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INTERVAL ARITHMETIC METHODS FOR NONLINEAR SYSTEMS AND
NONLINEAR OPTIMIZATION: AN OUTLINE AND STATUS

R. BAKER KEARFOTT
Dept. of Mathematics, Univ. of Southwestern Louisiana U.S.L. Boz 4-1010,
Lafayette, Louisiana 70504

ABSTRACT

In operations research, we often try to to find the global optimum of a nonlinear function
subject to constraints on the variables. Where applicable, methods of interval arithmetic
can do this with mathematical certainty, despite the fact that the algorithms execute on
conventional computers. This is because such methods perform a (seemingly contradictory)
exhaustive but efficient search, and take account of all rounding errors through directed
roundings.

We have transportable interval software to find all solutions to a nonlinear system of
equations within a given region; minor modifications allow this software to solve the global
optimization problem. The impact of this on operations research will be to enable certain
such problems to be solved with total reliability.

Future development will increase the range of problems for which these methods are
practical.

L. INTRODUCTION

An important problem in operations research is to find global optima of nonlinear
functions subject to constraints. Recent progress in interval mathematics and interval
software can impact operations research by providing solutions to the following specific
instances of these problems.

Find,with certainty, approximations to all solutions of the nonlinear system
(11) fi(xl,:cg,...,a:n)zo,l SZ STL,
where bounds /; and w; are known such that:
i<z <uiforl <i<m
and, related to (1.1),
find, with certainty, the global minimum of the nonlinear objective function
(1.2) #(21,T2,..., T4),
where bounds /; and u; are known such that:
liSmiSU;forISiSn.
Copyright 1989 hy Elsevier Science Publishing Co., Inc.
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An interval algorithm will produce a list of solutions whose coordinates z; are given
as small intervals of uncertainty. If the proper algorithm (cf. Section 3 below) is correctly
implemented with directed roundings (cf. Section 2 below), completion of this algorithm
constitutes a computational but mathematically rigorous proof that all solutions of (1.1)
are within the intervals given in the list.

We have transportable software which will in practice solve many small to moderately
sized polynomial systems of the form (1.1) without computer programming, and which
will solve more general systems if we program the objective function [Kearfott and Novoa
1988]. The only way such software can fail is by not completing within a given time.
(Nonetheless, on some problems, it completes in much less time than alternate methods.)

In this paper, we review facts about interval arithmetic and a class of algorithms of use
to members of the operations research community. Section 2 contains elementary defini-
tions and information on computer implementations of interval arithmetic. In Section 3,
we discuss interval algorithms for solving nonlinear algebraic systems and for nonlinear
optimization. In Section 4, we summarize strengths and weaknesses of these algorithms.

2. ELEMENTARY FACTS AND COMPUTER IMPLEMENTATIONS

Thorough introductions to interval mathematics are given in the books [Alefeld et al.
1983; Moore 1979]. In particular, one can find details for this section in chapters 1, 2, and 3
of [Moore 1979] or in chapters 1, 2, 3, and 4 of [Alefeld et al. 1983]. Also see [Rall 1981]
and [Ratschek 1987] if they are available.

Numerous references facilitate advanced study. The bibliographies [Garloff 1985;
Garloff 1987] list approximately 2000 books, journal and conference proceedings articles,
and technical reports. In [Moore 1988], general interval and non interval numerical methods
are compared. Additional proceedings include [Hansen 1969; Miranker 1986; Nickel 1980;
Nickel 1986a].

Here, interval quantities will be denoted by boldface. We will also denote the n-vector
whose i-th component is z; by X and the n-vector whose i-th component is f; by F(X).

Interval arithmetic is based on defining the four elementary arithmetic operations on
intervals. Let @ = [ay, a,,] and b = [b;, b,] be intervals. Then, if op € [+,-,*,/], we define
2.1) asopb=[z+y|lz€aandyech]

For example,

a+b= [al—}—bl,au—l—bu].

In fact, all four operations can be defined in terms of addition, subtraction, multiplication,
and division of the endpoints of the intervals, although multiplication and division may
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require comparison of several results. The result of these operations is an interval except
when we compute a/band 0 € b. In that case, we use eztended interval arithmetic [Moore
1979, pp. 66-68] to get two semi-infinite intervals or else the whole real line.

Much of interval mathematics’ power lies in the ability to compute inclusion mono-
tonic interval extensions of functions. If f is a continuous function of a real variable,
then an inclusion monotonic interval extension f is defined to be a function from the set of
intervals to the set of intervals, such that, if z is an interval in the domain of f,

[f(2) |z €z]C f(z)

and such that
z C y implies f(z) C f(y).

Inclusion monotonic interval extensions of a polynomial may be obtained by simply re-
placing the dependent variables by intervals and replacing the additions and multiplications
by the corresponding interval operations [Moore 1979].

We emphasize here that the result of an elementary interval operation is precisely the
range of values that the usual result attains as we let the operands range over the two
intervals. However, the value of an interval extension of a function is not precisely the
range of the function over its interval operand, but only contains this range; it is an art to
devise interval extensions whose values differ little from the actual range. For example, the
values of an interval extension of a polynomial depend on the form in which the polynomial
is written. See Kearfott [1988c] for an example, and see Ratschek and Rokne [1984] for a
discussion of efficient ways of formulating interval extensions.

We may use the mean value theorem or Taylor’s theorem with remainder formula
to obtain interval extensions of transcendental functions. See Kearfott [1988c] for an
elementary example. Alternate extensions are also possible; see Ratschek and Rokne
[1984].

Several software packages [Bleher et al. 1987; Bundy 1984; Yohe 1979] are available
for interval extensions of the elementary functions.

Mathematically rigorous interval extensions can be computed in finite precision arith-
metic via the use of directed roundings. Let z and y be machine-representable numbers,
and assume op is one of the four elementary operations +, -, *, or /. Normally, = op y is
not representable in the machine’s memory, and there are various schemes of rounding. For
example, we may always round down to the nearest machine number less than © op v,
or we may aiways round up 10 the nearest machine number greater than z op y. In
interval arithmetic with directed rounding, if

& 0p y=[c,d],
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then we always round the value for ¢ down, and we always round the value for d up.

Machine interval arithmetic with directed rounding does not involve deep concepts, but
it can be quite powerful. For example, if interval arithmetic with directed rounding is used
to compute an interval extension f of f,

[C7 d] = f([a, b])a
and [c, d] does not contain zero, then this is a rigorous proof (regardless of the machine
wordlength, etc.) that there is no root of f in [a, b].

The IEEE floating point standard, and hence hardware on many personal computers and
mainframes, include support for directed roundings.

Various precompilers and compilers support the interval datatype. An early, reasonably
portable one consisted of interval arithmetic packages of the Mathematics Research Center
[Yohe 1977; Yohe 1979] in conjunction with the AUGMENT precompiler [Crary 1976].
ACRITH is a high-quality multiple precision and interval package for IBM mainframe
equipment [Bleher et al. 1987], which has been used with AUGMENT in the past. More
recently, researchers at IBM-Germany have developed the modern precompiler Fortran-SC
[Walter and Metzger 1988] to access the ACRITH routines.

PASCAL-SC supports an interval data type directly in the compiler [Rall 1987]. There is
much literature on using PASCAL- SC, even though it has until recently only been available
on CPM-based personal computers. (There is now a version of PASCAL- SC for IBM PC-
compatibles.)

L. A. Liddiard, E. J. Mundstock, and W. Walster wrote the "M-77” Fortran compiler
which supports the interval data type. This compiler runs only on CDC equipment, but is
available from CDC or from the University of Minnesota.

Clemmesen has described pseudocode outlining implementation of interval arithmetic
[1984].

The speed of interval arithmetic operations varies greatly depending on implementation.
Our experience is, however, that even the slowest implementations allow certain practical
problems to be solved.

3. INTERVAL METHODS IN SOLVING NONLINEAR SYSTEMS OF EQUATIONS
AND IN NONLINEAR OPTIMIZATION

Here, we discuss solution of (1.1) and (1.2), done via generalized bisection in conjunc-
tion with interval Newton methods. This general technique is described in chapters 19 and
20 of [Alefeld et al. 1983] and in chapters 5 and 6 of [Moore 1979]. An early paper on the
technique is [Hansen 1968]. Other papers are (but are not limited to) [Hansen 1978; Kear-
fott 1987a; Kearfott 1987b; Moore 1977; Moore and Jones 1977; Neumaier 1985; Nickel
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1971; Nickel 1986b; Schwandt 1985a].
In what follows we denote by X, the box in n-space described by
[X =(z1,22,.,20) | ; L 2; Suiforl <i<n].
In interval Newton methods, we find a box X which contains all solutions of the interval
linear system
@B.1) F'(Xy)( Xy — X)) = —F(X3),

where F'(X}) is a suitable interval extension of the Jacobian matrix of F over the box
X, and where X, is some point in X}. We then define the next iterate X k+1 by
(3.2) Xit1 = X N X5

The scheme based on solving (3.1) and performing (3.2) is termed an interval Newton
method. The convergence rate of an interval Newton method is determined by the ratios
of the widths of the component intervals of X k+1 to the corresponding widths of X.

If each row of F" contains all possible vector values that that row of the scalar J acobian
matrix takes on as X ranges over all vectors in X}, then it follows from the mean value
theorem that all solutions of (1.1) in X} must be in X k+1. If the coordinate intervals of
X1 are smaller than those of X}, then we may iterate (3.1) and (3.2) until we obtain an
interval vector the widths of whose components are smaller than a specified tolerance.

If the coordinate intervals of X ; are not smaller than those of X' &, then we may bisect
one of these intervals to form two new boxes; we then continue the iteration with one of
these boxes, and push the other one onto a stack for later consideration. After completion of
the current box, we pop a box from the stack, and apply (3.1) and (3.2) to it; we thus continue
until the stack is exhausted. As is explained in [Moore and Jones 1977; Kearfott 1987a]
and elsewhere, such a composite generalized bisection algorithm will reliably compute all
solutions to (1.1) to within a specified tolerance.

The efficiency of the generalized bisection algorithm depends on

(1) the sharpness of the interval extension of the Jacobian matrix; and

(2) the way we find the solution X}, to (1.2).

In particular, iteration with formulas (3.1) and (3.2) should exhibit the quadratic local
convergence properties of Newton’s method, but repeated bisections are to be avoided if
possible. We are thus interested in arranging the computations so that X has coordinate
intervals which are as narrow as possible.

For many ways of solving (3.1), the following statement is true.

(3.3) if X, is strictly contained in X}, then the system of equations in (1.1) has a unique
solution in X, and Newton’s method starting from any point in X, will converge to
that solution. Conversely, if X N X}, is empty, then there are no solutions of the Sys-
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tem in (1.1) in X}.

See [Hansen and Walster 1988; Neumaier 1985; Qi 1982].

The Krawczyk method [Moore 1977] and an interval version of the Gauss-Seidel
method [Hansen 1983] are popular ways of solving (3.1). See [Kearfott 1988b] for details,
and see [Kearfott 1988c] for a detailed example of the interval Gauss- Seidel method. In
both of these methods, it is usually necessary to first multiply (3.1) by a preconditioner
matriz Yy of real numbers. This matrix is often taken to be the inverse of the matrix whose
entries are the midpoints of the entries of F'(X, B

For large, banded or sparse systems, multiplication by an inverse is impractical.
Schwandt uses the interval Gauss-Seidel method without a preconditioner to solve systems
like finite difference discretizations of Poisson’s equation with a nonlinear forcing term
[Schwandt 1984; Schwandt 1985b]. In such cases, an interval generalization of diagonal
dominance ensures convergence of repeated iteration of the interval Gauss-Seidel method
when Y is the identity matrix [Rall 1987].

Techniques for computing the rows of Y} to minimize the widths of the intervals
obtained via the interval Gauss-Seidel method (and thus maximize convergence rate) appear
in [Kearfott 1988b]. These techniques involve solving linear programming problems for the
elements of Y; these linear programming problems express optimality conditions for the
width of each component interval of X. The techniques are applicable to illconditioned
and singular systems, and the linear programming problem can be altered to take account
of structure or sparsity.

The solutions to the global nonlinear optimization problem (1.2) can be found by solving
(1.1), where the f; are the components of 17 ¢. However, we may use the objective function
directly to increase the algorithm’s efficiency. If p and g are intervals, we say that p > ¢ if
every element of p is greater than every element of g. Suppose that X and Y are interval
vectors in the stack described below (3.2), and let ¢ be an interval extension to ¢. Then, if
#(Y') > ¢(X), we may discard Y from the stack.

Papers and reviews on solution of the global optimization problem include [Baumann
1986; Hansen 1980; Hansen 1988; Ichida and Fujii 1979; Nickel 1986b; Rall 1985; Ratschek
and Rokne 1987]. Walster, Hansen, and Sengupta report performance results on their global
optimization algorithm in [Walster et al. 1985]. For performance results of a general inter-
val nonlinear equation algorithm, see [Kearfott 1987b].
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4. ASUMMARY OF STRENGTHS, WEAKNESSES, AND OPEN QUESTIONS
OF INTERVAL OPTIMIZATION ALGORITHMS

4.1 Strengths and Weaknesses

Roughly, interval techniques work well for small and moderately sized polynomial
and transcendental systems of the form (1.1) or (1.2). The performance is in general less
predictable when there are larger numbers of variables, and it may not presently be practical
to apply interval methods when the objective function is complicated (such as when its
evaluation involves integrating systems of differential equations).

Interval methods cannot fail by identifying a point other than the global optimum of
(1.2), or by terminating without finding all solutions to the system in (1.1). However,
due to poor interval extensions or other reasons, they can take an excessive amount of
computation time. On the other hand, they take considerably less computation time than
alternate techniques (which also can, in theory, fail) for certain problems; see [Kearfott
1987b; Walster et al. 1985]. Regardless of relative efficiency, completion of a correct
algorithm which employs interval arithmetic with correct directed rounding gives bounds
on the solutions which are valid with the same certainty as a rigorous mathematical proof.
This fact may be more important than computation time in some cases.

Interval methods for root-finding or for nonlinear optimization are well suited to con-
strained problems of the form (1.1) or (1.2), and should be seriously considered when the
problems take that form.

4.2 Open Questions

First, apart from studies on certain special systems as in [Garloff 1986; Schwandt
1984; Schwandt 1985a; Schwandt 1985b; Thiel 1986], there is not much literature on the
behavior of interval methods for large-scale systems. Indeed, the methods’ practicality
is less predictable for such systems. Nonetheless, we believe that special methods for
structured problems can be developed which are predictably effective on wider classes of
problems. These methods may involve variants of the preconditioner technique in [Kearfott
1988b] or of the subspace technique in [Kearfott 1988a].

Second, the question of singular and ill-conditioned systems is not fully resolved.
These questions are addressed in [Kearfott 1988a; Kearfott 1988b], but additional work
is desirable.

Third, it is not yet fully clear for what class of fi these methods are presently practical.
Often, if more operations are required to evaluate the f;, then the resulting interval f; will
have a larger width and hence will be less useful. In our opinion, more studies need to be
carefully done and reported.
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We suggest that operations researchers explore the usefulness of interval techniques
with the presently available software (e.g. [Kearfott and Novoa 1988]), and consult inter-
val mathematicians as questions arise.
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