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Abstract

Various researchers have studied interval Newton methods

in conjunction with generalized bisection for reliable

computation of all roots and {or global optimization within a box

in n-space. Such methods are especially advantageous when

rigorous bounds on the optimal parameters are required or when it

is unknown whether local optima are unique.

These interval Newton methods could be applied directly
to nonlinear least squares problems. However, that would involve

computing interval vaIUEs for the second derivatives of the

original residual functions. Besides contributing to the total

computational cost, such lengthy calculations could possibly
return unacceptably wide result intervals. To avoid this, we

propose interval extensions of the Eauss—aewton method.

The Gauss-Newton method is not guaranteed to be locally
convergent for large residual problems. However, it is always
stationary at roots of the normal equations, and appropriate
interval extensions will preserve an important property of

interval Newton methods.

We compare computationally our interval Gauss—Newton
methods to more usual interval Newton methods. Our test set

includes problems from the literature, simple large‘residual
problems. and nonlinear exponential fitting problems.

Keywords: nonlinear least squares, interval mathematics, Gauss-

Neuton method
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1. INTRODUCTION AND PURPOSE

Interval Newton methods have been studied for some time

as techniques {or reliably finding all solutions to systems of

nonlinear equations. That is, they address the {allowing

problem.

Find, with certainty, approximations to all solutions of

the nonlinear system:

(1.1) fl. (xi,x'2,...,..\'n3 = a, 1 s 1' s n,

where bounds a; and bi are known such that:

a. S x. 5 DJ for 1 5 j S n.

We write F(X) = O, where F = (f1,fz,...,fn? and X =

(x‘,x2,...,xn). we denote the box given by the inequalities on

the variables XJ by X.

These methods are based on computing an image box K whose

i—th coordinate extent is Eci,di], where

(1.2) ci 5 Ni(x1,x2,...,x") ; d; for 5 i M n

{or every X = (x1,x1,...,xn) E X. where Hiix) is the i-th

component of the image of X after one iteration of Newton's

method. If K C X, then, under certain conditions, we may

conclude that there is a solution of F within X, and that any

solutions oi F within X must be within K.
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To obtain better bounds on these solutions, we replace X

by K and repeat the process. Even if K E X, any solutions of F

in X must be in K H X (since Newton‘s method is stationary at

solutions), so we may replace X by K  X and iterate. If this

does not reduce all of the coordinate intervals [a;.bi]

suf¥iciently, we may {orm two boxes by bisecting one of the

coordinate intervals; we then consider each oi these two boxes

separately. If, on the other hand, K n X is empty, then there

are no roots o4 F in X, so we may discard X.

If we apply this entire process (iteration and possible

bisection) to each of these boxes separately, we will, with

certainty, Find all roots of F within X. (See [5] {or a

theoretical discussion of this algorithmic structure). We review

the technique we employ here for computing K in Section 2.

(Also see [3, sect. 4].)

For specific convergence results for such interval Newton

methods, see [8], [In], [13], [14], and numerous other works.

For an introduction to the interval mathematics generally used to

compute K, see [9] or [1]. For a general framework and survey,

see [4]. For a practical variant, see [3]. For systematic

computational test on a battery of standard problems and for

comparisons with alternate techniques, see [6]. For an abstract

analysis of the bisection process, see [5].
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Interval Newton methods as described above require

evaluation of the Jacobian matrix of F over the entire box X

using interval arithmetic. This usually need not affect the

practicality of an interval Newton method; in fact the overall

cost could still be less than alternatives, and we gain total

reliability (cf. [6]). The Jacobian evaluation can be combined

with in—line symbolic manipulators (such as in [16]), automatic

differentiation techniques (as in [15]), or with general routines

for evaluating functions with specific forms (such as in [7]), so

that programming the Jacobian matrix evaluation and explicit

compiler (or precompiler! support of interval arithmetic are not

issues.

As with classical non—interval methods, the situation is

slightly different for global nonlinear optimization and

nonlinear least squares computations. We may transform the

general nonlinear optimization case to (1.1) by identifying the

gradient of the objective function with F. Except for the fact

that the Jacobian matrix involves second—order partial

derivatives, the cost of the resulting interval Newton method is

then similar to the cost of the general problem {1.1) (except

that additional information can be employed in the optimization

problem; cf. [4]).
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For the nonlinear least squares problem with I functions

and n variables, the objective function is of the form

2
‘

fj (X).

l

(1.3) mix)

la]

H

'

[‘1
J

J(X)TF(X), where F(X): R" a R” isso that its gradient is G(X)

the vector {unction whose j-th component is ff and where JlX) is

the o by n Jacobian matrix D? 6. Thus the Jacobian matrix of G

is of the form

H(X) = J'(x>JtX) + S(X)

where

(1.4) u

_
V‘

5(x1 s

/ fj(X) HJ(X)
_4

j = 1

where Hi is the Hessian matrix of fJ.

Unless symbolic preprocessing is performed to ¥irst

obtain a compact representation for 6, evaluation of H for a

Newton method thus would require evaluation of in + nn2 matrix

components, where I may be large. Furthermore, the large number

o+ algebraic operations required to evaluate 3 could cause the

computed intervals for H to he too wide.

In the classical SausscNewton method to find roots of 6,

we replace the true derivative matrix H by J’J in the Newton
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iteration equation. Thus, we need not compute S, but we obtain

convergence under more restricted conditions than Newton's

method. In particular, suppose that x“ satisfies 6(x*) = a,

denote the smallest eigenvalue oF JT(X*)J(X*) by x, and denote

the largest eigenvalue 0+ 3(x*) (1.2. |]s|]s|]s |]s1k) by 6- Then we

are assured that the Gauss—Newton method converges to X‘ only

when x < q. (See eg. Theorem 10.2.1, p. 222 ff. of [2].) The

case x 2 v can occur when the residuals fJ are relatively large

at X‘ and when the fi are also sufficiently nonlinear.

In non-interval software, the Gauss—Newton method is

combined with the method o; steepest descent to assure

convergence (cf. eg. [2, ch. 6]).

An interval Gauss—Newton method can be practical because

of the following two observations. First, despite possible

divergence, the Gauss-Newton method will always be stationary at

solutions to 6(X) = E. Second, even though a 2 l, the Gauss—

Newton method often will converge in some of the coordinates of

X. (This depends on the relationship 0* the eigenvalues and

eigenvectors of JTJ and S and the direction of these eigenvectors

in relation to the coordinate axes; examples in Section 4

provide some insight into this.) Thus, we may combine the

interval Gauss—Newton method with generalized bisection to obtain

an adequately rapid algorithm which is guaranteed to find the
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global optimum of 0 subject to X E X.

In Section 2. we describe interval extensions of the

Gauss—Newton method. In Section 3, we briefly describe the

environment in which we tested these methods. In Section 4, we

describe the test problems, and in Section 5, we present

numerical results and conclusions. We summarize in Section 6.

2. NOTATION AND INTERVAL EXTENSIONS OF THE GAUSS—NEWTDN METHOD

In this section, we assume familiarity with interval

arithmetic; see [1] or [9], etc. for an introduction. Here,

lowercase letters (e.q. xi) will denote real numbers, uppercase

letters (e.g. X) will denote real vectors, upper case boldface

letters le.q. X) will denote interval vectors (i.e. boxes), and

lowercase boldface letters (e.g. xi) will denote intervals.

We model the method on the structure presented in [3] for

(1.1). There, if X is a box, X E X, and H E X is fixed, the mean

value theorem gives

(2.1) F(X) C F(H) + J(X)(X - H),

where J(X) is an interval extension of the Jacobian matrix by

components. If we replace F(X) by B and multiply both members of

(2.1) by a nonsingular matrix Y, where Y approximates CJKM)]_‘,

(Interval nonlinear least squares) (7)



we obtain

(2.2) a E B + P (x — H),

where B = Y F(M) and P = Y J(X). (Note that P is approximately a

diagonal matrix, when the widths of the box X are small.)

Interval Newton methods consist of using interval arithmetic to

solve (2.2) for X. This will give a set K(X) which contains the

set {X E X I F(X) = B}. A particularly successful such solution

procedure appears in [3]. The resulting K(X) can serve in a

generalized bisection method as outlined in the introduction.

In [3], F: R“ a R". Even SD, (2.1) still holds 1+ F: R"

4 R‘I with n > n. We are thus tempted to multiply (1.1) by an

approximate generalized inverse Y to obtain an analogue of (2.2).

However, if Y = [JUN]+ (where “+" denotes generalized inverse),

then

Y = LJ’(H)J(M)J“J’(»’.

If, furthermore, X contains the single point X, then

P" a LJ’(M)J(X)J‘*JT(H)F(H),

which is a single iteration OF the Gauss—Newton method if X = .

However, if X* E X is a stationary point and H ¢ X*, then, unless

a = n (or unless the Gauss—Newton method is convergent), we

cannot be sure that X‘ is contained in the corresponding solution

to (2.2). Thus, if this scheme is used to compute K, then we may
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have KtX) n X empty even though X contains a stationary point (as

our computational experiments verify). This scheme, which we

term the heuristic scheme, is thus unreliable.

An alternate procedure involves first premultiplying both

sides of (2.1) by the interval matrix JT(X). We then take

(2.3)' Y 2 [J’(M)J(H)J“

so that we obtain (analogously to the derivation of (2.2))

(2.3) D E B + P (X — M),

where H is now an interval n—vector. In this case, K(X) obtained

by solving (2.3) must always contain stationary points of m

within X (since the Gauss—Newton method is stationary at such

points); thus, the associated method of bisection must always

find the global optimum of $. We term this scheme the

dEteYDiantiC method.

For an interesting observation. suppose in (2.3) that Y

= [JT(H)J(H)J—1. Denote J() by J and denote J(X) by J and

assume [JTJJ_1 can be computed. Then

P“ a {L(J‘J)“(J’J)3[(JTJ)“J11}F.

The matrix in curved parentheses can be interpreted as an

interval generalized inverse.
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Note that J'tH)J(M) can be ill—conditioned. This could

cause problems in the algorithm, and, in particular, could result

in wider coordinate widths in K(X) (as computed in (2.3)) than

necessary. This suggests use of an alternate preconditioner

based on orthogonal transformations of the Jacobian matrix. In

particular, we may write J(H) in terms of its singular value

decomposition

(2.4) JCM) = U 2 V',

where U and V are orthogonal matrices, where V' denotes the

transpose of V, and where 2 =

(ui,j) with wi’J
= m it i ¢ 1 and

where wi'i is the j—th singular value of JiM), for 1 E i S n. We

may then change the coordinate system representing F to obtain

F4u) = U’F (V R), where

(2.5)

H = V‘ X.

We then form H = V' X, and we identiiy H with the vector of

midpoints of H. An interval Jacobian of F’is then given by

(2.5) it“) = U'J(X) V 2 2.

He may now proceed as in (2.3), except that we replace X

by H, F by F, and by 7. Since 31(u>7(u) is approximately

diagonal (with the smallest diagonal element occuring last),

additional preconditioning should not be necessary. Thus,

solution of
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(2.7) mEi+F(u—m

where E = 71 (ume) and where F = 310070!) and F are analogous

to B and P in (2.3)) should give smaller intervals than the

solution of (2.3). However, since solution of £2.7) is embedded

in a generalized bisection method based on X, H must be computed

before solving (2.7), and V E must be computed before continuing

the bisection algorithm (where K is the solution of (2.7)).

These computations may counterbalance the advantages of the

better coordinate system, and we thus need to test the method.

We term the scheme based on (2.7) the singular value

deconpasjtian method.

The final method we consider is the usual interval Newton

method applied to the gradient function. That is, we begin with

(2.4) ECX) E 6!") + H(X)(X -

H),

as in (2.1), where 6 is the gradient of w and H is the Hessian

matrix of m. We term this method the exact Hessian method.

Despite the fact that interval iterations of the exact

Hessian method are theoretically quadratically convergent to

stationary points of m (whereas the interval Gauss—Newton method

is at most linearly convergent), the'generalized bisection method

associated with it is not necessarily more efficient than the

deterministic method or the singular value decomposition method.

This is both because much more computation may be involved in
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evaluating H(X) and because these internal computations may

magnify the widths of the resulting intervals more than the

computations on J. These possibilities are examined in Section

4.

3. GENERAL ASPECTS OF THE TEST CDDE

The generalized method 04 bisection in which we tested

the three interval nonlinear least squares methods described in

Section 2 is an improved version a? that in [5]; it is similar to

the code in [7]. Aside from changes in the data structures which

do not affect the reported test quantities, the major differences

from the code used for [6] are:

(i) utilization of the objective function m to reject some of

the boxes produced during bisection {c¥. E4, sect.

5.2.33);

(ii) an improved method for determining which coordinate

interval of X to bisect, when bisection is required;

(iii) modifications in the test to determine when to do another

iteration o4 the interval (Eauss~)Newton method and when

to bisect a coordinate interval instead;

(iv)' use of a generic routine to evaluate F and J when the

components of F are polynomials;
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(v) use of a portable form of rigorcus directed rounding in

the interval arithmetic;

(vi) use of the rigorous interval arithmetic to evaluate the

point function value FM); and

a modification of the scheme which determines when tn

accept a box produced by the algorithm as a final answer.

In [6], the code chose the k-th coordinate interval

[ak,bk] of a box X to hisect, where

(3.1) (bk
— a“) = max (bv —

3i).
1 S j S n

Here and in E7], we base the coordinate selection on the interval

extension of F defined by

(3.2) F(X) = F(H) f JfX) (X — H),

where J(X} is a componentwise interval extension of the Jacobian

matrix. Let the i—th component 9+ fun he [cl-,di], and denote

the (i,j)‘th entry of Jlx) by Ji,j
= [Ji’Jy‘,Ji!j,2]. Then

(3.3) 5]: ‘ max thhliJsj'hZI (bi-aj)
1 S 1 S n

is a measure of the maximum effect the size ibj
—

aj) has on the

uncertainty in the values of any component of F. We choose the

coordinate index k in which to bisect such that

(Interval nonlinear least squares) (13)



(3.4) 5x
= max SJ .

1 S j S n

Computational experiments with a = n (solving (1.1)) indicate

that (3.4) is generally a more effective criterion than (3.1),

and is seldom, if ever, worse. Also, (3.4) seems to be more

robust with respect to scaling than (3.1).

Here, to determine when to bisect and when to iterate the

interval Gauss—Newton method, we examine the ratio 0+ volumes of

K and K D X. In particular, we introduce a tuning parameter r

such that

vol(K n X) [ET then iterate the method.

(3.5) If —

vol(X) 12 7 then bisect a coordinate

L interval.

For solving (1.1), 7 = .6 seemed reasonable; we use that value

here.

In [6], we coded the interval computations for the fi and

J.
l’j separately for each problem. Here and in [7], we use

generic routines similar to those in [12] for F, J, (and 3, where

applicable); we thus need only input the coefficients and

degrees (with respect to each variable). However, since interval

arithmetic is only subdistrihutive (ct. eg. [9, p. 13]) and since

the generic routines do not make any attempt to factor
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expressions, the interval function computations here usually give

somewhat wider intervals than those in [6]. This could cause the

computational cost to be somewhat more. (For the nonpolynomial

systems here, we coded the computations explicitly.)

Directed rounding is required Eor total reliability. In

particular, extensive investigation revealed it (and an

associated interval evaluation of F(H)) necessary to reliably

solve problem 11 from the test set in E6], on some 04 the

computers at our disposal.

Here, we assume that, if KQX) C X éwhere the containment

is strict), then there is a unique statienary point of a in X.

Such a result has been proven *or various interval Newton methods

which solve (1.1) (cf. eg. {13], [13, p. 253], [14]); it is

conjectured to be true more generally in [4]. we have discovered

no instances where this procedure leads to erroneous results,

except for the heuristic method.

4. THE TEST SET

The set of test problems has the following three

components:
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(i) selected problems {rpm the test set from E6] tor general

nonlinear systems codes;

(ii) a set of simple problems with n > n and large residuals;

and

(iii) A nonpolynomial problem with I s n from the test set in

[ll].

4.1 The Test Set from [6]

These problems serve as a benchmark for the overall

procedure. The heuristic method reduces to the usual interval

Newton method, since u
—

n and hence J+ = J_‘. However, JTF = al

is a more ill—conditioned system than F = E, and these problems

would reveal the effect of this on the deterministic method and

on the exact Hessian method.

We selected problems 1, 2, 9, 12, 13, 14, 15, 16, and 17

from the original test set. We eliminated problems 3, 4, 1B, and

11 since, as nonlinear least squares problems, they were too ill-

conditioned to be solved by considering lBBBn or less sub—boxes.

We eliminated problems 5, 6, 7, and H from our tables since these

linear problems are solved trivially in one step by all of the

methods.
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4.2 Some Model Problems with Large Residuals

We designed these problems to examine in a simple setting

how non—convergence of the Gauss—Newton method af+ects the

overall generalized bisection algorithm in conjunction with the

heuristic, deterministic, and exact Hessian methods. The

problems consist of the following.

R1. An example where the Gauss-Newton method converges.

f = x + x + 1
I 1 2

f2 =

xl
—

x2
- 1 r

2

f3 =

x2
-

x2 + 1

2

f. =

x2 + x2
- 1

Global miniaa in Evdxlmzhdmal: at x“ = (mm.

Relarks: J’(x*)JJ’(x*)J = diag(2,4), while suamn is the

zero matrix. Thus, the Gauss—Newton method is

locally convergent.

7

w
R2. A silple example where the.ggusssamtae~§e$ked—di sages.

{L
‘f‘ =

x1 + x2 + 1
f

,

_ I.) "j

f2: X‘—x2—1
~ .;G' 2

'

fa=x2—x2+1’
x ;,eL,/ L

'

f=—Y2+Y_.r‘wo '4 ‘2
n '2 ’2 *1

.
4 ¢

g
.

/:[r/':Elaballinila in [—4x162,4xml2‘= at x" = (mm).
/i/,/

';;%"‘Renarks: This problem di+fers +rom R1 only in the
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second-order term in r,. Still, J’(x*)J(x*) =

diag(2,4), but sss ss= diagim7n), so x = 7 = 4.

Numerical experimentation reveals that the Gauss—

Newton method isniooaif§ diéergent in x2, but

that x1 converges to B in one iteration.

R3. A diagonal system for which the Gauss-Newton Iethad

diverges.

2

fl = 1% x1 + x‘ + 1

2

f2 = in X1
—

xl + 1

2

f3 = .25x2 + X2 + 1

2

f, = .25x2
—

x2 + 1

Global winina in L—4x122,4x1w’]: at x* = (a,m).

,u§§<2,2),but sss ss=

s

V

/”e
e and r =

. The Gauss-

Relarks: J'(x*)J(x*>

r

If : diagémgr,’
r r,ry‘

"

#k’J/&fQWewtonmethod is clearly divergent in x, and

" convergent in x1. This problem thus poses a test

of the effectiveness of generalized bisection in

complementing the interval GausseNewton method.

4.3 Some Additional and non-polynomial problems

Exponential nonlinear least squares problems sometimes
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occur in practice. With this in mind and for ease of coding, we

have selected the Following from the test set in [11].

E1. Jennrich and Salpson Function (prole; 6 in [11]):

f; = 2 + 2i -

[exp(ixx) + exp(ix2)1,

i S i S 16.

Global ninila in [0,2] x [6,2]: at X1 2 .25762, x2 2

.25762; 0 at minimum is less than 111.518.

E2. Gaussian function (prole; 9 in [11]}:

—x2 (ti
— x332

fl- =

xx exp
—— ~

y‘-
2

Global minima in [5,1] x [6,2] x [—.5,.5]: at x1 2

.3989561, x2 1 .1aaaaig, xa 1 0 at minimum is less than

1.2!521xm".

!

MW
#4936,

5. NUMERICAL RESULTS AND CONCLUSIONS

We present algorithmic per+ormance for the set o

problems from E6] posed as nonlinear least squares problems in

Table 1. Performance data {or the simple problems with large

residuals appears in Table 2. Periormance data for the

JennriCh/Sampson function and for the Gauesian fitting function
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appear in tables 3 and 4, respectively.

4.1 Explanationof the tables

In all of the tables, we have the following.

NFTEST is equal ts the number of sub-boxes 0+ the

original box which were tested for stationary

points during the generalized bisection process;

NFUN represents the total number of interval {unction

evaluations;

NJAC represents the total number of interval Jacobian

matrix evaluations (and Hessian matrix

evaluations, in the case of the exact Hessian

method).

The estimated total work is defined to he n NFUN + a n

NJAC for the heursitic method {HNL5), deterministic method

(DNLS), and singular value decomposition method (SUD), where n is

the number of variables and a is the number of functions. For

the exact Hessian method (XHES), the estimated total work is

defined to be n NFUN + m n (1 + n) NJAE. These measures are

(Interval nonlinear least squares) (2g)



based on the assumption that each partial derivative is o{ equal

difficulty to evaluate as a single component of the function.

The test effectiveness E is a measure of how much the

diameter of the box must be reduced by splitting along a

coordinate direction before either K(X) n X = is empty or else

Ktx) C X. It is deiined by

—EL/n]

(5.1) E = 2

where L is the maximum level in the binary tree defined by the

coordinate splitting process. In instances where each coordinate

direction is bisected an equal number of times and iteration of

the interval Newton method gives no reduction in the widths

he+ore K(X) C X, E represents the factor of relative diameter

reduction necessary in the bisection process. Thus, larger

values indicate the method is more e+fective. For example, since

the initial coordinate widths for the problems in tables 1 and 2

are Ham and since the minimum box width is 13‘5/15 = 5.25 x 1m‘7,

the minimum possible E in these tables is 7.6 x 1E_1'.

The number oi variables n and the number oi functions I

are equal in all BF the problems in Table 1; there, n is given

in the second column. Also in Table l, the first column

identifies the problems by the numbers they are given in [6].
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As is indicated in Section 4 above, n = 2 and I

all of the problems in Table 2. 2 and lLikewise, n

and n 3 and ITable 3, 15 for Table 4.

5.2 Analysis of the results

5.2.1 FOR THE SQUARE NONLINEAR SYSTEMS TEST SET

In Table 1, the heuristic method is reliable since it

reduces to the usual interval Newton method when n n.

that, in all fiVE measures of efficiency and {or all problems

is better than the other methods. (For instance, the

deterministic method needed to consider 11.4 times as many

boxes.) This is forced partly by the fact that the condition

number of JTJ is the square of that of J. In particular, if

Y = {mt.7"(x>.1(x>:|}‘i = A“

where m(!) denotes the midpoint matrix, then

Y forum) = v (A + 5) = z + H s,

where S is the matrix at widths of the elements of JT(X)J(X).

the elements of S are all o§ the form E—a,a], then there are

HRH..-elements of H S at the {arm E—b,b], where b =

Another interesting observation from Table 1 is that,

(Interval nonlinear least squares)
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overall, the deterministic nonlinear least squares method (i.e.

the interval Gauss Newton method) took only about 7E1 as much

work as the exact Hessian method, when the additional derivative

evaluations are not taken into account, and only 562 as much work

when they are. The exact Hessian method needed to consider

slightly fewer boxes in problems 9, 12, and 15, but was worse in

other measures.

Finally, overall in Table 1, the singular value

decomposition method seems to be at least 17% more efficient than

the deterministic method. when the costs o{ the extra linear

algebra computations are not included. E eptions are problems 2

and 16.

5.2.2 FOR THE MODEL PROBLEMS WITH LARGE RESIDUALS

The solution to each of these problems lies at xi
=

x2
=

3. However, the heuristic method signalled a unique root at x‘ 1

B, X2 2 -l in problems R1 and R2, although it did give the

correct result for problem R3. Therefore, the heuristic method

should not be seriously considered in this context.

Overall in these problems, the exact Hessian method did

not need to consider as many boxes as either the deterministic

method or the singular value decomposition method. This would be
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expected since these are large residual problems. The exception

to this was problem R1, for which the Gauss—Newton method

converges. However, the estimated total work, which takes

account of the extra cost of evaluating second derivatives, was

greater in all cases. Also, the number oé function and Jacobian

evaluations was greater except {or R2; this indicates that,

though the interval Newton method with the exact Hessian matrix

converged, its effectiveness at reducing the box size was less u

than the Gauss—Newton based methods combined with generalized

bisection.

We note also that, ¥or the determ istic method, the test

e+fectiveness dif+ered {rpm that {or the exact Hessian method by

less than one order of magnitude; in any case it was always at

least 135 greater than the value it would attain if we applied

pure generalized bisection, without reducing the box widths by

iteration of X F K(X) Q X. we thus conclude that our interval

extension of the Gauss—Newton method is effective even in cases

where the Gauss—Newton method is non-convergent.

By all measures, the deterministic method was

significantly cheaper than the singular value decomposition

method {or these three problems. In contrast to some of the

1'
problems from E6], the quantity J J is well—conditioned in

problems R1, R2, and R3. Thus, the primary consideration in the

(Interval nonlinear least squares) -
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performance difference is the widening of intervals introduced by

transforming between coordinate systems in the singular value

decomposition method.

5.2.3 FDR THE EXPDNENTIAL FITTING PROBLEMS

Note that problem E1 is a large—residual problem, whereas

problem E2 is a small residual problem.

For both problems, the heuristic method incorrectly

concluded that there were no stationary points of w within the

initial box. We thus should ignore the performance results for

the heuristic method.

For the large—residual problem, the deterministic method.

exact Hessian method, and singular value decomposition method

were comparable in efficiency when second—derivative evaluations

were not counted. The deterministic method was significantly

better by all measures {or the small—residual problem.

5.3 Conclusions

The heuristic method is highly superior For square

systems, where it gives rigorous results. (General nonlinear

systems should not be recast in terms of the normal equations.)

(Interval nonlinear least squares) (25)



However, it does not give meaning¥u1 results in other instances,

and should not be considered for them.

In general, the exact Hessian method is not as efficient

as the interval extensions of the Gauss—Newton method when they

are both combined with generalized bisection. This is even true

for some systems for which the point version of the Gauss-Newton

method is divergent. It is especially so when we take account of

the extra work needed to evaluate second derivatives {or the

exact Hessian method.

The deterministic method is superior to the singular

value decomposition method for problems for which the matrix JTJ

is ill-conditioned. However, the singular value decomposition

method can be better in some cases. We conjecture that, within a

given problem, preconditioning with (JTJ)“‘ may work better for

some subboxes, while preconditioning with the singular value

decomposition may be more appropriate for others. A hybrid

algorithm based on Kb, where

Kh(X) = mm (1 Fa),

where K is the interval solution of (2.3), and where k is the

interval solution 04 (2.7), may be more efficient than either the

deterministic method or the singular value decomposition method

alone.

(Interval nonlinear least squares) (26)



6. SUMMARY AND FURTHER WORK

We have compared two interval extensions of the Gauss-

Newton method to the interval Newton method obtained by using an

interval evaluation of the exact Hessian matrix. For problems

with n functions and n variables, we have also compared these

interval extensions o4 the Gauss-Newton method to "heuristic

method“, which reduces to a usual interval Newton method.

The problem set included a battery of problems from the

literature with n functions and n variables, a set o three

problems to test behavior in cases for which the usual Gauss-

Newton method diverges, and a set at two nonlinear exponential

iitting problems.

The interval Gauss—Newton methods compare favorably with

the method based on the exact Hessian matrix. They also seem

practical for exponential fitting applications. _They would be

especially desirable in this context when rigorous bounds on the

optimal parameters are required or when there isn’t a unique

local optimum.

Portable interval sofware for nonlinear systems is about

to be made available. (See [7].) Addition of several modules,

(lnterval nonlinear least squares) (27)



including generic exponential {itting function and Jacohian

routines, would make use of the techniques described here

practical.

Additional research needs to be done on the behavior of

the algorithms on more general problems.

Acknowledgement: I wish to thank David Bay {or the conversation

which lead me to consider coordinate transformations in the

context of interval Gauss—Newton methods.
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est. tot.

no. n method NFTEST NFUN NJAC work eff.

1 2 HNLS 8 22 21 128 5.0E—01
DNLS 77 124 98 640 1.3E—01
XHES 93 144 111 1574 1,3E—01

SVD 77 121 94 618 1.3E-01

2 2 HNLS 42 69 52 346 1.8E—01
DNLS 191 213 150 1026 4.4E—02
XHES 206 230 158 2344 4.4E~02

SVD 207 224 157 1076 4.4E—02

9 2 HNLS 3 12 12 72 7.1E—01
DNLS 143 187 175 1074 7.8E-03
XHES 128 211 207 1250 1.1E—02

SVD 81 124 124 744 3.9E-03

12 3 HNLS 438 773 617 7872 1.3E~01

DNLS* 4068 4560 3161 42129 3.1E—04
XHES* 3707 4419 2992 40185 7.5E—03

SVD 2684 3547 2594 33987 9.6E—03

13 3 HNLS 1 1 1 12 7.9E—01
DNLS 1 1 1 12 7.9E-01
XHES 1 1 1 12 7.9E-01

SVD 1 1 1 12 7.9E-01

14 2 HNLS 14 34 32 196 3.5E-01

DNLS 99 132 93 636 4.4E-02

XHES 110 144 101 692 4.4E-02

SVD 73 112 89 580 6.3E—02

15 2 HNLS 1 2 2 12 7.1E-01
DNLS 623 712 554 3640 2.0E-03

XHES 597 729 602 3866 9.88—04
SVD 228 294 263 1640 4.4E«02

16 4 HNLS 1 2 2 40 8.4E-01
DNLS 9 15 15 300 5.0E'01

XHES 25 36 34 688 3.5E—01
SVD 83 84 84 1680 2.1E-01

17 5 HNLS 149 225 212 6425 4.4E—01
DNLS 2281 2391 1512 49755 1.9E—01
XHES 5813 5977 3826 125535 1.3E—01

SVD 1787 1817 1422 44635 1.1Ev01

OTALS: HNLS 657 1140 951 15103 4.4E-01

DNLS 7492 8335 5759 99212 3.5E~02

XHES 10680 11891 8032 176146 4.5EA02

SVD 5221 6324 4828 84972 6.0E—02
:atios:

DNLS/HNLS: 11.40 7.31 6.06 6.57 0.08

DNLS/XHES: 0.70 0.70 0.72 0.56 0.79

DNLS/SVD: 1.43 1.32 1.19 1.17 0.59

'able 1. Comparison of the four nonlinear least séuares methods

when applied to some problems with square Jacobians.



est. tot. test

no. method NFTEST NFUN NJAC work effectiveness

R1 HNLS 1 1 1 12 7E—01

DNLS 21 76 62 800 3E—03

XHES 25 79 53 1828 1E—03

SVD 94 99 90 1116 2E—04

R2 HNLS* l 1 1 12 7E—01

DNLS 19 51 42 540 6E—02

XHES 6 29 26 740 5E-01

SVD 28 60 43 584 4E—02

R3 HNLS 457 457 403 5052 1E-09

DNLS 53 133 87 1228 2E—04

XHES 53 199 153 4468 7E-04

SVD 187 263 209 2724 2E—04

DTALS: HNLS 459 459 405 5076 9E-04

DNLS 93 260
'

191 2568 3E—03

XHES 84 307 242 7036 BE—03
SVD 309 422 342 4424 1E—03

atios:

NLS/HNLS: 0.2026 0.5664 0.4716 0.5059 3.56359

NLS/XHES: 1.1071 0.8469 0.7892 0.3649 0.39685

NLS/SVD: 0.3009 0.6161 0.5584 0.5504 2.51984

Table 2. Comparison of the four methods on simple functions

for which the Gauss—Newton method diverges. See the

text for additional explanation.



est. tot. test

method NFTEST NFUN NJAC work affectiveness

HNLS‘ 8 9 7 230 3E~01

DNLS 813 829 791 24110 4E—06

XHES 813 829 791 55750 4E—06

SVD 317 918 892 27020 9E-05

latios:

)NLS/HNLS: 101.63 92.11 113.00 104.83 0.00001

)NLS/XHES: 1.00 1.00 1.00 0.43 1

)NLS/SVD: 1.00 0.90 0.89 0.89 0.04419’

Table 3. Results for the Jennrich/Sampson nonlinear

exponential fitting problem.



methad NFTEST

HNLS* 551

DNLS 261

XHES 314

SVD 355

atios:

WLS/HNLS: 0.47

NLS/XHES: 0 . 837

QLS/SVD: 0.74

Table 4.

NFUN

596

317

358

386

0.53

0.89

0.82

problem.

NJAC

515

278

314

335

0.54

0.89

0.83

est. tot.

work

32115

17265

61890

20865

0.54

0.28

0.83

test

effectiveness

4E~02

1E-Ul

8E-02

SE‘OZ

2.51984

1.25992

1.58740

Results for a nonlinear Gaussian fitting


