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Abstract

Interval Newton methods in conjunction with gener-
alized bisection are successful for finding all roots of
a system of nonlinear equations within given bounds on
the parameters. However, such methods become inef-
ficient when the system is ill-conditioned or singular
near its roots. This paper proposes a technique con-
sisting of selecting a parameter such that the system
obtained when that parameter is held fixed is well-
conditioned. We then apply the interval Newton method
to this reduced system while applying generalized
bisection in the direction of the selected parameter.
We present the rationale for this scheme, we present
an algorithm in summary form, and we give numerical
results which show the effect of incorporating the
algorithm into a general code based on an interval
Newton method.

1. Introduction and Motivation

The general problem we address is:

Find, with certainty, approximations to all
solutions of the nonlinear system:

f,l(xl,xz,...,xn)=¢, 1<i<n, (L, L,
where bounds a,1 and bi are known such that:
a, <x, <bh, for 1 <i<n.
=1 = - =
We write F(X) = ¢, where F = (fl, fZ’ " fn) and

X.s (XI’XZ’ T ’Xn)' We denote the box given by the

inequalities on the variables X, by B.

A successful approach to this problem is general-
ized bisection in conjunction with interval Newton
methods, as described in (2), (3), (4), (6), (7), (10),
etc. Let K(B) denote the image of B upon applying
the interval Newton method. For many such interval
Newton methods K it can be shown that

(i) K(B) N Bc B (with strict containment)
implies that there is a unique solution
of (1.1) in B and Newton's method
starting from any point in B will

converge to it; (2, 2)

(i) K(B) N B empty implies that there is
no solution of (1.1) in B.

This class of methods achieves 100% reliability
and computational efficiency on a wide subclass of the
problems defined by (1.1). However, if the Jacobian
matrix of F is ill-conditioned at a root z ¢ B, then
K(B) is generally a large box, so that neither (1. 2)(i)
nor (1.2)(ii) will hold. As computations reported in
(7) demonstrate, this degrades the efficiency of the
algorithm and may also lead to redundant listing of
roots and other problems. A similar problem can also
arise if one or more components of F involves a
large number of arithmetic operations.

The expansion and exclusion steps described in (6)
and (7) aid the algorithm to solve singular problems,

but alternate iteration schemes for the singular case
would be desirable.

Ideas from the theory of the behavior of Newton's
method in the vicinity of singularities as reviewed in
(1) indicate that possibilities for development of
Newton's method-based algorithms to handle general
singularities are limited. However, we may decom-
pose the domain into two orthogonal subspaces such
that the null space of VF is approximately in the
first subspace, and such that the Jacobian of F
restricted to the second subspace is nonsingular. We
then apply a robust bisection procedure in the (hope-
fully small) subspace where VF is approximately
singular, and we apply an interval Newton method in
the other subspace. We present results for this
technique here.

We introduction notation in Section 2, while we
present the algorithm in Section 3. Numerical test
results appear in Section 4, and conclusions appear in
Section 5.

2. Notation

Notation 2. 1. Suppose F is as above. Define
1

£.: R" —~ R to be the j-th component of F, define
J

n-1 1
£ R — R
I ky
the k-th variable held fixed at vy,

F, i

to be the j-th component of F with
define
to be the function derived from F by

deleting the j-th component, and define
- -1
F, ARRT R
ik y
F by deleting the j-th component and holding the k-th
variable fixed at vy.

to be the function derived from

Define B

Notation 2. 2. Kk

Let B be as below (1.1).

| !
to be the box in R obtained by ignoring the k-th
axis of the box B, andlet I = [a{, bk] be the k-th

axis of B. For X a vector in Rn, we define

- 1
XeRnlahdxeR

Kk K similarly.

Notation 2.3. We use the symbol '"V'" to denote the
vector derivative or Jacobian matrix as appropriate
according to context. Vector derivatives will always
mean column vectors.

If A is a matrix, then (A), will

Notation 2. 4. Kk

denote the k-th column of A.

Let j and k be such that VF, is nonsingular.

We then form ¢ and § by Js
oly,) = {(Xl,xz, S R TE-WETERTRE
E B o e Ve T T P
and (2. 1)
w(xl,xz, sle s ’xk—l’ka' Oy xn) =
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{yklfj(xl,xz, s F Yo X ,xn) = 0}.
Also define
Y Z o) = Yy Yy Vg V)

Yy = By Fgn - e ,y,), and (2.2)

ry] ]:Y]:y] e
£, =f£.(Y Y)).

We will apply generalized bisection to the problem
f. = @ in conjunction with an interval Newton method to

eraluate Yk'

3. The Algorithm

Here, we present an algorithm based on the ideas
in Section 2. This algorithm is in general to be embed-
ded in a generalized bisection algorithm as in (7), etc.
In such algorithms, we continue to bisect the coordi-
nate intervals [ai'bi] in (1.1), replacing B by
smaller B until (i) the diameter of B is small;

(ii) the norm of F over B is small; or (iii) (1l.2)(i)
or (1.2)(ii) holds.

As is indicated in Section 1, bisecting the coordi-
nate intervals (and reducing the diameter of B) will
not always result in (1. 2)(i) or (l.2)(ii). (Success or
failure depends on the condition of VF and on how
much the interval arithmetic widens the intervals.) In
such instances, we choose a j and k as in Section 2,

with V(FJ_ k) well-conditioned. We then form Kj &

and Rj Kk based on F, instead of F. In particular

(using the interval Newton method in (9)), we define

Kj o gD =t

]

s F
k7 10

HL- B 9E L DBINB, - M)
where
B = [ai, bi]X. Lo X [ak-l' bk-.l] X [ak+l' bk+l] (3.2)

XoooX > s
[a,.b ]

M= o S 1 B e e
mi = (a.1 + b,l)/Z, and where

-1
B O gm M)

m ) where
n

We will use Kj, K, T

bisection in one variable to solve F.(y) =@ only if we

to evaluate ¢ and use generalized

cannot use K directly, but we can-use Kj kT
We desire
W(Kj,k,I(Bk)) < W(Bk) as W(Bk) — @, (3 2)

where w(B, ) is the "width' of B , and is the length
of the largest coordinate interval gefin'mg the box Bk;
this ensures convergence of

B-—BkﬂK_ (B,)

k ik, Ik (33

If Hj, ij, K, I(Mk) were a point vector instead of a box,

then (3.2) would translate to a condition similar to the
condition on |[I - HVF | in (9).
we have

However, in general
w(Bk)
W(Kj, K, I(Bk)) < W(Hj, ij, k. I(Mk)) +1 Rj, W

where (3.4)
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Rj,k =1I- Hj,kv(F

060 B

Combining (3. 2) and (3. 4) gives Condition (3.1)

IR, I, <2 (3. 5)
and
w(H, F. (M, ))
w - JI’I‘;J'IE'I g w(B, ). (3.6)
1 - ]'Z!k 0

In fact, if (3.5) holds, then (3.6) can be made to
hold by bisecting [ak, bk] a sufficient number of times.

In our experiments, we thus safely employed the
scheme when (3. 5) held and when none of the diagonal

elements of Hj, kV(Fj,k, 1)(Bk) contained zero. (The

latter condition was desirable since our actual interval
Newton method involved an analogue of the one in (3),
which is superior to the one in (9), but does not have
an analogue to (3. 5).)

We may choose j and k from the permutation
information in the L-U decomposition used to compute

H = (VF(M))_l. In particular, if the forward phase of
Gaussian elimination with partial pivoting completed
(except for possibly elimination in the last row), then
we choose j to be the index of the row which was not
used as a pivot row, and we choose k to be the index
of the element in the last (i.e., the (n-1)-st) pivot row
which has minimum absolute value. Reasoning roughly,
we may expect the matrix VF, to be as well-
conditioned as the partial pivoiing process.

The following algorithm summarizes this section.

Algorithm 3. 1.

1. Assume that the box B ¢ R" is given such that
iteration of B -~ K(B) [l B is unsuccessful, but
e F(B) and K(B) N B is non-empty.

2. Compute H, j, k, Kj,k’ and Rj,k'

3. If |l Rj,k" > 2 or a diagonal element of Hj,k

times V(F, )(B, ) contains @, return to the
bk Ik

main algorithm (which will do further bisections

in RT).

4. Bisect I. Put one of the subintervals on a stack
for later consideration, and replace I by the other
one.

5. Iterate (3.3) until one of the following holds.

(a) Bk n Kj,k, I(Bk) is empty.
(b) @ ¢ F(B), where B is defined by the present
I and Bk'

(c) w(Bk) is within a specified tolerance of @.

(d) NEB)I

is within a specified tolerance of @.

(e) The process fails to reduce w(Bk).

If 5(a) or 5(b) occurred, go to step 10.
If 5(c) occurreéd, check [|by - akl; if |b, -a |
is small enough, store B on the list of root

containing boxes and go to step 10. Otherwise,
return to Step 4.

8. If 5(d) occurred, store B on the list of root-
containing boxes, then go to step 10.
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9. If 5(e) occurred, return to step 4.

10. If the stack of I produced in step 4 is empty,
return with the list of root-containing boxes.
Otherwise, pop an I from the stack, restore By
to its value when that I was formed, and recom-
mence execution of step 5.

Finally, we note that Algorithm 3.1 handles sys-
tems where simple singularities occur at the roots.
This limitation is merely for simplicity of exposition;

I could represent a box in RP for some p > 1, where
the corresponding coordinate indices could also be
obtained during the Gaussian elimination process.

4. Numerical Tests

We compared an improved version of the code in
(7) ((8)) without Algorithm 3.1 to the same code
with Algorithm 3.1, (Implementation details will
appear elsewhere.) We used the test set from (7) and
an additional simple singular problem (problem ''T')

. _ 2 - 2! 5
with fl =. 5(x1) - XZ' fz =iy 5(x1) +x2. The code

called Algorithm 3.1 only for problems T, 2, 3, 4,
and 14 (where the problem numbers are as in (7)).
The results appear in Table 1.

Table 1. Comparison of a Code Which Does Not
Include the Technique for Handling Singular
and Il11-Conditioned Systems to a Code

Which Does. est.
total
# n meth. NFUN NJAC NFNMl NJNMI work
T! 21 Usual 55 27 0 0 218
! 1 Sing. 122 51 86 34 448
21 21 Usual 118 50 0 0 436
' 1 Sing, 237 95 213 85 854
1 1
31 4 Usual 3239 1301 0 0 33772
' 1 Sing. 3225 1296 8 2 33636
4! 5" Usual 15048 6440 0 0 236240
' Sing. 1143 501 959 409 18240
14! 2! Usual 59 28 0 0 230
Sing. 223 92 200 82 814
TOTALS:
Usual 18519 7846 0 0 270896
Sing. 4950 2035 1466 612 53992
Ratio:
Usual/Sing. 3.74  3.86 0.00 0.00 5.02

Percentage of work in (n-1)-space: 23%

In Table 1, NFUN is the total number of interval
function evaluations, NJAC is the number of interval
Jacobian evaluations, NFM1 is the number of interval
function evaluations in Algorithm 3.1, and NJMI1 is the
number of interval Jacobian evaluations in Algorithm
3.1. The estimated total work is

n2 * NJAC + n * NFUN where n is the number of
variables and functions.

5. Conclusions

Table 1 shows that Algorithm 3.1 may degrade the
efficiency in some cases but may improve it

dramatically in others. Problem 4 is Brown's almost
linear function, which is linear in the first n - 1
components and highly nonlinear in the last; that
structure is ideal for Algorithm 3.1. Problem 3 is
Powell's singular function, for which the Jacobian
matrix is null at the root. A recursive version of
Algorithm 3.1 may work better on it.

The overall performance of our scheme may be
improved by adjusting certain tuning parameters.
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