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PRECONDITIONERS FOR THE INTERVAL
GAUSS-SEIDEL METHOD*

R. BAKER KEARFOTT!

Abstract. Interval Newton methods in conjunction with generalized bisection can form the
basis of algorithms that find all real roots within a specified box X C R" of a system of nonlinear
equations F(X) = 0 with mathematical certainty, even in finite-precision arithmetic. In such methods,
the system F(X) = 0 is transformed into a linear interval system 0 = F(M) + F/(X)(X — M); if
interval arithmetic is then used to bound the solutions of this system, the resulting box X contains
all roots of the nonlinear system. The interval Gauss—Seidel method is a reasonable way of finding
such solution bounds.

For the overall interval Newton/bisection algorithm to be efficient, the image box X should be
as small as possible. To do this, the linear interval system is multiplied by a preconditioner matrix
Y before the interval Gauss—Seidel method is applied. In this paper, a technique for computing such
preconditioner matrices Y is described. This technique involves optimality conditions expressible
as linear programming problems. In many instances, the resulting preconditioners give an X of
minimal width. They can also be applied when F’ approximates a singular matrix, and the optimality
conditions can be altered to describe preconditioners with a given structure. This technique is
illustrated with some simple examples and with numerical experiments. These experiments indicate
that the new preconditioner results in significantly less function and Jacobian evaluations, especially
for ill-conditioned problems, but it requires more computation to obtain.

Key words. nonlinear algebraic systems, Newton’s method, interval arithmetic, Gauss—Seidel
method, global optimization, preconditioners

AMS(MOS) subject classifications. 65H10, 65G10

1. Motivation, introduction, and notation. The general problem we address
is:
Find, with certainty, approximations to all solu-
tions of the nonlinear system

(1.1) F(X) = (fi(z1,22,- " ,Zn),  , fa(T1, 22, ,20)) =0,
where bounds \; and v; are known such that
Ai<zi<wv;forl<i<n.

We write X = (z1,z2, -+ ,Zn), and we denote the box given by the inequalities on
the variables z; by B.

A successful approach to this problem is generalized bisection in conjunction with
interval Newton methods, as described in [2], [11], [12], [5], [6], [4], [13], [14], [18], etc.
In these methods, we first transform F'(X) = 0 to the linear interval system

(1.2) F/(Xk)(Xk — Xi) = —F(Xx),

where F/(X},) is a suitable (such as an elementwise) interval extension! of the Jacobian
matrix over the box Xy (with Xo = B), and where X}, € X;. We note that (1.2)

*Received by the editors May 16, 1988; accepted for publication May 30, 1989.

tDepartment of Mathematics, University of Southwestern Louisiana, Lafayette, Louisiana 70504.

!Interval extensions of a function may be defined by simply evaluating the functions in interval
arithmetic. The result of such a computation is an interval which contains the range of the func-
tion over the interval argument. Readers not knowledgeable in interval arithmetic may consult the
introductions in (1], [12] and the recent review [7].
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represents the set of all linear systems of equations A(X — X;) = —F(Xx) as A
ranges over all matrices which are contained in the interval matrix F/(Xy). If we then
formally solve (1.2) using interval arithmetic, the resulting box X will contain all
solutions to all such systems A(X — Xj) = —F(Xy), and hence, by the mean value
theorem, will contain all solutions to F'(X) = 0 in X;. We then define the next iterate
Xk+1 by

(1.3) Xgr1 =X N Xk.

This scheme is termed an interval Newton method.

If each row of F’ contains all possible vector values that the corresponding row
of the scalar Jacobian matrix F’/(X) takes on as X ranges over all vectors in Xy, then
it follows from the mean value theorem that all solutions of (1.1) in B must be in
X1 for all k. If the coordinate intervals of X; are not smaller than those of Xy,
then we may bisect one of these intervals to form two new boxes; we then continue
the iteration with one of these boxes, and put the other one on a stack for later
consideration. As explained in [12], [5], [6], and elsewhere, the following fact (from
[13]) allows such a composite generalized bisection algorithm to compute all solutions
to (1.1) with mathematical certainty. For many methods of solving (1.2),

if Xy C Xy, then the system of equations in (1.1)
has a unique solution in Xy. Conversely, if Xz N
X, = 0 then there are no solutions of the system
in (1.1) in X.

We now present a simplified version of the generalized bisection algorithm in [6].2

(1.4)

ALGORITHM 1.1.
1. (Initialization phase)
(a) Input a tolerance € such that no box will have a coordinate width less than e.
(b) Input a tolerance ep such that we do no further computations on an X if
IF(X)|l < €r for X € X.
(c) Xi < B.
2. (Bisection)
(a) If Xy = (x1,X2, -+ ,Xn), where x; = [lj,u;], then choose a coordinate i in
which to bisect.
(b) Form two new bozes X} and X2 by replacing x; in Xy, by either [w;, us] or
[li,ws], where wi = (I; + us)/2.
(¢) Place either X} or X2 on a stack S for later consideration, and replace X,
with the other one.
3. (Interval Newton method and root storage)
(a) (Test for convergence)
(i) If the width at least one coordinate x; of Xy is greater than €, then
compute the interval vector F(X) for use in (ii) below.
(ii) If the width of each coordinate x; of Xy, is less than €, or if [|F(X)||, <
er then
(a) Store Xy in a list L' of small boxes which possibly contain roots.
(B) If the stack S is empty, then stop. Otherwise, pop a box from S, let
that box become Xy, and return to the beginning of this step.

2The algorithms in [6] and [9] contain an “expansion” step to help eliminate redundancies when
roots occur near a boundary of a box. However, this step complicates the presentation and is not
relevant to the discussion in this paper.
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(b) (Obtain the function and Jacobian for (1.2).)
(i) Compute the interval Jacobian matriz F'(Xy).
(ii) Compute F(M), using interval arithmetic to bound the roundoff error.
(¢) (Bound the solution set in (1.2).) Use some method to compute an interval
enclosure Xy, to the solution set of the interval linear system (1.1).
(d) If X C int(Xy) where int(Xy) denotes the interior of Xy, then do the
following.
(i) Store Xy in a list L of boxes which contain unique roots.
(ii) If the stack S is empty, then stop. Otherwise, pop a box from S, let that
box become Xy, and return to the beginning of Step 3(a).
(e) If Xx N Xy is sufficiently smaller than Xy, then replace Xy, by X N Xy
and return to Step 3(a). Otherwise, replace Xy, by Xi N Xy, and return
to Step 2.
(f) If Xx N Xy = 0 then stop if the stack S is empty; otherwise, pop a box
from 8, let that box become Xy, and return to the beginning of Step 3(a).

In Step 3(e), we may say Xy is sufficiently smaller than Xy if there is a j such
that u; — I; > € and (@; — ;) < (uj — 1;)/2. Such a condition will ensure the overall
convergence of the algorithm, since it guarantees that each step, whether interval
Gauss—Seidel or bisection, will reduce one of the coordinates by at least a factor of 2.

Algorithm 1.1 must eventually complete with (possibly empty) lists of boxes £
and £/, such that all roots of F' in B are contained in boxes in £ or £’, and each box
in £ contains a unique root; compare with the convergence analysis in [5]. However,
the cost bound in [5] is very pessimistic, and the actual efficiency of Algorithm 1.1
depends on the way we find the solution X to (1.2), i.e., the method we choose in
Step 3(c). The reason Step 3(c) is important is because the widths of the component
intervals of X depend on the way in which this step is carried out. If these widths are
relatively small, then they are reduced further by iteration of Step 3 (see Step 3(e)),
until the condition in Step 3(d) holds. (In fact, this interval Newton method is locally
quadratically convergent in the sense that the widths go to zero at that rate.) If not,
then bisection reduces the size of X slowly, especially when the dimension n is large,
and many more boxes must be considered.

The overall functioning of Algorithm 1.1 also depends on the way that the coordi-
nate i is chosen in Step 2(a), since X in Step 3 is more sensitive to some coordinates
than others. Similarly, most methods used in Step 3(c) will give smaller X; when the
interval extension F’/ gives sharper bounds on the range of the entries of the Jacobian
matrix. In this paper, however, we will concentrate on the method in Step 3(c), given
a fixed X and a fixed interval extension F/(Xy). Improvements that we make in this
regard will not in general guarantee a quicker theoretical rate of convergence in Algo-
rithm 1.1, but will cause it to complete more rapidly (with less boxes Xy, considered)
for many problems.

We will simply write X = (x1,X2, -+ ,Xn) for X; and

A ={Ai;}} =1 = {laiy, bii]}T =1,

where A; ; is the interval in the ith row and jth column of A = F/(X). Similarly, we
will write3 F(Xy) = F = (f1,f2,--- ,fn) and Xy = M = (m1,ma, -+ ,mn), so that

3We denote the components of F' as boldface intervals, since they must be evaluated in interval
arithmetic with directed roundings or else roundoff error may cause Algorithm 1.1 to miss a root.
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(1.2) becomes
(1.5) A(Xy, — M) = —F.

An interval version of the Gauss—Seidel method with starting guess Xy is a com-
petitive way to compute the bound X} on the portion of the solution set in (1.5) which
is contained in Xx. (See [3], [4], or [13].) It is embodied in the following algorithm.

ALGORITHM 1.2. (Interval Gauss-Seidel, for Step 3(c) of Algorithm 1.1.) Do the
following for i =1 to n.
1. Compute

n
Xi=m; — |fi + ZAi*j(xj — mj) /Ai’,'
=
using interval arithmetic.
2. If XiNx; =0, then return to Step 3(f) of Algorithm 1.1.
3. (Prepare for the next coordinate.)
(a) Replace x; by x; NX;.
(b) Possibly reevaluate ¥'(Xy) to replace A by an interval matriz whose corre-
sponding widths are smaller.

Algorithm 1.2 as stated can be guaranteed to converge without requiring Step 2
of Algorithm 1.1 only for certain problems, such as those for which an interval version
of diagonal dominance holds. A simplified version of this condition is
(1.6) min |z| > max |z|.

TEA; ; zeZ';=1 A
j#i
See [16], [17], or [19] for an explanation and for examples of the use of Algorithm 1.2
when convergence is assured without bisection.

In other cases, (1.6) does not hold, but we may sometimes cause it to hold by

preconditioning (1.5). In particular, we multiply by a matrix ¥ to obtain

(1.7) YA(Xy —M)=-YF.

Let Y; = (y1,¥2,--- ,yn) denote the ith row of the preconditioner, let k; = Y;F, and

let
YIA=G;=(Gi1,Gi2, - ,Gin)

= ([ci,1, din), [ci2, di2), <+ [Cin, disn))-
Then the resulting interval Gauss-Seidel algorithm becomes as follows.
ALGORITHM 1.3. (Preconditioned version of interval Gauss—Seidel, for Step 3(c)
of Algorithm 1.1.) Do the following for i = 1 to n.
1. (Update a coordinate.)
(a) ComputeY;.
(b) Compute k; and G;.
(c) Compute

(1.8) X;i =m; — |ki+ E G,‘,j(x]' — mj) /Gi,i
=1
J#i

using interval arithmetic.
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2. (The new boz is empty.) If X; Nx; = 0, then return to step 3(f) of Algorithm 1.1.
3. (The new boz is nonempty; prepare for the next coordinate.)
(a) Replace x; by x; NX;.
(b) Possibly reevaluate ¥'(Xy) to replace A by an interval matriz whose corre-
sponding widths are smaller.
The following theorem shows us that Algorithm 1.3 in conjunction with Algorithm
1.1 will produce lists of boxes £ and £’ which contain all roots of F' in B.

THEOREM 1.4. Let X+ = (x,x7,--- ,x;) denote the new (possibly altered and
possibly empty) box X which Algorithm 1.3 returns, and refer to the X entering Algo-
rithm 1.3 as simply X = (x1,X2, -+ ,Xn). Then any roots of F in X must also be in
the new X+.

Proof of Theorem 1.4. Suppose X* = (z},z5, - ,z5) € X is such that F(X*) =
0. Then, since A is a rowwise interval extension of the Jacobian matrix of F', there is
an A € A such that
0=F(X*)=F(M)+ A(X*— M).

Denote the element in the ¢th row and jth column of YA by G;;. Then, when
we multiply the above equation by Y and write down the i¢th row of it, after some
rearranging we obtain

n

Gii(z; —mi) = — |ki + ZGi,j(.’II; —m;j)
=1
J#e

If Gi; # 0, then we may solve the above formula for z}; when we compare the result
with (1.8), the fact that the interval arithmetic result contains all possible scalar results
we can obtain by selecting elements of the intervals as operands implies z} € x;“. If
G;; = 0, then the numerator in (1.8) and the denominator in (1.8) both contain
zero, we may interpret the result of the division in extended interval arithmetic to be
x; = x;, and trivially 7 € x;". (But see the discussion above Assumption 1.5 below
for this latter case.) 0O

A'Y; found in the literature is the inverse midpoint preconditioner, where we take
Y; to be the ith row of the inverse of the matrix whose (7, j)-th entry is ijl = (a;; +
bi,;)/2. This preconditioner results in a matrix G the centers of whose components
form the identity matrix; in [20] it is shown to be optimal in a certain sense and in a
different context from here. However, there are instances where multiplication by an
inverse of an n-by-n Jacobian matrix is not advisable. For example, if F" is singular
somewhere in Xy, then Y may be ill-conditioned, and G = YF/(X}) will therefore
have very wide entries; this occurs, for example, for Powell’s singular function, which
appears as problem 3 in [6]. Alternately, one or more of the f; may be more highly
nonlinear than the others, or may be evaluated poorly, in which case the corresponding
row or rows of the F/(Xj) would have relatively wide entries; this occurs for Brown’s
almost linear function, which is problem 4 in [6]. Finally, A may be large and sparse.

In this paper, we develop a technique for computing preconditioners Y which
involves solving a linear programming problem to find each row Y;. The linear pro-
gramming problems characterize certain simple optimum width-reduction conditions.
In contrast to the inverse midpoint preconditioner, the new preconditioners implicitly
take account of the relative widths of the entries of X, in addition to both the widths
and linear dependencies in F/(X). Furthermore, computation of each Y; can take place
during the pass through the variables in a Gauss—Seidel iteration (instead of before),
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so that we may take full advantage of width reductions which have already taken place
during that pass. Also, modifications to the constraints will allow us to compute a
preconditioner Y which is optimal subject to structure or sparsity conditions.

As a final introductory observation, we note that (1.8) is defined in the usual
interval arithmetic only when 0 € G; ;. Furthermore, there is a Y; such that this is so
if and only if there is a j such that 0 € A; ;. For singular systems for which this con-
dition does not hold (and also sometimes when it does), we may use extended interval
arithmetic to advantage. However, careful consideration of the relevant concepts is
outside the scope of this paper, and will appear later. Thus, we make

Assumption 1.5. For each i for which we compute a preconditioner row Y; by the
method in this paper, there is a j such that 0 ¢ A ;.

In §2, we introduce additional notation and preliminary results, then present our
optimality condition, the linear programming problem, and a proof that the solution to
the linear programming problem produces a Y; which satisfies our optimality condition.
In §3, we give examples. In §4, we display numerical results obtained from comparing
our linear programming preconditioner to the inverse midpoint preconditioner and to
no preconditioner at all. In §5, we summarize and outline future work.

2. Optimality conditions and linear programming. In (2.2) below, and
hence in Theorem 2.7 in this section, we will assume that

M = (mi,ma, -+ yma) = ((lh +u1)/2, (l2 + u2)/2, - - (In + un)/2)

i.e., M is the midpoint vector of X = ([l1,u1],[l2,u2], -+, [ln,un]). However, in all
other results, including Theorem 1.4 above, M can be arbitrary.

Throughout, intervals will be boldface, and vectors and matrices will be upper-
case. If v = [t,u], then w(v) = (u — t) is the width of v. We identify numbers ¢ with
zero-width intervals [t,t], and we say v > w if every element of v is greater than every
element of w.

Our goal is to choose each Y; = (y1,¥2, - ,¥n) in Algorithm 1.3 to make w(x;NX;)
as small as possible. To this end, we first characterize these widths. We consider
interval quotients of the form

lp. g

[r,s]”
where we think of [p, g] as the numerator and [r, s] as the denominator in the quotient
in (1.8). We define

(2.1) pa = min{[r[, |s|}.

If we make Assumption 1.5, then there are two possibilities for the quotient [p, g]/[r, 5],
which are considered in the following two lemmas.
LEMMA 2.1. Assume 0 & [r,s]. If0 € [p,q], then

w(lp, ql/[r, s]) = w((p, ql)/a-

If, in addition, [p,q]/[r,s) is the fraction in (1.8) and each m;j is the midpoint of x;,
then

n

(2:2) w(lp:q]) = Z {max (e 51, |di ;1) w(x;)} -

The proof of Lemma 2.1 follows from elementary properties of interval arithmetic.
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LEMMA 2.2. Assume [p,q]/[r,s] is the fraction in (1.8), assume 0 & [r,s], and
assume 0 & [p,q], but M is arbitrary. Then, with l; and u; as at the beginning of this
section but m; arbitrary,

w(x; NX;) < max {(m; — 1;), (us —my)}.

o~
2l
& —

l‘L X U,

Fic. 1. In this case, [p,q]/[r,s] > 0, so every element of m; — [p,q]/[r,s] is less than m;.

Proof of Lemma 2.2. First, [p,q]/[r,s] > 0 or [p,q]/[r, s] < 0. Therefore, X; < m,
or X; > m;. The result follows immediately. (See Fig. 1.) O

In what follows, we will understand [p, q]/[r,s] to mean the numerator and de-
nominator in (1.8).

Now choose k according to Assumption 1.5 so that 0 € Ay ;. Then, by choosing
y; = 01if j # k and y, = 1, the resulting row G; = Y; A has 0 € G;;. By multiplying
Y; by the appropriate scalar, we may also arrange it so that » = 1. Thus, we have the
following lemma.

LEMMA 2.3. Make Assumption 1.5. Then there is a row vector Y; such that the
denominator [r, s] in the resulting Gauss—Seidel iteration (1.8) is of the form [1, s].

We wish to choose Y; to minimize w(x;") = w(x; N%;). That is a difficult prob-
lem which involves several cases. However, if we minimize w(X;) and it so happens
that X; C x;, then we will also have minimized w(xj). Furthermore, Theorem 2.6
below indicates that in many cases where w(X;) would be large, that strategy gives a
reasonable w(x; ) anyway. For these reasons, we will concentrate in the remainder of
this paper on minimizing w(X,).

The following lemma and corollary, which follow from the fact that [p, ¢]/[r, s] is
homogeneous in Y;, indicate that we may minimize w(X;) by minimizing it subject to
the constraint ¢ = 1.

LEMMA 2.4. Let Y; be an arbitrary row-vector in R™. Then the interval X; in
(1.8) is the same if we replace Y; by aY; for any nonzero scalar .
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COROLLARY 2.5. Let ®(X;) be a real valued function of X;, where X; is as in
(1.8). Then
Jnin, @(%;) = min (),
oglr,s) r=1
provided the minima exist.

In general, we cannot assume 0 € [p, g], although examination of (1.8) shows that
this will be so if k;, and hence if ||F(M)||, is small enough. However, the following
theorem indicates that a strategy which optimizes w(x;") under the assumption that
the resulting preconditioned system would have 0 € [p, q] is reasonable, even if the
assumption turns out to be false.

THEOREM 2.6. Make Assumption 1.5. Then the row vector Y; which minimizes
w(X;) in (1.8) is a solution to

(2.3) min w ([p’ q]) .

Yi [7‘, 8]

r=1

Furthermore, suppose we compute a Y; which solves the problem
(2.4) minw {[p, q]} -
r=1

Then a Y; which solves (2.4) is a'Y; for which w(X;) is minimal, provided the resulting
[p, q] is such that 0 € [p,q]. If, on the other hand, Y; solves (2.4) but the corresponding
[p, q] does not contain zero, then, for M arbitrary, the resulting xf 1s such that

w(x;) < max {(mi — ), (us —m;)}.
Proof of Theorem 2.6. In (1.8), X; differs from —[p,q]/[r,s] by the scalar m;.
Therefore, w(X;) = w([p, ¢]/[r, s]); this fact and Corollary 2.5 imply that the minimum

of w(X;) with respect to Y; occurs at a solution of (2.3).
Suppose now that Y; is a solution to (2.4). If the resulting [p,q] is such that

0 € [p, g], then
w(%s) = w ([’”‘”) =172 _ w((p,q).

[r, ] T
However, it follows from the definition of division of intervals that, for r = 1 and
regardless of whether or not 0 € [p,q], w ([p, ¢]/[r, s]) > w([p, ¢]). These last two facts
imply that Y; is also a solution to (1.8), and therefore minimizes w(X;).
The last assertion in Theorem 2.6 is a direct corollary of Lemma 2.2. 0O

NOTE. Solution of (2.3) appears to be a nonlinear problem, whereas solution of
(2.4) can be done via linear programming techniques.

In the remainder of this section, we will present the linear programming problem
based on solution of (2.4) for Y;. Our objective function will be the right member of
(2.2), while we introduce 3n — 1 auxiliary variables and 2n — 1 constraints to transform
the absolute values and maximum in (2.2) into linear relationships. We define the
variables vj, 1 < j < n — 1 such that the intended value of v; is max {|c; |, |ds;|} if
J <t and max {|cij+1],|dij+1]} if § > ¢. Also, noting that

(2.5a) Cijj = Z ytat,; + Z Yibej
vizo v1<0

and

(2.5b) dij = Z Yibe,; + Z Yytas,j,
t=1 t=1

y¢ 20 Yt <0
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we define auxiliary variables vp—14¢+ and vap—14¢, 1 < t < n, so that the intended
value of vp—14¢ is max{0,y;} and the intended value of van—1+¢ is min{0, y¢}. Finally,

define j’ by
. J if j<i
Jy=9 T
{ j+1 if j>4
With 3/ and the 3n — 1 variables V, the linear programming problem can be
written as

n—1
(2.62) minimize C(V) =Y vjw(z;)
i=1
subject to
(2.6b)
[ n n 7]
v; > — Z Un—1+t0¢,5' + Z Van—1+tbe,50 | 1<5<n—-1,
Lt=1 t=1 ]
(2.6¢)
- N -
v >+ Z'Un—1+tbt,j’ + Z Von—1+t0t,5' | 1<5j<n—-1,
Lt=1 t=1 |
(2.6d)

n n
1= E Un—1+tat,i+g Van—1+tbei |
t=1 t=1

and
(2.6e) Un—145 >0 and wv2,_14; <0 for 1 <5< n.

Once we compute the solution components v;, 1 < j < 3n — 1, we compute the
elements of the preconditioner by

(2.7) Yt = Un—14t + V2n—1+t, 1<t<n

The following theorem underscores the relationship of the solution to (2.6) to the
solution to (2.4).

THEOREM 2.7. Suppose that vj, 1 < j < 3n — 1 form a solution of (2.6), and
suppose m; is the midpoint of corresponding x;. If Y; is defined by (2.7), then Y;
solves (2.4), provided that, for each t, vp—14tV2n—14¢t = 0.

Proof of Theorem 2.7. We first note that all solutions Y; of (2.4) are representable
as feasible points of (2.6) in which v,_14+ represents the nonnegative part of y; and
van—1+¢ represents the negative part of y;. Thus, if V' solves (2.6) and every ¢ between
1 and n has the property that at least one of vp—14+¢+ and ven—14¢ is zero, then the
bracketed expressions in (2.6b) and (2.6¢) represent [c; j, d; ;], and Lemma 2.1 implies
that Y; defined by (2.7) solves (2.4). O

Since there are 3n — 1 variables and 2n — 1 constraints in (2.6), at most n of
the v; can be nonzero simultaneously; therefore, it should usually happen that one
of vn_14¢ and vap—1+¢ is zero for each ¢ between 1 and n. In fact, computation of
the preconditioner based on (2.6) works well in practice. Among all preconditioners
computed in our substantial experiments (see §4 below) we have only observed occur-
rence of vp—14¢ # 0 and v2,—14¢ # 0 in Problem 10, where one of the elements of the
pair was much smaller than the other one, and where the occurrence could be due to
roundoff error. We thus make the following conjecture.



INTERVAL GAUSS—SEIDEL PRECONDITIONERS 813
CONJECTURE. If{vi}?zl_l is a solution of (2.6) obtained from the simplex method
with exact arithmetic, then, for each t between 1 and n, vp—14+tVan—14+t = 0.

Finally, we state a corollary of Lemma 2.3.

THEOREM 2.8. The linear programming problem (2.5) has a feasible point if and
only if we make Assumption 1.5.

3. Some examples. Here, we give six examples to compare the preconditioner
defined in (2.6) with the inverse midpoint preconditioner, defined as the inverse of the
midpoint matrix of A. We denote the preconditioner formed from (2.6) by Y'P and
the preconditioner formed from the inverse of the midpoint of the interval Jacobian
matrix by Yinv; we denote the corresponding interval matrices G by G!P and Ginv
and the corresponding widths w([p, g]/[r, s]) in the ith variable by wi® and wi"™. We
will also compare the widths obtained from these two preconditioners with the widths
wpome obtained from Algorithm 1.2, which entails no preconditioner at all.

When giving widths, we assume that ||F'(Xy)||,, is small enough so that, after
we compute the preconditioner, 0 € [p, ¢] and Lemma 2.1 holds. We also assume that
M is the midpoint of X, so that, for example, if x; = [1, 2], then x; — m; = [—.5,.5].
These examples illustrate that, subject to this assumption on [p,q], YIP must give a
better result than Yinv and no preconditioner at all.

EXAMPLE 1. A nonsingular point matriz; equal widths in all variables.

a=lia il x=[wdl

Without reordering the equations, we obtain

whone = q (Eﬁ%—:[[,—li)—’a) =w([-1,1)=2

oo (B (3] -2

The results of applying the inverse preconditioner and (2.6) to problem 1 are identical;
we obtain

and

-2 1
1.5 -0.5

wP = witv =0 for i=1,2.

Ylp = Yinv = [ ] , Glp = Ginv = I,

EXAMPLE 2. A matriz for which the inverse preconditioner leads to X; = R.
_ [ [L3] [2,4] _[[1,2]
A=l o) *=|ha)
Algorithm 1.2 gives

and wj°"® = 1.25. The inverse preconditioner gives
o [—25 1.5 - |[-3,5] [—4,4]
Ymv — [ 2 _1:| , va — [[_3,3] [_2’4] .
Since 0 € GiY for all ¢ and j, w{™ and wy" are undefined in ordinary interval
arithmetic, and can be interpreted to be oo. For the solution of (2.6), we obtain

e [o ] e =[RE
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Thus, wllp = 2, but w;p = 1.25. We see that Yinv is useless, but that, depending on
F(M), a Gauss—Seidel step with G!P may be more successful at reducing the width of
x1 than a Gauss—Seidel step with no preconditioner at all.

EXAMPLE 3. A matriz for which the inverse preconditioner gives large widths,
one of which is finite.

a=aedil B x=[ia)

Algorithm 1.2 gives w}°"® = 2.22 and wj°"® = 1.05. The inverse preconditioner
gives ]
o [-25 15 o [12,18] [~4,4]

Y= { 2.0 —1.0}’ G = [[—.6, 6 [-2,4]]

so wi™ = 20 and wi’" can be interpreted to equal co. For the preconditioner based
on (2.6) we obtain

Yo = [0 .263]’ Gl = {{{1,1.11] [1.05,1.58]]

0 .25 95,1.05]  [1,1.5]

Thus, wlP = 1.58 < w®™® < wit¥ and wif = 1.05 = wE°™ < wi®. Hence, depending
on F(M), a Gauss—Seidel step with G!P will be more worthwhile in reducing the width
of either coordinate than a Gauss-Seidel step with Ginv, Also, a step with G!P may
be more effective than a Gauss—Seidel step with A at reducing the width of x;.

EXAMPLE 4. A simple three-dimensional system for which the inverse precondi-
tioner gives reasonable results.

9,11 (2,4  [2,4] (1,2]
A=|[3842 [19,21] [4,6] |, X=[[L2]
[3.8,4.2] [4,6] [29,31] [1,2]

Algorithm 1.2 gives w?°"® = .89, wj°"® = 0.54, and w§°"® = 0.35. The inverse
preconditioner gives
109 —.014 -.009
Yiov =} —019 .055 —.007 |,
-.011 -.007 .036

(886,1.11] [-.132,.132] [-.132,.132]
Ginv = | [-.031,.031] [.919,1.08] [-.081,.081]
[-.020,.020] [-.054,.054] [.946,1.05]

We thus have witV = .298, witv = 122, and wi® = .079. The preconditioner based
on (2.6) gives
123 —-.016 -.010
Ylp=|-.021 .060 -.008],
—-.012 -.008 .038

[1.00,1.26] [—.149,.149] [-.149,.149]

Glp = | [-.034,.034] [1.00,1.18] [—.088,.088]
[-.021,.021] [-.057,.057] [1.00,1.11]
Thus, w!P = 298 = wi < wione, P = 122 = wit¥ < Wi, and wy = .079 =

wi?v < wi°re, Hence, depending on F(M), we would expect a Gauss—Seidel step with
G!P to accomplish about the same significant width reduction as a Gauss—Seidel step
with Ginv, A Gauss-Seidel step with Algorithm 1.2 would reduce the widths, but
probably not as much.
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EXAMPLE 5. The same as Example 4 except the widths of the components of X
are not all equal.

9,11  [2,4] [2,4] (1,2]
A=|[3842] [19,21] [4,6] |, X=|[-10,10]
(3.8,4.2] [4,6] [29,31] [01,.02]

We get wj°® = 4.45, wp°"® = .22, and w3°"® = 2.21, so that one pass through
Algorithm 2.1 would probably not reduce the widths of x; and x3 at all, but would
be very effective at reducing the width of x2. We get the same Yi»v and Ginv as in
Example 4, and we get wi?¥ = .30, witV = .0429, and wi®¥ = 1.17. We obtain

119 —.018 0

Ylp = |—-.021 .060 —.008]|,
0 —.009 .036
[1.,1.25]  [-.137,.137] [.131,.406]
G = | [-.034,.034]  [1.,1.18]  [-.088,.088]
[1,.118]  [-.046,.046]  [1,1.09]

Thus, wllp = .279 < witV < whone, w;p = .0429 = wiv < wi°re, and w:l,p = 1.03 <
witV < wiore, Hence, depending on F (M), we would expect a Gauss—Seidel step
with GIP to be better in the first coordinate than a Gauss—Seidel step with Ginv, and
the first Gauss—Seidel step without a preconditioner would be ineffective in the first
coordinate. Gauss—Seidel with any of A, Gi»v, or GIP would reduce the width of the
second coordinate, and none of them may reduce the width of the third coordinate
on the first pass. This example illustrates that, when we use G, we implicitly take
advantage of the widths of the components of X.

EXAMPLE 6. Initial X and Jacobian matriz for Problem 4 from [6] (Brown’s
almost linear function).

22 L Ly Ly (L
Ly 22 mLy Ly [y

A=| L] Ly 22 Ly Ly |,
Ly m o L1 @22 L

[-16,16] [—16,16] [—16,16] [—16,16] [-16,16]

X = ([-2,2],[-2,2],[-2,2],[-2,2],[-2,2])".

The problem from which this example came is difficult for interval Newton meth-
ods, which are not able to separate the highly nonlinear behavior of the last function
component from the linearity of the remaining » — 1 function components. The ma-
trices Yinv and Ginv in this example are not even defined, since the midpoint matrix
is singular.

We obtain wi°"® = wj°"® = w§°"® = wi°"® = 8, and wg°"® is undefined. Hence,
we cannot expect to make progress with the interval Gauss—Seidel method without a
preconditioner. For GIP, we obtain

8 -2 -2 -2 0
-2 8 -2 -2 0

Yb=|-2 -2 8 -2 0],
-2 -2 -2 8 0
1 0 0 0 0
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[1,1] [0,0] [0,0] [0,0] [2,.2]
[0,0] [1,1] [0,0] [0,0] [2,.2]
Gr = | [0,0] [0,0] [1,1] [0,0] [2,.2],
[0,0] [0,0] [0,0] [1,1] [2,.2
22 Ly L1 L] (L)
and Wl = wP = wf = wP = .8, while w = 20. Since we can expect to make

progress in the ith coordinate in the Gauss—Seidel process if w(X;) < w(x;), use of YP
as a preconditioner should effectively reduce the widths of the first four coordinates of
X. This example thus shows that this preconditioner is of potential value for similar
problems.

4. Numerical results. Here, we report results obtained by incorporating the
preconditioner computation explained in §2 into a generalized bisection code which is
similar to Algorithm 1.1, but more sophisticated. The code is similar to that described
in [6], with a few differences, described in [9]. The software in [9] is available from the
author upon request. The differences from the algorithm described in [6] include

(i) use of simulated directed roundings for true interval arithmetic;
(ii) use of the Gauss—Seidel method instead of the Krawczyk method;
(iii) use of interval arithmetic to evaluate F(M);
(iv) wuse of a volume ratio in Step 3(e) of Algorithm 1.1 to determine when
to continue iteration of the Gauss—Seidel method; and
(v) wuse of a special technique to choose coordinate directions in which to
bisect, which is based on “maximal smear” in F/(X)(X — M).

Items (i) and (iii) are necessary for total reliability, while items (ii), (iv), and (v)
are related to efficiency.

The simulated directed roundings are implemented with a subroutine for each of
the elementary arithmetic operations. After each such operation, the left endpoint
of the interval is decreased and the right endpoint of the interval is increased by a
quantity proportional to the number of units in the last place by which an elementary
operation can be in error. The result is a machine-representable interval which contains
the actual range of values of the elementary operation. The effect is a relatively simple
and transportable, yet rigorous interval arithmetic. This is necessary to provide a
mathematical guarantee that Algorithm 1.1 will not miss any roots.

It is also for this guarantee that we evaluate F'(M) using interval arithmetic.

We have found a volume ratio to be most effective in Step 3(e) of Algorithm 1.1,
although the technique described below Algorithm 1.1 also works. In particular, we
continue to use the Gauss-Seidel iteration after a sweep of all n coordinates only if

n

[I we)<n II wix)

i=1
w(x;)>e€ w(x;)>e

for some n with 0 < n < 1, where x;-" = XNx;; in practice we have found n = .6 works
well.
To determine the coordinate in which to bisect, we first compute

}us — 1),

where F/(X) = A = {[ai;, bi;]} is as above (1.5), and where x; = [l;,u;]. We then
bisect in the coordinate with index j for which ¢; is maximum. This coordinate
direction is, roughly, the one in which the values of the f; change most rapidly relative

0 = max {laijl, bsj
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to the individual widths of the present box X, and its choice for bisection introduces
an implicit scaling.

Our code differs from that described in [9] in that we do not perform the Gauss—
Seidel step for the ith coordinate if 0 € G;;. Extended interval arithmetic can make
the step meaningful in this case, but an analysis is outside the scope of this paper,
and we wish to isolate the phenomena presently studied.

We used the linear programming routine we wrote specially to solve (2.6). This
routine is eight to ten times faster than a commercial routine we tried earlier for this
purpose, but somewhat less reliable on poorly scaled problems.

We will compare the code with the new preconditioner Y to the code with
the inverse preconditioner Yinv, and the code with no preconditioner at all. The
interval Gauss—Seidel algorithm with no preconditioner is Algorithm 1.2, while we use
Algorithm 1.3 for Yinv, For Y, we modify Algorithm 1.3 to check Assumption 1.5
first. We obtain the following algorithm.

ALGORITHM 4.1. (Interval Gauss—Seidel for Step 3(c) of Algorithm 1.1, modified
to use YP efficiently.) Do the following fori =1 to n.
0. Check Assumption 1.5 for the present 1.
(a) If Assumption 1.5 does not hold, then consider the next i.
(b) Otherwise, continue to Step 1.
1. (Update a coordinate.)
(a) Compute Yilp.
(b) Compute k; and G;p.
(c) Compute

X, =m; — | ki + Z Glpi,j(xj - m]‘) /Glpi’i

=1
J#

using interval arithmetic.
2. (The new bozx is empty.) If X; Nx; = 0, then return to Step 3(f) of Algorithm 1.1.
3. (The new box is nonempty; prepare for another iteration.)
(a) Replace x; by x; NX;.
(b) Possibly reevaluate F'(Xy) to replace A by an interval matric whose corre-
sponding widths are smaller.

In the experiments described here, we do not ever do Step 3 (b) of Algorithm 1.2,
Algorithm 1.3, or Algorithm 4.1, but only recompute the interval Jacobian matrix
at the beginning of each coordinate sweep in the Gauss—Seidel iteration, i.e., in Step
3(b) of Algorithm 1.1. Our rationale is that, if the coordinates of X have changed
significantly during a sweep, then the present interval Jacobian matrix is serving its
purpose.

Similarly, in Algorithm 4.1, we do not adjust M and reevaluate F(M) during a
coordinate sweep, but only in Step 3(b) of Algorithm 1.1. As a result, Yilp will not
necessarily give X; of minimal width for ¢ > 1, but must do so if X;; = X, for ¢ < ¢,
and may do so in other cases.

The problem set is that in [6]. We do not include problems 5-8, and 13, since
these are linear and hence trivial for interval Newton methods.

In Algorithm 1.1, we used € = 10~5 and ep = 10—10,

Table 1 gives estimates for the amount of work for each of the three methods.
The first column gives the problem number as in [6], the second column gives the
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dimension n of the problem, and the third column gives the method, where “none”
refers to no preconditioner, Yinv refers to the inverse preconditioner, and YP refers
to the linear programming preconditioner. Column 4 (NBOX) gives the total number
of boxes considered in Algorithm 1.1, column 5 (NFUN) gives the total number of
interval function evaluations, column 6 (NJAC) gives the total number of interval
Jacobian evaluations, and column 7 gives an estimate W, for the total amount of
work which is computed as

(4.1) W, = NFUN + nNJAC.

In Table 1, the entries “x” mean that the code could not finish without putting
more than 50 boxes on the stack S in Algorithm 1.1. In this case, 28533 boxes
were considered, there were 43415 interval Jacobian matrix evaluations, and there
were 96183 function evaluations. However, the program did find both roots before
stopping.

Similarly, the entries “+” mean that the code could not finish without putting
more than 50 entries in the list £’ of boxes which could possibly contain roots, but
for which (1.4) does not hold. There are 16 isolated roots to this problem, and with
both Yinv and YP, the program completed with exactly 16 boxes in £, and no boxes
in L'.

We make the following additional observations about this experiment.

1. In only three cases (test problems 1, 9, and 10) did the linear programming
preconditioner result in more boxes, function, and Jacobian evaluations than the
inverse midpoint preconditioner. In the first two cases, the numbers were almost
equal, and the differences could have been due to roundoff effects; it hints that the
inverse midpoint preconditioners in these cases were close to optimal. In the third
case, the problem was clearly due to the inability of our linear programming solver
to handle the extreme poor scaling encountered, since it failed various times. In
earlier experiments with a slower but perhaps more robust commercial solver, we
obtained 71 boxes, 260 function evaluations, and 117 Jacobian evaluations for
the linear programming preconditioner. (The number of boxes considered in the
earlier experiments also differed very slightly from that given here in three of the
other problems.)

2. In only one case (test problem 17) was no preconditioner at all better than the
inverse midpoint preconditioner. However, in that case it was significantly better.

3. Use of no preconditioner at all was impractical for test problems 4 and 11.

4. The linear programming preconditioner resulted in three orders of magnitude less
boxes, function, and Jacobian evaluations for test problem 4 (Brown’s almost
linear function).

5. The linear programming preconditioner resulted in less than a fifth as many boxes
and a third as many interval Jacobian evaluations for test problem 3 (a variant
of Powell’s singular function).

On some problems, producing the linear programming preconditioner takes more
computation than producing the inverse midpoint preconditioner. However, this is
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TABLE 1
Cost measures for the three methods.

Est.

# n meth. NBOX NFUN NJAC Work
1 2 none 23 132 63 258

yinv 17 62 30 122

yle 19 73 35 143

2 2 none 231 426 179 784

yinv 69 162 69 300

ylp 29 104 47 198

3 4 none 3421 5649 1994 13625

yinv 1818 3629 1390 9189

ylp 368 1064 423 2756

4 5 none * * * *

yinv 24473 42743 16706 126273

ylp 33 123 58 413

9 2 none 105 286 137 560

yinv 11 41 20 81

ylp 13 47 23 93

10 4 none 2780 5969 2376 15473
yinv 161 465 203 1277

ylp 247 601 247 1589

11 8 none + + + +
yinv 1253 2521 1026 10729

ylp 367 1210 525 5410

12 3 none 6766 11340 4130 23730
yinv 431 1409 619 3266

ylp 255 1050 475 2475

14 2 none 265 456 164 784
yinv 17 62 29 120

ylp 11 48 23 94

15 2 none 1 4 2 8
yinv 1 4 2 8

ylp 1 4 2 8

16 4 none 2208 3320 1112 7768
yinv 1 4 2 8

ylp 1. 4 2 8

17 5 none 23 85 39 280
yinv 85 197 82 607

ylp 23 83 38 273

none *

TOT. yinv 151899
ylp 12569

highly dependent on how we set up the tableau (assuming we are using the simplex
method) and on which software we use. In earlier experiments with an off-the-shelf
solver, CPU times were eight to ten times larger than those listed here. In Table 2,
we list approximate CPU times on an IBM 3090 for the entire program to complete,
for each of the three schemes and for problems 3, 4, 10, 11, and 12. These times
should be considered estimates, since they are virtual CPU times obtained from the
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“START” system command to the next ready message in the VM/CMS time sharing
environment.

TABLE 2
Approzimate CPU times in seconds.

# none Yinv ylp

3 5.8 6.1 2.6
4 * 139.1 1.5
10 9.5 1.1 3.6
11 + 163 20.2
12 24.0 2.7 2.7

ALL * 166.2  32.0

The specific problems listed in Table 2 are the most nontrivial in the sense that
they had singularities, had many roots, were poorly scaled, or generally took a large
amount of CPU time. The last entry in Table 2 gives the total CPU time for all twelve
problems in Table 1, solved in a single run.

From Table 2, it is clear that the linear programming preconditioner has its place
in the design of interval Newton/generalized bisection codes. It is definitely of use
in problems like Brown’s almost linear function, where it successfully avoids using
entries of F/ with excessive widths, and in singular problems, where it can narrow
the possible root-containing region even when the inverse midpoint preconditioner
is undefined. Improvements in our LP solver will make it better on poorly scaled
problems like problem 10.

We note that the ratio of estimated total work is about 12, while the ratio of CPU
times is only about 5.2. This is due to the fact that more CPU time is used computing
a given LP preconditioner than computing an inverse midpoint preconditioner, on
average. This hints at possible additional improvements.

In Problem 11, the LP preconditioner resulted in less estimated total work but
more CPU time. In this problem, most of the CPU time was spent in the LP solver. '
This problem is unusual in that there are 16 roots, and “splitting” preconditioners
which employ extended interval arithmetic (not discussed in this paper) are effective.
We might also be seeing some effect of dimension here; preliminary experiments in-
dicate that the amount of work on some problems to obtain the linear programming
preconditioner for all n coordinates may increase (empirically) like n4 or n®, whereas
it requires O(n3) work to obtain the inverse midpoint preconditioner.

5. Summary and future work. We have reviewed the interval Gauss—Seidel
method in combination with the method of bisection for reliably finding all roots of
a system of nonlinear equations within a box in R®. We have demonstrated that, in
many instances the overall algorithm can be made more efficient by preconditioning
the interval systems before applying the Gauss—Seidel iteration. We have formulated
optimality conditions for these preconditioners, and have posed a linear programming
problem, the solution of which satisfies the optimality conditions. Several simple
examples illustrate the resulting preconditioners.
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Numerical tests of the new preconditioner in the overall algorithm indicate that
it is effective at reducing the number of function and Jacobian evaluations, and often
also results in less CPU time.

The preconditioners can probably be made still more practical by implementing
formulation and solution of (2.6) more efficiently. Also, it is possible to structure the
preconditioner so that (2.2) is only approximately minimized, but computation of the
preconditioner requires less work than solution of (2.6).

Second, we may develop a priori criteria for determining when to use the precon-
ditioners. We can view them as being part of a more sophisticated code, which uses
heuristics to decide when they should and should not be computed.

We are also presently working on using generalizations of (2.2) with arbitrary M.
This is important, since convergence of the interval Gauss—Seidel method is improved
if M is taken to be a good approximation to a root. (See [13].)

A fourth line of investigation we are following is development of preconditioners
for the case when Assumption 1.5 does not hold. This case typically occurs when the
Jacobian matrix is singular at one or more roots, or when there are numerous roots.

Finally, we may compute a sparse preconditioner simply by posing the linear
programming problems in low-dimensional subspaces, provided such preconditioners
are effective on specific problems. Also, we may force G to have a number of properties
by imposing additional constraints. Ideas from [15] may be useful here.
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