
Some Tests of Generalized Bisection

I?. BAKER KEARFOTT
The University of Southwestern Louisiana

This paper addresses the task of reliably finding approximations to all solutions to a system of
nonlinear equations within a region defined by bounds on each of the individual coordinates. Various
forms of generalized bisection were proposed some time ago for this task. This paper systematically
compares such generalized bisection algorithms to themselves, to continuation methods, and to hybrid
steepest descent/quasi-Newton methods. A specific algorithm containing novel “expansion” and
“exclusion” steps is fully described, and the effectiveness of these steps is evaluated. A test problem
consisting of a small, high-degree polynomial system that is appropriate for generalized bisection,
but very difticult for continuation methods, is presented. This problem forms part of a set of 17 test
problems from published literature on the methods being compared; this test set is fully described
here.

Categories and Subject Descriptors: G.1.5 [Numerical Analysis]: Roots of Nonlinear Equations-
systems of equations

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Generalized bisection, global constrained optimization, homotopy
method, interval arithmetic, MINPACK, quasi-Newton method

1. MOTIVATION, PURPOSE, AND SCOPE
We consider the following general problem:

Find, with certainty, approximations to all solutions of the nonlinear system:

fAXI X2, . * * 2 &L) = 0, 15iSn, 0.1)

where bounds oi and bi are known such that:

ai I Xi 5 bi for 1 5 i 5 n.

We write F(X) = 0, where F = (fi, f2, . . . , fn) and X = (2tI, x2, . . . , x,). We
denote the box given by the inequalities on the variables xi by 3.

Here, we assume n is of moderate size (so that sparsity is not a consideration).
Relevant properties of methods for solving (1.1) include

(i) computational efficiency,
(ii) mathematical reliability,

Author’s address: Department of Mathematics, P.O. Box 41010, The University of Southwestern
Louisiana, Lafayette, LA 70504-1010.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1987 ACM 0098-3500/87/0900-0197 $01.50

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987, Pages 197-220.

198 l R. Baker Kearfott

(iii) computational reliability,
(iv) efficiency of implementation, and
(v) range of application.

Computational efficiency deals with the total number of computer operations in
order to solve (l.l), and generally includes both evaluation of the residuals on
the left-hand side of (1.1) and intrinsic overhead in the method. By mathematical
reliability, we mean the existence of theorems which state that, under simplifying
assumptions and in exact arithmetic, the method will solve (1.1). When we say a
method is computationally reliable, we mean the method is stable when imple-
mented in floating-point systems and heuristics introduced in the implementa-
tion, but not in the theory, are effective. A method is efficient to implement
when it is simple from a computer programmer’s point of view, and when its
performance is not sensitive to details of the implementation or to “tuning.”
Range of application deals with the types of problems for which the method
works (e.g., just a single equation in a single variable, just polynomial equations,
etc.).

Clearly, there are conflict and interplay between these properties, so that just
one method is probably not “best” for all problems. However, a good algorithm
should be strong in several of the areas.

Some alternate techniques for solving (1.1) include: (i) random search; (ii) an
exhaustive grid search on the box [aI, bl] X [u2, b,] X . . . x [a,, b,]; (iii) Newton’s
method with repeated random starts; (iv) ad hoc methods, such as the Jenkins-
Traub method for finding all roots of a single polynomial; (v) homotopy contin-
uation methods; and (vi) pure interval Newton methods. Random search is
neither mathematically nor computationally reliable. Grid search can be made
mathematically and computationally reliable, although it is computationally very
inefficient. Newton’s method with repeated random starts, or “globalized” quasi-
Newton methods, are sometimes used as exploratory tools. However, such meth-
ods are not mathematically reliable for solving (1.1) in general when there is
more than one solution. Specialized methods can be reliable, efficient, and easily
implemented, but with a limited range of application.

Homotopy continuation methods can solve variants of (1.1) effectively in many
instances (cf., [20]). For example, if the variables are complex, all solutions (not
just those in a bounded region) are desired, and the system consists of polynomial
equations, then such methods are recommended. Such methods are also recom-
mended for specific systems where significant a priori analysis can be performed.
Nonetheless, if just real roots within a particular region are required, then
homotopy continuation methods can be relatively expensive. Furthermore, state-
of-the-art implementations involve both numerous heuristics and mathematical
sophistication, and some early methods are computationally unreliable.

The method presented in this paper makes use of an interval Newton method
(though the basic root inclusion test is general and could possibly also be
implemented with alternate techniques). However, pure interval Newton methods
(without a bisection component) may have difficulty with (1.1) when there is
more than one solution or when the Jacobian matrix F’(X) is singular for
numerous X E B.
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

Some Tests of Generalized Bisection 199

In this paper, we intend to show that generalized bisection is a competitive
method for solving (1.1) in terms of all five of the desirable attributes. Generalized
bisection is an exhaustive search for roots, and necessarily is computationally
and mathematically reliable (cf., [ll]). However, the search proceeds by adap-
tively and nonuniformly subdividing the domain of the variables into regions
that are (ideally) just small enough such that Newton’s method starting in any
of the subregions will converge to a unique root within that subregion. In that
sense, bisection is optimal.

The method in this paper employs an interval form of Newton’s method [13]
and is thus similar to algorithms proposed by Moore et al. [15], Hansen (see
[6, 7,8,9], etc.), Alefeld et al. [2], etc., although we do not emphasize the interval
arithmetic aspects of the method. Here, we test the method on 17 problems that
include artificial and real-world examples from the literature on quasi-Newton
methods, homotopy continuation methods, other bisection methods, etc. This
test set has been chosen to illustrate the strengths and weaknesses of our
generalized bisection method vis a vis other methods. We thus hope to convince
persons wishing to solve (1.1) that generalized bisection has its place in their
store of tools.

In Section 2 of this paper, we briefly describe the mathematical framework of
the method. Some particulars of the implementation are presented in Section 3.
In Section 4, we give the test set. The numerical results are shown in Section 5.
In Section 6, we give conclusions and directions for further study.

2. THE BASIC METHOD

A careful analysis of the basic ideas underlying generalized bisection is given
in [ll]; here we describe these ideas in the context of our specific algorithm.

Our generalized bisection algorithm consists of

(i) a geometrical bisection process,
(ii) a root inclusion test, and

(iii) a binary search algorithm.

In the results presented here, the geometrical bisection process is similar to
that given in [6], [15], etc. To each box

B = [al, hl x [aa bzl x ..a x [an, bnl cw

we find k such that

k = max (bj - cj), (2.2)
lsjsn

we set

mk = (uk + &l/2, (2.3)

then we form two boxes B1 and Bz such that

B1 = [al, h] x [Uz, bz] x -** x [mk, bk] x *** x [Urn b]

BP = [Ul, bl] x [Uz, bz] x -** x [Uk, mk] x .** x [U,, b,].
(2.4)

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

200 l R. Baker Kearfott

That is, we cut the box B into two boxes Bi and B2 by cutting in the coordinate
direction in which B is longest. (Note that the coordinate index k may be chosen
by “pivot” strategies other than (2.2); however, for well-scaled problems, (2.2)
works reasonably well and also has the advantage of simplicity.) Important
aspects of the geometrical bisection process are (i) as it is iterated on B1 and Bz,
the diameters of the resulting boxes tend to zero at a known rate; and (ii) the
boxes do not get arbitrarily “thin.”

Our root inclusion test is a function TF which associates to each box B the
values “true, ” “false,” and “unknown.” Defined formally in [111, it has the
following properties:

(i) TF(B) = “true” implies that there is a unique solution of the system (1.1)
within B, and Newton’s method or one of its variants will converge to that
solution from any starting point in B.

(ii) TF(B) = “false” implies that there are no solutions of the system (1.1)
within B.

(iii) If the diameter of B is sufficiently small, if any solutions of (1.1) lie
sufficiently far, relative to the size of B, from the boundary of B; and if the
Jacobian matrix of the residual function F as in (1.1) is nonsingular at any
solutions of (l.l), then TF(B) = “true” or T&B) = “false.”

Here, the root inclusion test is similar to that in [13]. In particular, our root
inclusion test is based partly on computing intervals [ci, di] such that

where

aj 5 Xj 5 bj, 1 5 j 5 n.

Thus, if, for any i, ci > 0 or di < 0, then fi cannot vanish in the box B, and we set
TF(B) = “false.” To compute TF(B) = “true” when there is a solution of (1.1)
within B, we compute similar bounds on the partial derivatives of the fi- Using
these bounds, we obtain a box B such that all images of points in B under a
single application of the chord method (with a specified iteration matrix inde-
pendent of the point) are contained in B. (The chord method is an iteration of
the form Xk+i t Xk - YF(Xk), where Y is held fixed relative to X,, and is only
an approximate inverse to F’(Xk); see [23], p. 181.) Thus, if B C B, the Schauder
fixed point theorem and the fact that stationary points of the chord method
correspond to solutions of (1.1) show that there is a solution of (1.1) in B.
Furthermore, if the norm of a certain matrix is less than one, then this solution
is unique, and the chord method will converge to it. Details are given in Section
3 and in [13].

The bisection process and the root inclusion test define a binary search
algorithm naturally: The siblings of B are B1 and BP, while the internal nodes of
the binary tree correspond to subboxes of B that are labeled “unknown.” Here,
we use a depth-first search. Our algorithm also differs from similar bisection
algorithms in that we sometimes “expand” the box when it appears that solutions
occur too near its boundary to conclude that they are inside or outside. A full
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

Some Tests of Generalized Bisection l 201

description and rigorous justification of this process in a general setting are given
in [ll], while the essentials of the algorithm are repeated below.

3. IMPLEMENTATION DETAILS

The code is based upon Algorithm 2.6 in [ll]; for clarity we present a particular
version here. Below, each BL produced from B at level L in the bisection process
is assumed to have the same form as B in (2.1), i.e.,

BL = [a!, bf] x [ak, b$] x . . - x [a:, bk].

Furthermore, the diameter of BL is defined by

(3.1)

d(BL) = max 1 bf - a;],
Ir-jn

WV

In the algorithm, a number 6 must be input. In the theory in [ll], c is such
that TF(BL) = “true” if: (i) d(BL) < E and solutions of (1.1) lie sufficiently far
from the boundary of BL; and (ii) the distance between solutions of (1.1) is at
least t/2. In practice, E may be chosen heuristically to be the smallest allowable
box dimension. If this is done, there is no danger of entirely missing roots, but
we run the risk that two roots that are closer than E to each other may be
approximated by the same small box.

Additionally, a number TV is input such that, if

for every (xl, x2, . . . , x,) such that

a: 5 Xj 5 bf ,

(3.3)

then the box BL is accepted as though TF(BL) were “true.” The reason tF is
needed is to stop the refinement process near solutions of (1.1) at which the
Jacobian matrix is singular. In theory, the root inclusion test based on an interval
Newton method that is implemented here must fail at such solutions. (See [ll]
for conditions under which a general root inclusion test will work.) Also, in
theory, use of tF to stop the algorithm could give points at which the residuals fi
are small but which do not actually correspond to roots. In the main experiments
in Section 5, we chose tF = 10-l” and t = 10M5; in all cases, all of the roots were
properly isolated. Only in the case of Powell’s singular function (see problem 3
in Section 4) did the algorithm give boxes in which the residuals were small but
in which there were not actually roots. Those five boxes were clustered around
the actual quadruple root, at which the Jacobian matrix was null.

Algorithm 3.1 (Generalized bisection based on boxes)

1. (Initialization phase)
(a) Set: L c 1.
(b) Set:B’cB.
(c) Input the numbers c and CF as described above.

‘2. (Subdivision phase)
(a) Form Bf and B$ as in (2.4).
(b) BLfl c Bf.
(c) L c L + 1.

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

202 l R. Baker Kearfott

3. (Test phase and storage of roots)
(a) Compute d(BL).
(b) If d(BL) < t/4 and BL has nonnull intersection with a box B’ in list L such that

d(BL) + d(B’) < $2 then go to Step 5. Otherwise, continue to Step 3 (c).
(c) Compute Tp(B”).
(d) If Tp(BL) = ‘unknown’ and d(BL) 2 t/16, then return to Step 2.
(e) If TF(BL) = ‘false’, then go to Step 5.
(f) If TF(B’) = ‘true’ or] f&q, x2, . . . , x,)] < LF for each i and (xl, x2, . . . , x,) as in

(3.3), then:
(i) IfLBiLhrt ;ll intersection with every box B’ E L with d(B’) < t/4, then store

(ii) Go to Step 5.

4. (Adjustment step for roots on a boundary: in this case TF(BL) = ‘unknown’ and
d(BL) < c/16).
(a) Replace BL by the box Bi with same midpoints as BL but four times as large:

Bk = [r??, @] x [G$, @] x . . . x [cl;, F;]
where

2 = mjL + 4 (a; - mf),
i$ = mjL + 4 (bf - mf),

where
mf = (a: + bF)/2.

(b) Delete from L all B’ E L for which B’ n Bt is nonempty and d(B’) < c/4.
(c) Store Bt in list L.

5. (Backtrack to less subdivided boxes)
(a) If L = 1, then exit with the list L.
(b) If BL was Bf-‘, then:

(i) Set: BL c Bi-l.
(ii) Go to Step 3.

(c) L + L - 1.
(d) Return to Step 5(a).

We conclude this section with some details concerning the computation of TF.
Various methods of obtaining the bounds ci and di in (2.5) are possible. For

example, if bounds on the partial derivatives of the fi are known, then the mean
value theorem may be used. We have, however, elected to think in terms of
interval arithmetic extensions to the function F since we find it conceptually
natural, especially when the fi are polynomials, and since most ways of computing
the ci and di can be viewed in terms of interval extensions of the fie

Thorough introductions to interval mathematics are given in [14] and in [l].
For the uninitiated, we summarize the salient ideas here. Interval arithmetic
consists of the set of intervals [a, b] where a and b are real numbers, and
extensions of the four elementary operations “+“, “-“, “*“, and “/,, such that

[aI, bl] op [a~, b,] = (3~~ op x2: al % x1 5 b, and u2 I x2 I b2), (3.4)

where op is “+“, “-“, “*“, or “/“.
For example, [ai, bl] - [u2, bz] = [al - bz, b1 - u2], while the other operations

are also given by fairly simple rules. Thus, if the fi are polynomials, these rules
can be used to compute the bounds ci and di. (We note, however, that the
distributive law does not hold for interval arithmetic, and that the ci and di are
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

Some Tests of Generalized Bisection 203

generally sharper the more highly factored the polynomial is; see, e.g., [14, Sect.
2.31). More generally, an interval extension to a function f of n variables over a
box B as in (2.1) is a function f such that j(B) is an interval and

lfbl, x2, *. .f x,) :ej I Xj 5 bj for all jl C j(B) (3.5)

In order to determine TF(B) = “true,” we use the Krawczyk test as explained
in [13]. In particular, if B is as in (2.1) and mj = (oj + bj)/B, then define

y= (ml, m2, m,) and
Y an approximation to [F’(y)]-l (3.6)

where F’(y) is the Jacobian matrix of the residual function F at y. We then
define the box B by

B = K(B) = y - YF(y) + (I - YF’(B))(B - y). (3.7)

In (3.7), I is the identity matrix, and the last term of the right member is
evaluated using standard rules of matrix-vector addition and multiplication, but
with interval arithmetic. (In such calculations, a real number 3/j is taken to be a
degenerate interval [yj, yj]). Also note that the term y - YF(y) is simply the
image under Newton’s method of the point y. In fact, a mean value theorem
argument in [13] shows that B contains all images of B under the chord method
with iteration matrix Y. Also, it is shown in [13] that if B C B and]] I - YF’(B) 11
< 1, then there is a unique solution of (1.1) within B and the chord method based
on the iteration matrix Y will converge to that solution from any starting point
within B. Here, the norm of the interval matrix I - YF’(B) is computed as the
infinity norm, where each interval entry [a, b] is replaced by max(] a I,] b I 1.
Thus,

TF(B) = ‘he if B C B and I] I - YF’(B) II < 1,

TF(B) = ‘false’ if 0 < Ci or 0 > di for some i as in
(2.5) or if B n B is empty. (3.8)

T,(B) = ‘unknown’ otherwise.

In the actual computations, we iterate (3.7), replacing B by B n B until
the diameter of B is less than c/4, provided the relative ratio D of d(B) and
d@ n B) obeys

D I 1 - (f, 1’n. (3.9)

(The rationale for this procedure is that if (3.9) does not hold, then, on average,
the value of the solution is refined more efficiently with bisection than with
iteration of (3.7).) The tolerance t/4 ensures that every box in list L will have
diameter at most t/4, so that the diameters need not be checked in Steps 3(b),
3(f), 3(i), and 4(b). We counted function and Jacobian evaluations in this iteration
within the overall total. A more sophisticated version of the code would use the
standard floating-point Newton method in lieu of iteration of (3.7) (once the first
line of (3.8) is satisfied, which ensures convergence), for a savings in execution
time.

We mention here that more sophisticated versions of the right-hand side of
(3.7) have been proven to also lead to root inclusion tests (see [9] and [16]). Also,

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

204 - Ft. Baker Kearfott

Neumaier develops a general theory of when interval Newton methods based on
interval inverses of matrices lead to root inclusion tests in [22]. Incorporation of
these methods should lead to somewhat more efficient codes than that reported
on here; they will be included in future versions.

To actually do the interval arithmetic, we designed subroutines that implement
the rules implied by (3.4) in floating-point arithmetic. We then programmed the
functions comprising F and F' and the expression in (3.7) manually by calling
these subroutines. This scheme differs from true interval floating-point arith-
metic because directed roundings are not used to obtain rigorous bounds on the
round-off errors in the floating-point computations. However, in this nonlinear
equation context, the intervals are usually large compared to the round-off errors,
and we did not encounter difficulties due to round-off error. Also, directed
rounding is difficult to access from standard FORTRAN 77, and general packages
that include a software implementation of directed rounding execute more slowly
than our scheme.

We note that alternate approaches to interval floating-point arithmetic include:
(i) use of a precompiler that supports the interval data type (cf., [3]) in conjunc-
tion with a subroutine package (cf., [25]); and (ii) use of a compiler, such as
CDC’s M77 compiler or Pascal-SC, that supports an interval data type. We
believe the first alternative would result in execution times similar to those
reported here (i.e., about 200 times slower than floating-point arithmetic; see [3]
and [25]), whereas the second alternative would result in execution that is an
order-of-magnitude faster (with the interval arithmetic about five times slower
than normal floating-point arithmetic). Either of these alternatives would make
the code easier to use.

A code based on programming the residuals and bounds on their derivatives in
standard floating-point arithmetic in conjunction with direct application of the
Mean Value Theorem would also be easier to use. However, that may result in
bounds in (2.5) that are not as sharp, and hence in larger L in Algorithm 3.1 and
in slower execution times.

4. THE TEST SET

The 17 test problems were chosen from diverse published reports of computa-
tional tests. These included tests of quasi-Newton methods [18]; a Garcia-
Zangwill continuation method [191, a simplicial bisection method [5]; a “simple”
box bisection method [21]; a problem arising from robot kinematics [12]; a
problem arising from a technique for analyzing bifurcation points [lo]; and a
problem used to test an interval Newton method that is somewhat more sophis-
ticated than (3.7), 191. The methods in these tests are fundamentally different
from one another, the computing machinery used varied, and measures of
efficiency differed from report to report. However, all of the problems can be
considered variants of (1.1). Our goal in the choice of the test set was to enable
us to begin to sort out the strong and weak points of generalized bisection in
relation to these other methods. We now give the test problems by category. We
do not give full descriptions of the problems, some of which have appeared various
times in published experiments, but we cite references where appropriate.
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

Some Tests of Generalized Bisection l 205

4.1 Problems Used to Test a Homotopy Method ([19])

1. Cubic-Parabola:

4x: - 3X* - x2 = 0
XT -x2=0

Initial Box: [-2, 21 X [-2, 21
Remark: This problem has three solutions in the box. It poses a problem

for the noninterval version of Newton’s method, but the Jacobian
is well-conditioned at the solutions.

2. A counterexample to a method of Branin:

4(X, + x2) = 0
4(X1 + x2) + (x1 - XZ)[(Xl - 2)2 + x; - l] = 0

Initial box: [-2, 21 X [-2, 21
Remark: This problem has one solution in the box, and does not cause

particular trouble for generalized bisection.
3. Powell’s singular function:

Xl + 10x2 = 0
&(x, - xp) = 0
(x2 - 2X,)2 = 0

diG(x, - x4)2 = 0

Initial box: [-2, 214
Remarks: This problem has a single solution at (0, 0, 0, 0). However, the

Jacobian matrix is null at this solution, and it poses a severe test
of most methods.

4. Brown’s almost linear system:

fi = Xi + f: Xj - (n + 1) = 0,
i=l

fn = kl xi [1 -l=O

Initial box : n = 5 and box is [-2,2] 5.
Remark: There are two roots within the box. The Jacobian matrix is ill-

conditioned at these roots. This function is found both in [19]
and in 1211.

4.2 Problems Used to Test a “Simple” Box-Bisection Method ([20])

5-8. A family of linear systems:

fi = x1 - .5 = 0
f2 = -axI + x2 f .5(a - 1) = 0

where
a = l/tan(&) and f15 = O”l’, 19~ = l”, & = lo”,

and d8 = 30”.
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 198’7.

206 l R.BakerKearfott

Initid box: [O, l] x [O, l]

Remarks: This system represents two lines crossing at angle 0,. In the
bisection method in [21], small 0, posed more of a problem due
to “clustering.”

9. Circle-circle intersection:

fi = (Xl - XT)’ + (x2 - xi)’ - r2 = 0
f2 = (X1 - x?")" + (x2 - .q2 - (3 - xyo)2 = 0

where xy= 100,0= l',,YO= -100,

with xg = .5 + (x? - 5) tan@), and
r2 = (5 - x0)2(1 + tan2(0)). 1

Initial box: [0, l] X [0, 11.

Remarks: These equations represent two intersecting circles with centers
at xyand x4”. The linearization of the equations at one of the
solution points is system no. 5 above. The values of x?, x?‘, and
6’ given here caused the most problems for the box bisection
method in [21].

10. Combustion chemistry problem ([12]):

where

fi = (YlX2X4 + (Y2X2 + cY3XlX4 + Ly4X1 + (Y5X4 = 0
f2 = hX2X4 + p2X123 + fi3XlX4 + p4X3X4

+ @5X3 + /%X4 + P7 = 0

f3 = 2:: - X2 = 0

f4 = xf - x3 = 0

and

al = -1.697 . 107, LYZ = 2.177 . 107, a3 = 0.55,
a!4 = 0.45, cY5 = -1.0,

p1 = 1.585 . 1014, p2 = 4.126 . 107,
p3 = -8.285 . 106, p4 = 2.284 . 107,
& = -1.918 . 107, Ps = 48.4, and p7 = -27.73

Initial box: [0, l] X [0, l] X [0, l] X [0, l]

Remarks: This real-world problem represents hydrocarbon combustion with
excess fuel. It was originally posed as a system of two cubits; we
could solve it directly in that form. However, we have chosen the
system of quadratics since this form was used in 1211. The
problem has been successfully solved via continuation methods.
It has a unique solution within the nonnegative unit box, but has
other, nonphysical solutions in larger domains.

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

Some Tests of Generalized Bisection l 207

11. A robot kinematics problem ([24]):

+ Ly3Xl + LyqX2 + (Y5X4 + 0&3X7 + Ly7 = 0
f2 = %3xl3c3 + aSx2x3

where

+ (YlOxl + (Yllx2 + al2x4 + (Y]3 = 0

f3 = ~14&$3 + (Yl5xl + (Y161t2 = 0

f4 = q7x1 + al&x2 + a19 = 0

f5 = XT + xf - 1 = 0
f6 = x; + x: - 1 = 0
fy = xg + 37; - 1 = 0
f* = x; + xg - 1 = 0

a1 = 4.731 . 10-3, q = -.3578, a3 = -.1238,
a4 = -1.637 . 10-3, a5 = -.9338, ct!g = 1.0,
a7 = -.3571, q, = .2238, as = .7623,

a10 = .2638, al1 = -.7745 . 10-l, (~12 = -.6734,
a13 = -.6022, a14 = 1.0, (~15 = .3578,
(Y16 = 4.731 - 10-3, al7 = -.7623, al8 = .2238,
al9 = .3461

Initial box: [-1, 11’.
Remarks: This problem has been solved successfully via continuation

methods. It has 16 solutions within the given box.

4.3 A Test Problem for a Numerical Bifurcation Technique ([lo])

12. A high-degree polynomial system:

fl = 5x! - 6$x; + x1x; + 2x1x3 = 0
f2 = -2x:x2 + 2xqxz + 2x2x3 = 0
f3 = x: + x; - .265625 = 0

Initial box: [-.6,6] X [-.6, .6] X [-5, 51
Remarks: This problem has 12 real solutions, which are all within the

given box. However, it has 126 complex solutions, counting
multiplicities, and a solution of very high multiplicity at infinity.
Thus, it causes trouble for most homotopy continuation meth-
ods. The system corresponds to (2.3) in [lo], with u1 = (1, O)T,
~~=(0,.5)~,a~=x~=x,a~=x~=2(X-.5),andA=x~.

4.4 Problems Used to Test a Simplicial Method of Bisection ([5])

13. The 3-dimensional identity:

fi=Xi=O, lliS3

Initial box: [-.25, .25] X [-.25, .25] X [-.25, .25]
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

208 - FL Baker Kearfott

Remarks: This is a very easy problem for our method. However, we include
it for comparison with the method in [5]. The initial box is chosen
to be the same scale as the initial simplex in [5], but has 6 times
the volume.

14. Two intersecting parabolas:

fl = x:: - 4x2 = 0
f2 = xg - 2x1 + 4x2 = 0

Initial box: [-4, 41 x [-4, 41
Remarks: This system has two solutions within the given box. The topolog-

ical index at the solution x1 = 0, x2 = 0, is -1, whereas the
topological index at the solution x1 = 1.695, x2 21 .7186 is +l.
Thus the topological degree with respect to any region containing
both roots must be 0; this fact would cause topological degree-
based bisection methods to fail to find either root.

15. Rosenbrock’s function:

fi=l-ni=o
fi = lO(Xz - xl) = 0

Initial box: [-4, 41 X [-4, 41
Remarks: This problem also appears in [181 and in previous literature.

16. A variable-dimension system of quadratics:

fi = (Xi - 0.1)’ + Xi+1 - 0.1 = 0
for IliSn-1;

fn = (x, - 0.Q2 + x1 - 0.1 = 0.
Initial box: [-.2, .214 (n = 4)
Remarks: This simple system of quadratics can be used to test the effects

of increasing the dimension on bisection methods. Since its
Jacobian matrix is sparse, it can also be used to debug techniques
for handling structured problems. Its Jacobian matrix is well-
conditioned at the two real roots of x1 = .l, 1 5 i 5 n and xi =
-.9, 1 I i 5 n. The topological index of the first root is -1,
while the topological index of the second root is +l. Note that it
is easily reducible to a single polynomial equation of degree 2”.

4.5 A Problem Used to Test an Improved Interval Newton Method ([9])

17. Broyden’s banded function:

fi = X1(2 + 5X”) + 1 - j;J. Xj(1 + Xj), 1 I i 5 n,

where
Ji = {i: j # i, max(1, i - 5) I j 5 min(n, i + 1))

Initial box: [-1, 115 (n = 5).
Remarks : This problem also appears in [18] and elsewhere, and is slightly

more difficult than problem 16 above.
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

Some Tests of Generalized Bisection 9 209

5. NUMERICAL RESULTS

We have organized the numerical results to do the following:

(A) Compare our generalized bisection method with published numerical results
on homotopy continuation methods.

(B) Compare our generalized bisection method with the “simple” bisection
method in [21].

(C) Compare our generalized bisection method with published results on the
simplicial method of bisection in [5].

(D) Compare the interval Newton portion (i.e., (3.7)) of our generalized bisection
method to the improved interval Newton method in [8].

(E) Compare our generalized bisection method to MINPACK, which is an
established software package for the hybrid (quasi-Newton and steepest
descent with trust regions or “dogleg”) methods.

(F) Present the behavior of our method on a high-degree polynomial system.
(G) Compare our generalized bisection method with the expansion and deletion

steps (Steps 3(b), 3(f) substep (i), and 4(a)-4(b) of Algorithm 3.1) to the
generalized bisection method obtained by omitting this step (and simply
storing small boxes in the list L).

Homotopy continuation is similar to Algorithm 3.1 in the sense that it seeks
to find all solutions (but differs in that bounds are not placed on the desired
portion of the solution set). In comparison (A), we assume that only the
real solutions are desired. In the case where all complex solutions are needed,
and not just solutions within a specified box, the continuation methods may do
better, since the paths that converge to nonreal solutions then do not represent
overhead.

The box bisection method in [21] is qualitatively like Algorithm 3.1, but with
a root inclusion test TF that never takes on the value “true.” With neither that
part of the inclusion test nor expansion and exclusion steps, expensive “cluster-
ing” occurs. We illustrate with comparison (B). Also, two important real-world
problems appear in [al] and thus in our comparisons.

The method in [5] was devised with a similar philosophy as Algorithm 3.1. It
has the advantage of requiring only low-accuracy function evaluations (and no
Jacobian matrix evaluations), and the disadvantage of relying more heavily on
heuristics. Using the systems of equations in [5], we weigh the relative merits of
that method and ours in comparison (C).

Considerable work has been published on interval Newton methods which are
improvements to (3.7) in the sense that the component intervals of the image
box B have smaller widths. Such a method is reported on in 191. Thus our
comparison (D) will help to gauge the importance of such improvements, and
will indicate how much our method can be improved by using them instead of
(3.7). (We used (3.7) since it is easier to program and is efficient with minimal
software or hardware support for interval arithmetic.)

Modules from the MINPACK package are perhaps the most widely available
high-quality software for solving nonlinear systems of equations. The advantages
of the general mathematical approach embodied in MINPACK are applicability

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

210 - R. Baker Kearfott

to large, sparse systems and economy for appropriate problems. However, the
approach is often not well-suited to finding all solutions, and it works best when
the function has only one solution and] F] 2 has only one local minimum. Our
comparison (E) is meant to show that generalized bisection can possibly be used
in a general way, performing reasonably well on problems that, after initial
exploration, can be solved by other methods.

Our algorithm differs from similar bisection methods in the box expansion
step (Step 4 of Algorithm 3.1), and in the deletion steps in Steps 3(b) and 3(f)
substep (i). The purpose of Step 4 is to eliminate ambiguity in the root-inclusion
test in the case that solutions happen to occur near the boundary of one of the
boxes. This could lead to listing many boxes corresponding to the same solution
or to large numbers of boxes with very small diameters; the problem would
increase with dimension. Comparison (G) helps us to determine the effect of the
expansion and rejection steps on the algorithm’s efficiency and on its ability to
reject unwanted boxes.

In all cases, in Algorithm 3.1 we chose the domain tolerance t to be 10m5 and
the range tolerance EF to be 10-l’. This allows the root-inclusion test to work
rigorously in cases where the problem is near a problem with a quadratic
singularity.

We ran Algorithm 3.1 for all problems on a Zenith 150 IBM PC compatible
with a 4.77 mhz clock and an 8087 numeric coprocessor; the code was compiled
with IBM Professional Fortran.

5.1 Comparison with a Continuation Method

In order to compare with continuation methods, we use the published results in
[19], and tabulate results with problems 1, 2, 3, and 4. We can only obtain an
idea of the relative behavior of these techniques since (1) numerous problem
types have been omitted. (2) improvements have been made to the continuation
method in [19] (cf., [20]), and (3) since improvements can be made in our method
of bisection.

Because bisection and continuation are qualitatively so different, some idea of
the relative overhead of each in solving these problems would be desirable.
However, all of our experiments were on a Zenith 150 (IBM PC compatible) with
a numeric coprocessor (8087) chip, with code compiled by the IBM Professional
Fortran compiler, whereas the results in [19] were obtained from an IBM 3033
with code compiled with the Fortran “H” compiler. To get a very rough idea of
the total number of instructions executed, we used the LINPACK benchmark
timings of these machines and compilers reported in [4]; based on this benchmark,
the IBM PC executes floating-point operations 150 times slower than the IBM
3033. Thus, in Table 5.1, the actual CPU times in hours:min.:sec. for the PC
appear in the column “CPU Equivalent,” whereas the times reported in 1191
multiplied by 150 appear there. Also, for the PC results, the time before and after
the bisection process during which I/O occurred was not counted.

We also note redundant or spurious roots in Table 5.1. For problems 1 and 2,
there were complex roots that did not correspond to real roots. These were found
by the continuation method.
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

Some Tests of Generalized Bisection l 211

Table 5.1. A very rough comparison of CPU times for bisection versus continuation,
on an IBM PC compatible.*

Problem
no.

Redundant/spurious roots Equivalent CPU Times

n Bisection Continuation Bisection Continuation

1 2 0 3 0:00:05 0:01:24
2 2 0 1 0:00:05 0:00:57
3 4 4 0 0:07:41 0:02:05
4 5 0 0 1:OB:OO 0:05:27

* The times reported for continuation were not actual times on an IBM PC (see the text).

Table 5.2. Comparison of the numbers of function evaluations and Jacobian evaluations for
bisection and a continuation method.*

Problem
NFCALL NJCALL Equivalent NFCALL

no. Bisection Continuation Bisection Continuation Bisection Continuation

1 80 - 66 888 1,060 2,664
2 62 - 53 636 840 1,908
3 2,114 - 1,597 676 42,510 3,380
4 10,108 - 8,013 1,240 250,865 7,440

* For the continuation method, the actual NFCALL and NJCALL were abstracted from the tables
in [19]. The “equivalent NFCALL” values are computed to hopefully represent a more accurate
measure of the total work (see the text).

In problem 3, Algorithm 3.1 returned a “cluster” of 5 roots around the root
(0, 0, 0, O), at which the Jacobian matrix is null; the theory in [ll] excludes such
clusters only when the roots are not singular. The clustering at singular roots
should be less severe when the range tolerance EF is set smaller relative to the
domain tolerance E.

In addition to CPU time, we report the number of evaluations of the residual
function F and the number of evaluations of the Jacobian matrix of F for both
bisection and the continuation method. Since the function and Jacobian evalu-
ations for bisection were interval evaluations, whereas continuation uses simple
floating-point arithmetic, the two methods are also difficult to compare with
these quantities. With an efficient software implementation, interval arithmetic
runs five times slower than floating-point arithmetic. (If interval arithmetic is
implemented in hardware, it runs at roughly the same speed as floating-point
arithmetic.) Thus, to get a (conservative) “equivalent” number of evaluations,
we multiply the number of interval evaluations in the bisection method by 5. In
the case of both bisection and continuation, we multiply the number of Jacobian
evaluations by n and add to the number of function evaluations to translate
Jacobian evaluations to rough numbers of function evaluations for the types of
problems solved here. (We make no attempt to keep track of the linear algebra
and other overhead.) These results appear in Table 5.2.

In Tables 5.1 and 5.2, we note that bisection seems very reasonable for
problems 1 and 2, but had more trouble than the continuation method on prob-
lems 3 and 4. This is due to the singularity and ill-conditioning, respectively,
at the roots being found.

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

212 l R. Baker Kearfott

5.2 Comparison with a “Simple” Bisection Method

In this section, we compare the behavior of Algorithm 3.1 to the “simple” bisection
algorithm in [21], utilizing problems 5 through 11. Problems 5 through 8 are
linear systems with varying degrees of a type of ill-conditioning, and were used
to test the code tried in [21] and to illustrate a difficulty inherent in the “simple”
approach. Since the root-inclusion test in Algorithm 3.1 is partially based on an
interval Newton method, Algorithm 3.1 solved all of these systems in one step;
the method in [21] took widely varying numbers of steps depending on the
conditioning parameter 8. Problem 9 appears in [21] with an aim similar to that
in problems 5 through 8, and exhibits an ill-conditioning similar to that in
problem 5.

The method in [21] is similar to Algorithm 3.1 in that it tests boxes for the
possibility of including a root, and subdivides boxes that may contain further
roots. Its crucial difference is that the inclusion test never signals “true,” but
only “false” or “unknown,” and all boxes with label “unknown” are subdivided
further. (Additionally, the search is breadth-first instead of depth-first, and the
subdivision is by halving all coordinate directions simultaneously to yield 2” sub-
boxes for each initial box.) As is explained in [21], this leads to a “clustering” of
numerous boxes around the actual solution. (Algorithm 3.1 should behave
similarly if TF were altered to never signal “true.“)

Because this is the information that appears in [21], and because of the nature
of the methods, we compare the methods based on the total number of boxes
tested. We also report the total number of boxes in the final cluster for the
method in [21]. (In all cases, Algorithm 3.1 gave a unique box for each root in
the specified region). For problems 5 through 8, we compute the total number of
boxes in “simple” bisection from a formula given in [21], in order to achieve
a diameter reduction of 2-16 = 1.5 x 10e5. (In all cases, Algorithm 3.1 required a
diameter reduction of 10V5.) In problems 10 and 11, the total number of boxes
tested is not available for the “simple” method, but some additional details are
given in [21]. In all of the problems, the initial boxes were identical for both the
“simple” method and for Algorithm 3.1: They were [0, 11” for problems 5 through
10 and [-1, 118 for problem 11. The results appear in Table 5.3.

5.3 Comparison with a Published Simplicial Bisection Method

Computational experiments for a special simplicial bisection method are reported
in [5]. The overall idea is similar to that in [ll] (and the algorithm here) in the
sense that polygonal regions in R” are successively “bisected” and a test is used
on the regions to determine whether or not roots exist. However, in [5] the
regions are simplices, and bisection is by bisecting the longest edge. Also, the
analog of the root inclusion test for the initial simplex in the algorithm in [5] is
based on computing the Brouwer degree of the simplex; this is a generalization
of the sign change test in the classical bisection method, and hence will not
always indicate “true” when there are roots in the simplex. Also, in [5], the
Brouwer degree is not computed for each simplex, but a heuristic based on a
linearization of F is employed where possible. Moreover, the method for compu-
tation of the Brouwer degree there contains a heuristic parameter.
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

Some Tests of Generalized Bisection - 213

Table 5.3. Comparison of the total number of boxes tested and the number of boxes in the &nal
“cluster” with a “simple” bisection method that has an inclusion test that never signals “true.”

Problem
no.

Stopping Final no. boxes Total no. boxes
to1. in cluster tested

n 3.1 other 3.1 other 3.1 other

5 2 lo-+ ‘p
6 2 1o-5 2-16
7 2 1o-5 2-16
8 2 1o-5 2-N
9 2 1o-5 2-15

10 4 1o-5 2.48
11 8 lo+ 2-45

1 6,900 1 35,814
1 118 1 1,318
1 14 1 384
1 6 1 84
2 6,896 11 398,597
1 38 373 unknown

16 22,968 485 unknown

Computational results on problems 13, 14, 15, and 16 appear in [5]. In that
algorithm, only low accuracy function evaluations (and no Jacobian evaluations)
are required. For a rough comparison, we report function evaluations, Jacobian
evaluations, and “equivalent function evaluations” for Algorithm 3.1: As in
Table 5.2, the equivalent function evaluations are defined to be 5 x (NFCALL +
n x NJCALL). (The factor of 5 is to roughly take account of the difference
between floating-point and interval arithmetic).

In [5], a domain-stopping tolerance and a range-stopping tolerance are used.
In all cases, the range-stopping tolerance was set to 10V8, while the domain-
stopping tolerance in the runs we transcribe here was either 10m5 or 10e6. In
Algorithm 3.1, the domain-stopping tolerance 6 was set to 10e5, while the range-
stopping tolerance tF was set to 10-l’. We suspect that the algorithm in [5] will
do relatively better for larger tolerances, since the convergence is linear, while
iteration of (3.7) can lead to faster convergence. Also, singularity at the root itself
should affect the method in [5] relatively less.

In addition to the stopping tolerance, the volume of the initial box in Algo-
rithm 3.1 and the volume of the initial simplex in the simplicial bisection
algorithm of [5] affect the total amount of work. This makes the algorithms
difficult to compare, since the unit box in n-space contains n! times the volume
of the unit n-simplex. (Also, in our opinion, it is easier to formulate an initial
box for an application than to formulate an initial simplex.) For our comparisons,
we took boxes containing the simplices in [5], with roughly the same diameters,
and we did not try to take account of the differences in containing volumes. The
initial boxes and corresponding initial simplices appear in Table 5.4.

The results appear in Table 5.5. In problem 14, there are two roots in the
initial box and the initial simplex, and the Brouwer degree over the entire simplex
is 0, causing the method in [5] to fail; when the simplex S = ((5, i), (-5, 0),
(0, -$)), which only contains one root, was tried, that method found the unique
root in S in 45 function evaluations.

5.4 Comparison with an Improved Interval Newton Method

Hansen et al. have been working on interval Newton methods (of which the
iteration implicit in (3.7) is an example) for some time. In particular, in [8] they
publish a more sophisticated such method that should be competitive from the

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

214 l R. Baker Keatfott

Table 5.4. Comparison of Algorithm 3.1 with a simplicial bisection method.*

Problem
no.

Domain
NFCALL NJCALL

Equivalent
to1. NFCALL

n 3.1 other 3.1 other 3.1 other 3.1 other

13 3 1o-5
14 2 1o-5
15 2 lo+
16 4 lo+

1o-6 1 106 1
lo+ 49 fail 45
1o-5 2 70 2
lo+ 4 132 4

-
-

20 106
695 fail

30 70
100 132

* See the text for an explanation of “equivalent NFCALL.” (NFCALL and NJCALL are the number
of function and number of Jacobian matrix evaluations, respectively.) Also see Table 5.5 for
information related to the tolerances.

Table 5.5. Initial boxes for Algorithm 3.1 and initial simplices for the simplicial algorithm.

Problem
no.

Initial Box
(Algorithm 3.1)

Initial Simplex
(Simplicial Algorithm)

13 [-.25, .25J3 ((-.25, 0, 0), (0, -.25, 0), (0, 0, -.25))
14 L-4, 412 ((3.zf,3.TF), (-3.3, O), (0, -3X))
15 L-4, 412 ((3.Ti,3.3), (-3.3, O), (0, -3.3))
16 [-.2, .2]’ ((.2, .2, .2, a t-.2, QO, Oh

(0, -.2,0,0), ao, -.2,0), (0, o,o, -2))

point of view of numbers of function and numbers of Jacobian evaluations; in
[16], Moore and Qi show that this method both leads to a root inclusion test and
is more efficient than the test based on (3.7) and (3.8), which is presently
implemented in our codes. We compare Algorithm 3.1 with results presented
there for problem 17.

Under certain conditions, the algorithm in [8] performs “real” inner iterations,
which consist of iterations of the chord method with floating-point (and not
interval) arithmetic. Thus, in addition to numbers of function and numbers of
Jacobian evaluations, we also report the numbers of “real” function evaluations.

In both [8] and in our experiments, the initial box was [-1, 115. In [B], the box
diameter for stopping (i.e., the domain tolerance) was set to 10e8, whereas we
used our standard tolerance of 10e5. The results appear in Table 5.6.

Table 5.6 indicates that (3.7) can be improved via the techniques in [8]. (In
particular, there is possibly a gain in speed of about 3, which could be taken into
account in interpreting the other comparisons here.) Careful comparison on more
problems will prove useful.

5.5 Comparison with Quasi-Newton Software

Here, we compare Algorithm 3.1 to the routine HYBFLJl from MINPACK
(cf., [17]) on problems 3, 4, 15, and 17, which are problems 2, 8, 1, and 14,
respectively, in the standard test set distributed with MINPACK (cf., [18]).

The standard test driver for MINPACK supplies starting points and tolerances
(see [18]). For each of the problems appearing here, there were three starting
points; we report the results for each point separately. The relative domain-error
tolerance is computed in the driver to be the square root of the machine epsilon,
about lo-‘, while the components of the three starting vectors for each problem
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

Some Tests of Generalized Bisection l 215

Table 5.6. Comparison with an algorithm using a more sophisticated interval Newton method.*

Algorithm 3.1 Hansen/Greenberg algorithm

NFCALL 216 88
NJCALL 149 46
NRFCALL - 47

* Results are for problem 17. NFCALL is the number of interval function evaluations, NJCALL is
the number of interval Jacobian matrix evaluations, and NRFCALL is the number of function
evaluations using noninterval floating-point arithmetic.

Table 5.7. Comparison of Algorithm 3.1 with the routine HYBRJl in MINPACK.*

Problem
no.

NFCALL NJCALL Time in min: set

3.1 #l #2 #3 3.1 #l #2 #3 3.1 #l #2 #3

3 2,114 123 116 122 1,597 7 6 6 7:41 0:15 0:14 0:14
4 10,108 13 14 16 8,013 2 2 2 68:OO 0:02 0:02 0:02

15 2 16 7 7 2 3 1 1 O:.l 0:.8 0:.3 0:.3
17 216 18 23 33 149 1 2 2 1:26 0:.3 0:.4 0:.5

*The heading #i denotes the ith starting point in the standard test driver for HYBRJl, for i =
1, 2, 3.

are on the order of 1, 10, and 100. For Algorithm 3.1, we used our standard
tolerance of 10e5, and we used the initial boxes listed with the problems in
Section 4. Since the components of the roots are on the order of 1 and since the
algorithms converge superlinearly near the roots, the tolerances are roughly
comparable. The initial boxes are roughly comparable to the first HYBRJl
starting points; additional testing with larger boxes will be required to rigorously
compare with the other two points.

Problem 4 is exceptional because there are two solutions in the initial box
input to Algorithm 3.1. For all three initial guesses, HYBRJl converged to
(1, 1, 1, 1, l), whereas Algorithm 3.1 found both solutions.

We compiled MINPACK with IBM Professional Fortran and ran the standard
test driver on the Zenith 150. Since this was the identical treatment as in
Algorithm 3.1, elapsed times are meaningful. (The elapsed times are the times
spent in HYBRJl, where no I/O is performed, and in the non-I/O portions of
Algorithm 3.1.) We additionally report numbers of function and Jacobian matrix
evaluations; in the case of Algorithm 3.1, these were interval evaluations, whereas
these were evaluations in standard double-precison arithmetic in the MINPACK
results. The results appear in Table 5.7.

Here, as with the other comparisons, we emphasize that our goal is to demon-
strate range of applicability, and not to prove superior efficiency of one method
over another.

The exceptionally poor showing of Algorithm 3.1 for problems 3 and 4 is due
to its inability to efficiently handle singularity or near-singularity. (Note, how-
ever, that problem 4 had two solutions, one of which HYBRJl didn’t find.) The
good showing of Algorithm 3.1 on problem 15 is due to the fact that one
component is linear and one component is quadratic; this leads to small intervals
in (3.7).

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

216 l R. Baker Kearfott

Table 5.8. Performance of Algorithm 3.1 on
Problem 12 (a high-degree polynomial system).*

Domain error tolerance: 1o-5
Range error tolerance: 10-‘O
Number of roots in box: 12
Number of function evaluations: 1,339
Number of Jacobian matrix evaluations: 1,019
Number of roots redundantly listed: NONE
CPU time on a Zenith 150: 3 min. 48 sec.

*See the text for information about continuation
method performance on this problem.

5.6 Performance on a High-Degree Polynomial System

Problem 12 in the form presented is difficult for continuation methods, due to
the large number of paths and the large multiplicity of the solution at infinity
([lo]; also A. P. Morgan (personal conversation)). We present the results for
Algorithm 3.1 in Table 5.8.

To get an idea of how a continuation method may behave on this problem, we
ran a sophisticated code (embodying improvements over that in [19]) for solving
polynomial systems of equations; we used the standard tolerances supplied with
the code. This method is fully documented in [20]. The code successfully found
the 12 real solutions while it traversed the 126 paths. However, due to excessive
numbers of steps, it terminated prematurely on many of the paths leading to the
singular solution at infinity (in projective space). The total number of corrector
iterations for all paths was 109,053; this should be roughly the number of function
and Jacobian evaluations. The code was run on an IBM 3090-200 after having
been compiled with VS Fortran, and took approximately 201 seconds. The
LINPACK benchmark ran 1,054 times as fast on the 3090-200 as on the IBM
PC; based on this, it appears that Algorithm 3.1 found the 12 real roots about
900 times as fast as the algorithm from [20]. However, we must note that: (i) the
LINPACK benchmark may not accurately represent the speed difference for this
problem; (ii) the algorithm from [20] really found 126 roots, counting multiplic-
ities (so that, per root, continuation was just as fast); (iii) we evaluated the
function for the continuation method with a general routine that made the
function easier to input than for Algorithm 3.1, but which may have multiplied
the execution time by a significant factor; and (iv) problem 12 can be reduced to
make the effort expended by the continuation method less. We let the reader
draw conclusions.

5.7 Results With and Without the Expansion Step

Among box bisection methods, Algorithm 3.1 is unique due to Step 3(b),
Step 3(f) substep (i), and Step 4(a)-4(b). The main purpose of these steps is to
avoid redundant listing of roots in a rigorous fashion so that no roots are missed.
They will also reduce the total size of the search tree (and thus reduce execution
time). The latter effect is limited, however; if these steps are bypassed, the boxes
will continue to be bisected until they are at most a factor of 4 smaller than
otherwise. Here we compare Algorithm 3.1 with and without these steps.

In Tables 5.9 and 5.10, we list results for all 17 problems in the test set.
Table 5.9 deals with the computational work performed by the variants of the
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

Some Tests of Generalized Bisection l 217

Table 5.9. Comparison of the computational effort of Algorithm 3.1 with and without the
expansion and rejection steps (“w” denotes “with the step” and “w/o” denotes “without the step”).

CPU NF NJ NT NL

w w/o W w/o W w/o W w/o W w/o

1 00:06 00:06 80 80 66 66 47 47 24 24
2 00:05 00:05 62 62 53 53 39 39 20 20
3 08:Ol OS:21 2,114 2,133 1,597 1,613 1,180 1,199 600 600
4 68:12 68:12 10,108 10,108 8,013 8,013 7,571 7,571 3,786 3,786
5 0o:oo 00 : oo* 1 1 1 1 1 1 1 1

6 0o:oo 00 : oo* 1 1 1 1 1 1 1 1

7 0o:oo 00 : oo* 1 1 1 1 1 1 1 1
8 0o:oo oo:oo* 1 1 1 1 1 1 1 1

9 00:03 00:03 32 32 31 31 11 11 6 6
10 02:34 02:34 601 601 480 480 373 373 187 187
11 18:41 18:40 989 989 830 830 485 485 243 243
12 03:53 14:31 1,339 4,655 1,019 4,365 943 887 472 444
13 0:.16 0:.16 1 1 1 1 1 1 1 1
14 00:03 00:03 49 49 45 45 21 21 11 11
15 0:.16 0:.17 2 2 2 2 1 1 1 1
16 0O:Ol 0O:Ol 4 4 4 4 1 1 1 1
17 01:26 01:26 216 216 149 149 139 139 70 70

* The times were .05 sec., .ll sec., or .06 sec. The relative values are thought to include some effect
other than computational time since the number of operations for all of these problems should have
been identical.

Table 5.10. Comparison of Algorithm 3.1 with and without the expansion and rejection steps:
The number of redundantly listed roots.*

N4 NINLST

W w/o NROOTS NREJ W w/o

1 0 0 3 6 3 9
2 0 0 1 3 1 4
3 0 0 1 24 5 26
4 0 0 2 31 2 33
5 0 0 1 0 1 1
6 0 0 1 0 1 1
7 0 0 1 0 1 1

8 0
9 0

10 1
11 0
12 0
13 0
14 0
15 0
16 0
17 0

1 0 1
2 1 2
1 0 1

16 0 16
12 12 12

1 0 1
2 3 2
1 0 1
1 0 1
1 0 1

1
3
1

16

* Here, “w” means “with the rejection/expansion steps” and “w/o” means “without the rejection/
expansion steps.”
**The algorithm failed when the expansion and deletion steps were omitted, see the footnote in
Table 5.11.

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

218 - R. Baker Kearfott

Table 5.11. Comparison of Algorithm 3.1 with and without the expansion and rejection steps as in
Table 5.10, except with a domain tolerance 6 set to 10-l instead of lo+.

N4 NINLST CPU

w w/o NROOTS NREJ w w/o W w/o

1 0 0 3 6 3 9 00:04 00:04
2 0 0 1 3 4 4 00:04 00:04
3 0 0 1 24 2 18 02~43 02:46
4 0 0 2 31 4 35 67:21 67:21
5 0 0 1 0 1 1 0o:oo 0o:oo
6 0 0 1 0 1 1 0o:oo 0o:oo
7 0 0 1 0 1 1 0o:oo 0o:oo
8 0 0 1 0 1 1 0o:oo 0o:oo
9 0 0 2 2 3 5 00:02 00:02

10 0 0 1 3 4 7 01:48 01:48
11 0 0 16 0 16 16 17:30 17:30
12 0 12 20 12 - 03:32 -*

13 0 0 1 0 1 1 0o:oo 0o:oo
14 0 0 2 3 2 5 00:03 00:03
15 0 0 1 0 1 1 0o:oo 0o:oo
16 0 0 1 0 1 1 0o:oo 0o:oo
17 0 0 1 0 1 1 01:24 01:24

* The algorithm failed due to unflagged arithmetic exceptions in the function. When run on a machine
with different arithmetic, there were 32 boxes in the list, 480 leaves, 959 boxes tested, 2,823 function
calls, and 2,511 Jacobian calls when the exclusion and deletion steps were omitted. On this same
machine, with the exclusion and deletion steps, there were 12 boxes in the list, 476 leaves, 951 boxes
tested, 1,263 function calls, 951 Jacobian calls, and 20 boxes rejected.

algorithm; we list CPU time in min : set, number of function calls (NF) and
number of Jacobian calls (NJ), number of boxes tested (NT), and number of
leaves in the search tree (NL) (i.e., the number of times Step 5 was entered)
there.

Table 5.10 deals with the effectiveness of rejecting redundantly listed roots;
there we list number of times Step 4 was entered (N4), number of boxes that
were rejected in Steps 3(b), 3(f) substep (i), and 4 (NREJ), number of actual
roots (NROOTS), and number of boxes in the final list (NINLST).

Entering Step 4 indicates failure of the root-inclusion test to signal “true” or
“false” for a sufficiently large diameter box. This could be due to a root near the
boundary, too large a domain tolerance e, an inefficient inclusion test TF, or a
singular root. To test the effect of the tolerance, we reran the test set with
e = 10-i. The summary results appear in Table 5.11.

In a final test, we took E = lo-‘, EF = lo-“, and did not iterate (3.7). Since the
total number of operations for the entire problem set was prohibitive, we ran this
set on a mainframe computer. We observed that: (1) handling of singularities is
relatively better; and (2) the exclusion and deletion steps come more into play.
The results are summarized in Table 5.12.

6. CONCLUSIONS AND FURTHER STUDY

The results in Section 5 indicate that bisection is a reasonable method for solving
many types of problems, but is particularly suited for (1.1). Whether to use
bisection or a continuation method depends on the particulars of the problem.
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

Some Tests of Generalized Bisection - 219

Table 5.12. Comparison of Algorithm 3.1 with and without the expansion and rejection steps,
as in Table 5.12, except that formula (3.7) is never iterated in the root inclusion test.*

N4 NINLST NF NJ

w w/o NROOTS NREJ w w/o W w/o W w/o

1 3 12 3 10 3 12 321 391 174 215
2 1 4 1 3 1 4 224 247 126 145
3 1 28 1 16 1 28 1,657 2,027 837 1,041
4** 1 27 2 22 1 27 100,000 100,000 60,132 60,377
5 0 0 1 0 1 1 1 1 1 1

6 0 0 1 0 1 1 1 1 1 1
7 0 0 1 0 1 1 1 1 1 1
8 0 0 1 0 1 1 1 1 1 1
9 4 18 2 12 2 18 109 163 65 99

10*** 284 51 1 1,209 27 >51 15,393 1,086 8,713 599
11*** 14 51 16 159 18 >51 48,762 18,789 29,341 11,523
12 8 20 12 58 12 24 2,217 3,623 1,243 1,959
13 0 0 1 4 1 1 623 639 316 325
14 0 0 1 0 1 1 1 1 1 1

15 2 7 1 6 2 7 237 261 142 156
16 1 4 1 4 1 4 107 123 68 78
17 0 0 1 0 0 0 9 9 5 5

* Here, NF is the number of function calls and NJ is the number of calls to the Jacobian matrix
routine.
** For this function, the maximum number of allowed function evaluations (100,000) was exceeded
both with and without the exclusion and rejection steps.
*** For this function, the maximum number of allowed boxes in the list (50) was exceeded early in
the computation when exclusion and rejection steps were not done.

We have noted problems with bisection on singular systems. It will be useful
to develop variants of the inclusion test to handle this eventuality.

Further study of the expansion step, with and without iteration of (3.7) (and
improvements thereof) would be interesting. Likewise, further study of the effects
of increasing and decreasing the tolerances could also reveal how to increase the
overall efficiency of the algorithm.

Finally, accessible end-user software should be developed. Unless interval
arithmetic implementations become more widely available, this software should
be designed around ordinary floating-point arithmetic. It should include easy
means of inputting the function, Jacobian matrix, and bounds on the second
derivatives, and should include automatic scaling so that the tolerances c and tF
are easy to interpret.

ACKNOWLEDGMENTS

I wish to thank Alexander Morgan for the stimulating conversations that led to
the formulation of this paper. I also wish to thank the referee for pointing out
[22], and so on.

REFERENCES

1. ALEFELD, G., AND HERZBERGER, J. Zntroduction to Interval Computations. Academic Press,
New York, 1983.

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

220 l R. Baker Kearfott

2. ALEFELD, G., AND PLATZ~DER, L. A quadratically convergent Krawczyk-like algorithm. SIAM
J. Numer. Anal. 20, 1 (Feb. 1983), 210-219.

3. CRARY, F. The AUGMENT precompiler. Mathematics Research Center Rep. 1470, Univ. of
Wisconsin, Madison, 1976.

4. DONGARRA, J. J. Performance of various computers using standard linear equations software
in a Fortran environment. Mathematics and Computer Science Memo 23, Argonne National
Lab., Argonne, Ill., 1985.

5. EIGER, A., SIKORSKI, K., AND STENGER, F. A method of bisections for solving n nonlinear
equations. ACM Trans. Math. Softw. 10,4 (Dec. 1984), 367-377.

6. HANSEN, E. R. Interval forms of Newton’s method. Computing 20 (1978), 153-163.
7. HANSEN, E. R. A globally convergent interval method for computing and bounding real roots.

BIT 18,4 (1978), 415-424.
8. HANSEN, E. R., AND GREENBERG, R. I. An interval Newton method. Appl. Math. Comput. 12

(1983), 89-98.
9. HANSEN, E. R., AND SENGUPTA, S. Bounding solutions of systems of equations using interval

arithmetic. BIT 21 (1981), 203-211.
10. KEARFOTT, R. B. On a general technique for finding directions proceeding from bifurcation

points. In Numerical Methods for Bifurcation Problems. T. Kiipper, H. D. Mittelmann, and
H. Weber, Eds, International Series of Numerical Mathematics 70, Birkhiuser, Boston, 1984,
210-218.

11. KEARFOTT, R. B. Abstract generalized bisection and a cost bound. Math. Comput. 49, 179 (July
1987), 187-202.

12. MEINTJES, K., AND MORGAN, A. P. A methodology for solving chemical equilibrium problems.
Rep. GMR-4971, General Motors Research Labs., Warren, Mich., 1985. To be published in Appl.
Math. Comput.

13. MOORE, R. E. A test for existence of solutions to nonlinear systems. SIAM J. Numer. Anal. 14,
4 (Sept. 1977), 611-615.

14. MOORE, R. E. Methods and Applications of Interval Analysis. SIAM, Philadelphia, Pa., 1979.
15. MOORE, R. E., AND JONES, S. T. Safe starting regions for iterative methods. SIAM J. Numer.

Anal. 14,6 (Dec. 1977), 1051-1065.
16. MOORE, R. E., AND QI, L. A successive interval test for nonlinear systems. SIAM J. Numer.

Anal. 19, 4 (Aug. 1982), 845-850.
17. MoRB, J. J., GARBOW, B. S., AND HILLSTROM, K. E. User Guide for MINPACK-1. Rep. ANL-

80-74, Argonne National Labs., Argonne, Ill., 1980.
18. MoRB, J. J., GARBOW, B. S., AND HILLSTROM, K. E. Testing unconstrained optimization

software. ACM Trans. Math. Softcv. 7, 1 (Mar. 1981), 17-41.
19. MORGAN, A. P. A method for computing all solutions to systems of polynomial equations. ACM

Trans. Math. Softw. 9, 1 (Mar. 1983) 1-17.
20. MORGAN, A. P. Solving Polynomial Systems Using Continuation for Engineering and Scientific

Problems, Prentice-Hall, Englewood Cliffs, N.J., 1987.
21. MORGAN, A., AND SHAPIRO, V. Box-bisection for solving second-degree systems and the problem

of clustering. ACM Trans. Math. Softw. 13, 2 (June 1987), 1522167.
22. NEUMAIER, A. Interval iteration for zeros of systems of equations, BIT 25, 1 (1985), 256-273.
23. ORTEGA, J. M., AND RHEINBOLDT, W. C. Iterative Solution of Nonlinear Equations in Several

Variables. Academic Press, New York, 1970.
24. TSAI, L. W., AND MORGAN, A. P. Solving the kinematics of the most general six- and five-

degree-of-freedom manipulators by continuation methods. Rep. GMR-4631, General Motors
Research Labs., Warren, Mich., 1984. (To be published in the ASME J. Mechanisms, Trunsmis-
sions, and Automation in Design.

25. YOHE, J. M. Software for interval arithmetic: a reasonably portable package. ACM Trans.
Math. Softw. 5, 1 (Mar. 1979), 50-63.

Received February 1987; accepted May 1987

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1967.

