1 1 1 1 1 1 

9 00:03 00:03 32 32 31 31 11 11 6 6 
10 02:34 02:34 601 601 480 480 373 373 187 187 
11 18:41 18:40 989 989 830 830 485 485 243 243 
12 03:53 14:31 1,339 4,655 1,019 4,365 943 887 472 444 
13 0:.16 0:.16 1 1 1 1 1 1 1 1 
14 00:03 00:03 49 49 45 45 21 21 11 11 
15 0:.16 0:.17 2 2 2 2 1 1 1 1 
16 0O:Ol 0O:Ol 4 4 4 4 1 1 1 1 
17 01:26 01:26 216 216 149 149 139 139 70 70 

* The times were .05 sec., .ll sec., or .06 sec. The relative values are thought to include some effect 
other than computational time since the number of operations for all of these problems should have 
been identical. 

Table 5.10. Comparison of Algorithm 3.1 with and without the expansion and rejection steps: 
The number of redundantly listed roots.* 

N4 NINLST 

# W w/o NROOTS NREJ W w/o 

1 0 0 3 6 3 9 
2 0 0 1 3 1 4 
3 0 0 1 24 5 26 
4 0 0 2 31 2 33 
5 0 0 1 0 1 1 
6 0 0 1 0 1 1 
7 0 0 1 0 1 1 

8 0 
9 0 

10 1 
11 0 
12 0 
13 0 
14 0 
15 0 
16 0 
17 0 

1 0 1 
2 1 2 
1 0 1 

16 0 16 
12 12 12 

1 0 1 
2 3 2 
1 0 1 
1 0 1 
1 0 1 

1 
3 
1 

16 

* Here, “w” means “with the rejection/expansion steps” and “w/o” means “without the rejection/ 
expansion steps.” 
**The algorithm failed when the expansion and deletion steps were omitted, see the footnote in 
Table 5.11. 
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Table 5.11. Comparison of Algorithm 3.1 with and without the expansion and rejection steps as in 
Table 5.10, except with a domain tolerance 6 set to 10-l instead of lo+. 

N4 NINLST CPU 

# w w/o NROOTS NREJ w w/o W w/o 

1 0 0 3 6 3 9 00:04 00:04 
2 0 0 1 3 4 4 00:04 00:04 
3 0 0 1 24 2 18 02~43 02:46 
4 0 0 2 31 4 35 67:21 67:21 
5 0 0 1 0 1 1 0o:oo 0o:oo 
6 0 0 1 0 1 1 0o:oo 0o:oo 
7 0 0 1 0 1 1 0o:oo 0o:oo 
8 0 0 1 0 1 1 0o:oo 0o:oo 
9 0 0 2 2 3 5 00:02 00:02 

10 0 0 1 3 4 7 01:48 01:48 
11 0 0 16 0 16 16 17:30 17:30 
12 0 12 20 12 - 03:32 -* 

13 0 0 1 0 1 1 0o:oo 0o:oo 
14 0 0 2 3 2 5 00:03 00:03 
15 0 0 1 0 1 1 0o:oo 0o:oo 
16 0 0 1 0 1 1 0o:oo 0o:oo 
17 0 0 1 0 1 1 01:24 01:24 

* The algorithm failed due to unflagged arithmetic exceptions in the function. When run on a machine 
with different arithmetic, there were 32 boxes in the list, 480 leaves, 959 boxes tested, 2,823 function 
calls, and 2,511 Jacobian calls when the exclusion and deletion steps were omitted. On this same 
machine, with the exclusion and deletion steps, there were 12 boxes in the list, 476 leaves, 951 boxes 
tested, 1,263 function calls, 951 Jacobian calls, and 20 boxes rejected. 

algorithm; we list CPU time in min : set, number of function calls (NF) and 
number of Jacobian calls (NJ), number of boxes tested (NT), and number of 
leaves in the search tree (NL) (i.e., the number of times Step 5 was entered) 
there. 

Table 5.10 deals with the effectiveness of rejecting redundantly listed roots; 
there we list number of times Step 4 was entered (N4), number of boxes that 
were rejected in Steps 3(b), 3(f) substep (i), and 4 (NREJ), number of actual 
roots (NROOTS), and number of boxes in the final list (NINLST). 

Entering Step 4 indicates failure of the root-inclusion test to signal “true” or 
“false” for a sufficiently large diameter box. This could be due to a root near the 
boundary, too large a domain tolerance e, an inefficient inclusion test TF, or a 
singular root. To test the effect of the tolerance, we reran the test set with 
e = 10-i. The summary results appear in Table 5.11. 

In a final test, we took E = lo-‘, EF = lo-“, and did not iterate (3.7). Since the 
total number of operations for the entire problem set was prohibitive, we ran this 
set on a mainframe computer. We observed that: (1) handling of singularities is 
relatively better; and (2) the exclusion and deletion steps come more into play. 
The results are summarized in Table 5.12. 

6. CONCLUSIONS AND FURTHER STUDY 

The results in Section 5 indicate that bisection is a reasonable method for solving 
many types of problems, but is particularly suited for (1.1). Whether to use 
bisection or a continuation method depends on the particulars of the problem. 
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Table 5.12. Comparison of Algorithm 3.1 with and without the expansion and rejection steps, 
as in Table 5.12, except that formula (3.7) is never iterated in the root inclusion test.* 

N4 NINLST NF NJ 

# w w/o NROOTS NREJ w w/o W w/o W w/o 

1 3 12 3 10 3 12 321 391 174 215 
2 1 4 1 3 1 4 224 247 126 145 
3 1 28 1 16 1 28 1,657 2,027 837 1,041 
4** 1 27 2 22 1 27 100,000 100,000 60,132 60,377 
5 0 0 1 0 1 1 1 1 1 1 

6 0 0 1 0 1 1 1 1 1 1 
7 0 0 1 0 1 1 1 1 1 1 
8 0 0 1 0 1 1 1 1 1 1 
9 4 18 2 12 2 18 109 163 65 99 

10*** 284 51 1 1,209 27 >51 15,393 1,086 8,713 599 
11*** 14 51 16 159 18 >51 48,762 18,789 29,341 11,523 
12 8 20 12 58 12 24 2,217 3,623 1,243 1,959 
13 0 0 1 4 1 1 623 639 316 325 
14 0 0 1 0 1 1 1 1 1 1 

15 2 7 1 6 2 7 237 261 142 156 
16 1 4 1 4 1 4 107 123 68 78 
17 0 0 1 0 0 0 9 9 5 5 

* Here, NF is the number of function calls and NJ is the number of calls to the Jacobian matrix 
routine. 
** For this function, the maximum number of allowed function evaluations (100,000) was exceeded 
both with and without the exclusion and rejection steps. 
*** For this function, the maximum number of allowed boxes in the list (50) was exceeded early in 
the computation when exclusion and rejection steps were not done. 

We have noted problems with bisection on singular systems. It will be useful 
to develop variants of the inclusion test to handle this eventuality. 

Further study of the expansion step, with and without iteration of (3.7) (and 
improvements thereof) would be interesting. Likewise, further study of the effects 
of increasing and decreasing the tolerances could also reveal how to increase the 
overall efficiency of the algorithm. 

Finally, accessible end-user software should be developed. Unless interval 
arithmetic implementations become more widely available, this software should 
be designed around ordinary floating-point arithmetic. It should include easy 
means of inputting the function, Jacobian matrix, and bounds on the second 
derivatives, and should include automatic scaling so that the tolerances c and tF 
are easy to interpret. 
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