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Abstract .

Evoked potential and EEG data consist of electri-
cal potentials measured at a finité number of points
(usually between 6 and 64) on the scalp. These data,
obtained non-invasively, can be used to produce topo-
graphical potential plots to recognize neurological
dysfunction.

The skull attenuates the potential fields generated
by cortical and subcortical sources, It would there-
fore be desirable to obtain data directly from the
cortical surface. However, this is only possible with
invasive recording methods. In this work, we study a
mathematical technique for computing approximate
potential fields at the cortical surface, using only
scalp-recorded potentials.

We report results of three preliminary experi-
ments. In the first, we generate exact artificial scalp
data from a known potential field and examine the
error in the approximation. In the second, we gener-
ate scalp data, with and without simulated noise, from
more than one separated source, and we examine the
ability of our imaging technique to distinguish multiple
sources not discerrable from the raw scalp data. In
the third, we apply the technique to data obtained by
averaging actual measured potentials corresponding to
left median nerve and right median nerve stimulation.

1. Description of the Technigue

For now, we model the head by the unit ball in
three dimensions; the x-axis points through the right
ear, the y-axis points through the nasion, and the
z-axis points through the vertex. The method depends
on formulas by which we can explicitly compute the
.voltage at a point A = (al,az,a3) in this ball due toa
current dipole with position vector P = (p1,P2,P3) and
moment vector M = (ml.mz,m3) (cf. (2), (8), and
(10)). We denote this voltage by V(A, P, M).

The ideas behind our method are analogous to
those in (3), (4), (6), and (7). We model the cortical
surface by a spherical surface which, after correction
for the skull's resistivity (see (1)) is at radius
ry =. 67 . We assume that the potential field is due to
a distributed set of sources on a sphere of radius

rT < rI. (The actual sources do not need to be on the

sphere at rI.)

We discretize the source field by assuming it is
due to n current dipoles on the sphere with given

positions {P,l}x,:=1 and with moment vectors {Mi}?d
pointing radially outward but with unknown magnitudes
{pi};:l. Given the p,, Wwe may compute the voltage
Thus, if the electrodes

at a point Aj on the scalp.

are placed at {Aj};!:l’ and the measured voltages are

{Vj}gr;l, the p; would need to satisfy each of the
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linear equations

n
= i <
iill p,iV(Aj, Pi' Mi) Vj, for 1 <j<m, (a9

where M. is the unit moment vector pointing radially
outward from Pi'

In general, m<n (since the points P. area
discretization of a continuum), so (1) can be expected
to be underdetermined. However, the system may in
practice be numerically rank deficient. Also, solu-
tions to (1) for which W (py, pps-e-> “n) |, is small
will tend to correspond to potential fields with less
artifactual bumps and wrinkles than solutions to (i) for
which 1 (pyspgseees Bl is large. For these

reasons, we use the singular value decomposition
(SVD) (cf. e.g., (9) » PP- 317-326)) to compute the
least squares solution of (1) of minimum norm.

An additional advantage of the SVD is that we can
take account of noise in the data. Given an estimate
€ of the relative errors in the data, we may replace
the system in (1) by a (possibly) rank-deficient system
such that errors of size €4 will not unduly influence
the solution.

Once the By are computed, we use them, the
formulas in (2), (8), and (10), and the principle of
superposition to compute an approximation to the
potential field on the cortical surface (i.e., on the
sphere of radius T ). We cannot take Top=Tp since

the representation gives a more accurate approxima-
tion of the potential field a short distance away from
the sphere at Tp.

In the experiments below, we define the points Pi
in terms of the angles @ and ¢ in the standard
spherical coordinate system. Unless otherwise indi-
cated, we use 10 points on the ¢ arcs and 16 points
on the ¢ arcs (so n = 160). The P; thus have
spherical coordinates

6y = (b 1)(2r/10), 1 <k<10,
b, = L(x/2)/16,

1 <£<16.
We compute potential values on the cortical
surface over a similar grid.

(rp, 6y b

We took as scalp recording sites 28 lead positions
--either standard International 10-20 electrode
positions. or derivable from them.

We ran VS Fortran programs on the IBM 3090
at the University of Southwestern Louisiana; we used
the LINPACK routine DSVDC (in (5)) for the SVD, In
all experiments with “n= 160, it took less than
4 seconds of CPU time to generate the approximate
potential field.

. We generated surface and contour graphs using
SAS/GRAPH.
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2. Experiments to Determine Attainable Accuracy Table 3, r_ =.6. This represents a potential field
on the cortical surface which is a sharp spike (see
In these experiments, we generated data at the 28 i
< < igure 3).
lead coordinates listed above due to a current dipole Table 3
at (0,0,r_) with moment vector (0,0,1). We then ———
used the procedure outlined above (assuming noise no. Tr rel; err.
ratio ¢ . = 0) to get an approximate potential field on 1 5 4.2 % 10-1
the cortical surface, which we compared to the actual ‘ : ‘ -1
potential field due to the dipole. We defined the rela- 2. . 55 3.8 X 10
tive error to be the absolute value of the maximum 3 6 3.0 % 10-1
difference divided by the absolute value of the maxi- : ) 1
mum of the actual potential over the grid we placed on 4. .61 2.6 x 10
the cortic4l surface. For r? = 2 Ty = .4, an.d 5. 62 3 2% 10-1
r_ =.6, we studied the relafive error as we varied .1
the radius T of the test surface. 6. .63 1.9 x 10
-1
In Table 1, with r_ = .2, the potential field on 7 .64 1.2.x 10
the cortical surface is relatively smooth and flat (see 8. 65 2.3 x 10-1
Table L Table 2 U
no. T rel. err.4 no. Tr rel, e::-r.-3
L =- 5.2 9.1x 10° 1. .44  28.8x 10 4000
- -3
2. = 25 2.3><104 2. .45 25.1 X% 10
. - -3
g.41443 4.6 x 107* 3. .475 14.5x 10 2600
- -3
4. .4 106.2x 107" 4. .5 6.7 X 10
-~
5. .6 42.1x 107 1200
Figure 1). In Table 2, r_ = .4: we see a surface ) =
plot of the actual potentiaIDdistribution in Figure 2. 8.67 e
0.22 e
U YA .67 -0.64
220.00 Figure 3

It seems from Tables 1, 2, and 3 that the optimal
r_. is nearer the cortical surface when the potential
field is less flat, Furthermore, in such cases, the
minimum relative error is larger. We note that
putting the test surface deeper smooths the potential
distribution on the cortical surface.

136.67

33,33 1

When the test surface is near the cortical surface,
the granularity of the discretization on the test sur-
face may affect the results. Initial experiments along
these lines are inconclusive. We note that (1) and the
formula for computing voltages on the cortical sur-
face, given the pu. are really quadrature formulas.
Thus, for many data sets, we could improve the
results by using Gaussian points and weights on the

-30.00

U ¢ arcs.
540.00 1 3. Experiments to Determine Ability to Separate
Sources
We ran various experiments with multiple
346.67 sources and simulated noisy data. We exhibit results
here for data generated: from two dipoles, one at
o (0,-.2v2,.2Y2) and one at (0,.242,.2/2), and each

with moment vector (0,0,.1). To the data on the
S > surface of the skull, we added uniform pseudo-
-40.00 %:_ B \:\ i X random noise with maximum deviation equal to 10%
.67 e T A T of the maximum true voltage. Figure 4 is a contour-
plot of the actual data on the surface of the skull,

while Figure 5 is a contour plot of the approximate
potential field on the cortical surface. We used

Figure. 2 r..=.5 and e, =.l; this resulted in an effective
A surface plot of the approximate potential distri- rank of 13 (where the full rank is 28). Increased
bution with r_ = .4 and r_ =.5, is indistinguishable definition of features is apparent.

from the plot of the exact potentials in Figure 2. In
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We note that the stretching in the x-direction is an
artifact of the contouring routine, which we chose by
convenience. Also, that routine fits the point data
with cubic splines; that process may occasionally
introduce artifactual bumps in the contours. We
finally note that the image definition in a contour plot
may depend on the number of contours plotted. We
attempted to scale the plots so that, for both the
actual data and for the approximate field on the corti-
cal surface, we exhibit about 15 equally spaced
contours.

4, An Experiment on Actual Data

In this experiment, we began with two evoked
potential datasets with data at 36 scalp leads; the two
sets represented left median nerve and right median
nerve stimulation. (We obtained this data in 1980 from
the West Haven, Connecticut, Veterans Administration
Medical Center.) We averaged the voltages at each of
the two lead sets to obtain simulated simultaneous
stimulation, Since there appeared to be a significant
amount of noise in this data, it was necessary to esti-
mate the noise ratio. We took r_ =.5 and e, =.1;
this gave a numerical rank of 12.” A contour piiot of
the approximate potential field on the cortical surface
appears in Figure 6, while a contour plot based on the
data at the surface of the skull appears in Figure 7.
These plots hint at the possibilities of the method to
both define and smooth the image of the potential field.
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