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Abstract

Homotopy methods are not rare in the computa-
tional analysis of parametrized nonlinear systems of
equations and the corresponding nonlinear physical
phenomena these equations represent. The numeri-
cal analyst can use homotopies as a device to lead to
convergence to a solution of an otherwise insoluble

 problem. Also, some physical systems depend on a
natural parameter, and we use homotopy or continua-
tion methods to study the behavior of the system as
this parameter varies. However, the modeller can
also employ similar techniques to efficiently generate
a family of solutions in cases where one or more
parameters in the model are both unknown and not
unambiguously calculable from the data.

In this paper, we introduce the basic mathemati-
cal framework and raison d'etre for homotopy methods,
and we mention other applications where they have
been appropriate and successful. We then indicate how
such methods could be used in dipole models and other
models of the sources of cerebral evoked potentials,

1. Introduction and Basic Ideas

Mathematically, a homotopy is a system of equa-
tions of the form

hl(xl.xz.-...xn,x) =0
hz(xl,xz,.,.,xn, A) =0 (1)
hn(xl,xz,...,xn, A) =0

where ) is the homotopy parameter. Such systems
can arise either as mathematical constructions or
from natural physical situations. For example, the
h. could represent a discretization of the equations of
fluid dynamics, and A could represent velocity or
Reynolds number. Alternately (if n = 3), the h,
could represent the position on a screen of the inter-
section of surfaces in space, and A could represent
a viewing angle.

It is sometimes convenient to think of A as an
undistinguished argument x Then, using matrix

notation, (1) become’s s
H(X) =0, where
H(X) = (b, (X), h,(X),...,h (X))T, and  (2)
1 2 T n

X:(xl,....x )

n+l
where the superscript "T' indicates that we think of
H and X as column vectors. If we know an X_. such
that H(XO) =0, then additional solutions (for alternate
parameters A) may be computed by solving the
differential-algebraic system

J(X) X' =0, X(0) =X

0 8)
R(X'") = 1,

where J isthe n by n+ 1 Jacobian matrix of H
and where R is some normalization function (such as
X 2).

Computational methods based on equation (3) are
termed continuation methods. Their execution is often
reliable and efficient, compared to solving (1) with
differing values of A as a set of unrelated problems.
Reviews of continuation methods appear in (1), (3), and
(7). Software package descriptions are found in (9),
(16), (7), and elsewhere. These methods make homo-
topy techniques (i.e., formulation and solution of
systems of the form (1)) practical.

In Section 2, to illustrate the place of homotopies
in scientific computing, we mention additional non-
biomedical applications of homotopy techniques; we
then briefly explain the context in which we may use
homotopies. In Section 3, we give some details on
how these techniques might be applied to models of
the sources of cerebral evoked potentials. Implemen-
tation details and numerical results will appear
elsewhere.,

2. Ilustrative Applications

Homotopy methods can be used as a mathematical
device to compute all solutions to a system of non-
linear equations or to compute solutions at which
Newton's method or other methods diverge. A simple
H for this purpose is the following Garcia/Zangwill
homotopy.

H(X) = xn+1F(x1, cea ,xn) +(1 -xn+l)G(x1, A ,xn). (4)

Here, F represents the system of nonlinear equa-

tions we wish to solve, and G represents a (simpler)

system of equations for which solutions (X,,...,X )

are known. Solving F =0 can thus be done by

following the solution to (3) from x, = (X,,...,% ,0)
0 1 n

to X = (xl,...,xn, 1).

The theory and practical aspects of this idea are
well-developed in the context of finding all solutions to
polynomial systems of equations. They are explained
in (7). In (15), etc., (4) and other homotopies are
applied to more general problems which are directly
linked to applications. An interesting such application
is also given in (2). Application to nonlinear least
squares problems is discussed in (5) and (10).

A notable employment of continuation methods to
study behavior of naturally parametrized-systems is
to.fluid mechanics problems; a discussion of this
appears in (6). Also, application of the methods to
CAD/CAM graphics is discussed in (8). In fact, such
applicatiohs are ubiquitous, especially in biological
modelling, and underly the study of stability, bifurca-
tion, and chaos.

Here, we propose a slightly different use. We do
not construct an artificial homotopy merely to solve a



nonlinear system, nor do we solve (3) in order to
study the behavior of a physical system as a parameter
changes. Instead, we begin with parametrized models,
and we wish to compute the parameters from the data.
Such fitted parameters, though mathematically correct,
may, due to ill-conditioning, etc., be physically un-
meaningful, In our technique, we fix one of the
parameters, then compute the family of fits with
respect to the other parameters as we vary the fixed
one. Human observation of the way these fits change
then leads to insight into the actual physical situation.

3. Homotopies for Evoked Potential Dipole Models

Two models of multiple or extended sources of
evoked potential responses may benefit from a homo-
topy approach., The first is appropriate, for example,
to model simultaneous bilateral median nerve stimula-
tion. We assume the source consists of two current
dipoles, given by position vectors p, and p, and
moment vectors m, and mj. In our standard proce-
dure, we measure voltages V., at points A, on the
scalp, for 1<i <m, with m usually between 6 and
36. Letting V(p,m;A;) be the voltage at point A; due
to a dipole at position p and with moment vector m,
we then compute the 12 parameters representing the
components of p, m, p,, and m

: 1 ez 2
the function

by minimizing

“‘(pl"ml’Pz’mz)
m

b))
=]

2
{(V, - [V, m A +V(p,, mA)} . (5)

Though we have successfully used (5) for simulated bi-
lateral median nerve stimulation, the model is not
always well-posed. For example, any two dipoles
whose positions and moments satisfy P, and
m. = -m_ f{it the zero potential field perfect&y. We
intlnitively expect such cancellation and resultant
ambiguity to also occur in cases in which the optimal
positions are close, and possibly in other cases as
well. In the presence of noisy data, such ambiguity
could lead to parameter fits which are difficult to
interpret physically.

As an alternative to (5), we may introduce a
homotopy parameter A, and we minimize b,
defined by

wz(pl.ml,pz.mz) = , s
w(pl,ml.pz,mz) + A( llmlllz+ Ilmzllz) (6)

with respect to PPy, and m,. When the
- gecond term on the right in (6) is small, there can be
less cancellation in the moment vectors. Thus, a
large value of A will result in less cancellation in
the fit. On the other hand, a small value of )\ will
result in a closer fit to the actual data. We propose
to compute a number of two-dipole fits as we vary A,
We then use our judgment to infer properties of the

actual source.

The second model is appropriate when there is
thought to be a diffuse electrically active surface
(cf. (14), (12), and (13)). We assume a source in the
form of a spherical cap of electrically active dipoles
with angular extent w at radius r from the origin,
and with moment density m. (See Figure 1.)
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Figure 1. A spherical cap of dipoles.

Additional parameters include ¢ and ¢, which are
the angles (in the usual spherical coordinate system)
describing the direction of the central axis of the cap.
Let V(r,w,m, ¢, B;Ai) denote the voltage at point Ai
due to such a spherical cap. We may attempt to
determine all five parameters in such a cap by
minimizing

3

lﬁc(r.w,m, ¢, 8) = Z {Vi - V(r,w, m, ¢, e;Ai}.Z. (7)

i=1

(In practice, we replace the parameter m by an
"intensity, " which is m divided by the area of the
cap surface.)

We have obtained mathematically unambiguous
values of r,w,m,¢, and § when fitting the P-300
compoment of certain 28-lead data from auditory
stimulation, where the fit represented a wide yet
centric source (i.e., the algorithm robustly deter-
mined a large w and r near zero). However, it is
unclear whether such fits are always a reasonable
approximation to the actual electrically active
surface. Also, we have met with less success on
other data sets.

One problem with zpc is that caps with small r
(“'centric'' caps), small w, and large m give simi-
lar voltage distributions to caps with r nearer to 1
(‘'superficial'' caps), large w, and smaller m (cf.
(11)). To resolve this ambiguity, we may think of
either r or w to be a fixed ""homotopy' parameter.
We then fit with respect to the other parameters. For
example, if we select r to be the homotopy para-
meters, we obtain a series of plausible caps, from
centric ones to superficial ones. We then use our
judgment to infer properties of the actual source.

It is tempting to apply 2 homotopy method to the
imaging technique described in (4). There, we
compute an approximate potential distribution on the
cortical surface, given data at the scalp leads A..
This technique involves computing parameters on a
test surface which is different from the cortical sur-
face. The accuracy of the potential function on the
cortical surface depends on the location of the test
surface, and the optimal location is not known
a priori. We could thus use the radius of the test
surface as a2 homotopy parameter. However, the
system to be solved in this technique is linear.



Because of this, there would be no advantage of using
continuation method machinery over considering each
problem as separate. A more reasonable approach
would be to formulate a measure of the accuracy of
the answer, then optimize that measure with respect
to the location of the test surface.

Acknowledgment. This work is partially supported by
the Oregon Comprehensive Epilepsy Program, Good
Samaritan Hospital, Portland, Oregon.

References

(1) E. Allgower and K. Georg, ''Simplicial and con-
tinuation methods for approximating fixed points
and solutions to systems of equations, ' SIAM Rev.
Vol. 22, No. l,pp. 28-85, Jan., 1980,

(2) G.D. Byrne and L.A. Baird, "Distillation calcula-
tions using a locally parametrized continuation
method," Computers and Chemical Engineering,

Vol. 9, No. 6, pp. 593-599, 1985.

(3) C.B. Garcia and W.I. Zangwill, Pathways to
Solutions, Fixed Points, and Equilibria. Engle-
wook Cliffs, N,J.: Prentice-Hall, 1981.

C.D. Hill, R.B. Kearfott, and R.D. Sidman,
'"The inverse problem of electroencephalography
using the singular value decomposition, '' these
proceedings.

(4)

(5) R.B. Kearfott, '"Continuation methods and para-
metrized nonlinear least squares: techniques and
experiments'' in Numerical Methods, V. Pereyra
and A. Reinoza, eds., Lecture Notes in Mathema-
tics, No. 1005, Springer Verlag, Berlin, 1983,
pp. 142-151.

(6) H.B. Keller, '""Continuation methods in computa-
tional fluid dynamics,'in Numerical and Physical
Aspects of Aerodynamic Flows, T, Cebeci, ed.,
Springer Verlag, Berlin, 1982, pp. 3-13.

(7) A.P. Morgan, Solving Polynomial Systems Using
Continuation for Engineering and Scientific
Problems. Englewood Cliffs, N.J.: Prentice-
Hall, 1987.

(8) A.P. Morgan, '""The continuation method, "' General
Motors Research Laboratories Report No. GMR-
5723, (submitted to Computer Graphics in the Arts

and Sciences), 1987.

(9) W.C. Rheinboldt and J, V. Burkardt, ""A locally
parametrized continuation process,'' ACM Trans.
Math. Software, Vol. 9, No. 2, pp. 215-235,
June, 1983,

(10) D.E. Salane, ""A continuation method for solving
large-residual nonlinear least squares problems, "
SIAM J. Sci. Statist. Comput., Vol. 8, No. 4,
pPp. 655-671, July, 1987.

(11) R.D. Sidman and R. B. Kearfott, "The inverse
problem of electroencephalography assuming

double layer neural generators)' these proceedings.

(12) R.D. Sidman and D. B. Smith, '"Localization of
the neural generators of scalp-recorded potentials
by means of mathematical models,' in Modelling of
Biomedical Systems, J. Eisenfeld and M, Whitten,
eds., Elsevier Science Publishers, Amsterdam,
1986, pp. 205-211,

734

(13)

(14)

(15)

N

(16)

R.D, Sidman, D, B. Smith, J.S. Henke, R, B.
Kearfott, and V. Giambalvo, '"The use of equiva-
lent source models in evoked potential research
and differential diagnosis, ' in Frontiers of
Engineering in Health Care, A.R. Potvin and
J.H. Potvin, eds,, IEEE, 1986, pp. 205-211,

H.G. Vaughan, Jr.,''Analysis of scalp-recorded
brain potentials, " Biocelectric Recording Tech-
niques: Part B, Electroencephalography and
Human Brain Potentials, B.F. Thompson and
M.M. Patterson, eds., New York: Academic
Press, 1974.

L.T. Watson, "Engineering applications of the
Chow-Yorke algorithm, " in Homotopy Methods
and Global Convergence, B.C. Eaves, F.J.
Gould, H. -O. Peitgen, and M.J. Todd, eds.,
New York and London: Plenum, 1983,

L.T. Watson, S.C. Billups and A.P. Morgan,
"HOMPACK: A suite of codes for globally con-
vergent homotopy algorithms," ACM Trans.
Math. Software, Vol. 13, No. 3, pp. 281-310,

September, 1987.




