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Abstract

Various researchers have studied interval Newton methods
in conjunction with generalized bisection for reliable
computation of all roots and for global optimization within a box
in n—space. Such methods are especially advantagsous when
rigorous bounds on the optimal parameters ars requirsd or when it
is unknown whether local optima are unigue.

Thase interval Newton methods could bes applied diresctly
to nonlinsar least squares problems. Howsver, that would involve
computing interval valuss for the second derivatives of the
original residual functions. Besides contributing to the total
computational cost, such lengthy calculations could possibly
return unacceptably wide result intervals. To avocid this, we
propose interval extensions of the Gauss—IiMewton method.

The Gauss—Mewton method is not guaranteed to be locally
convergent for large residual problems. However, it is always
stationary at roots of the normal squations, and appropriate
interval extensions will preserve an important property of
interval ANewton methods.

We compare computationally our interval Gauss—MNewbton
methods to more usual interval HNewton msthods. Bur test seat
includes problems from the literature, simple large-residual
probiems, and nonlinsar esxponential fitting problems.

Keywords: nonlinesar least sguares, interval mathematics, Gauss-—
NMewton method
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1. INTRODUCTION AND FURPOSE

Interval Newton mathods have been studied for somes time
as techniques for reliably finding all! solutions to systems of

nonlinear eguations. That is, they address the following

problem.
Find, with certajnty, approximations to all solutions of
the nonlinear system:
{1-1} f.ld{k‘i!}fij-""fﬂj = E, 1 E ‘f £ F‘.‘,
where bounds 3; and b; ar=2 known such thati
. < 5. = ;
a; = x; = bi for 1 £ 7 £ n.
We write F(X) = B, where F = {(f ,fg,r++,7,? and X =

(X4 yXnyr++ 9X,). We denote the box given by the i1nequalities on

the variables X ; by X.

These methods are based on computing an 1mage box K whcse

i—th coordinate extent 1s [ ,d;1, where

1

L2

(1.2 C; T N;(x, 3Xg-na9X,) £ d; for = |
for every X = (X, 4Xp4.2=3%,) &= X, where 4;{X} is the j—th
component of the image of X after one iteration of Newton's
method. If K C X, then, under certain conditions, w2 may
conclude that ther=2 is a solution of F within X, and that any

solutions of F within X must be within K.
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To obtain better bounds on these solutions, we replace X
by K and repeat the process. Even if K £ X, any solutions of F
in X must be in K ) X {(since Mewton's method is stationary at
solutions), so w& may replace X by K 1 X and iterate. If this
does not reduce all of the coordinate intervals [a;,b;]
sufficiently, we may form two boxes by bisecting one of the
coordinate intervals; we then consider sach of these two boxes
separately. If, on the other hand, K N X is empty, then there

are no roots of F 1n X, s0 we may discard X.

I+ we apply this entire process {iteration and possibls
bisection) to each of thase boxes separately, we will, with
certainty, find all roots of F within X. (S== [5]1 4or a
theoretical discussion of this algorithmic structurel)l. We review
the technique we employ here for computing K in Section 2.

{(Also see [3,; sect. 41.)

For specitfic convergence rasults for such interval Newton
methads, see [81, (181, [131, [i4]1, and numerous other works.
For an introduction to the interval mathematics generally used to
computs K, see [?]1 or [11. For a general framework and survey,
ses [4]. For a practical wvariant, ses [3]. For systematic
computational teast on a battervy of standard problems and for
comparisons with alternate technigques, see [(A4]l. For an abstract

analysis of the bisection process, ses [T
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Interval Newton methods as described above reguire
evaluation of the Jacobian matrix of F over the entire box X
using interval arithmetic. This usually need not atfect the
practicality of an interval Newton method; 1in fact the overall
cost could still be less than alternatives, and we gain total
reliability (cf. [61). The Jacobian evaluation can b2 combined
with in—-line symbolic manipulators (such as in [141), automatic
differentiation techniques (as in [131), or with genaral routines
for evaluating functions with specific forms (such as in [71), soO
that programming the Jacobian matrix evaluation and explicit
compiler (or precompiler) support of interval arithmetic are not

1ssuss,

As with classical non—interval methods, the2 situation 1s
slightly diffzrent for global nonlin=ar optimization and
nonlinear least squares computations. We may transform the
gensral nonlinear optimization case to (1.1) by identifying ths
gradient of the objective Function with F. Except for the fact
that the Jacohian matrix involves second—order Dartial
derivatives, the cost of the resulting interval Newton method i1s
then similar to the cost of the general problem {(1.1) (except
that additional information can be employed in the optimization

problem; c+. L[41).
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For the nonlinear least squares problem with 2 functions

and n variables, the objective function is of the form

2
o 0%,

1
t1.35) B(X) = —
- J

]

b i

so that its gradient is G{(X) = J(X)TF(X), where F(X)z R" = R” is

the vector function whose j—th component is fj and where JX} is

the » by n Jacobian matrix of 6. Thus the Jacobian matrix of &

is of the +orm

HIX) = JTHLXYFIXY + 50
where
(1.4) m
I
S(X) = f XD H 00

¥ j

P =1

whers Hi is the Hessian matrix of fi'

Uniess symbolic preprocessing is performed to first
obtain a compact representation for §, svaluaticn of H +or a
Newton method thus would require evaluation of mn + mE - matrix
components, where » may be large. Furthermore, the large number
of algebraic operations reguirsed to evaluate 5 could cause the

computed intervals for H to be too wids.

In the classical Gauss—Newton method to find roots of &,

we replace the true derivative matrix H by F¥2 in the Newton
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iteration equation. Thus, we need not compute 5, but we obtain

convergence under more restricted conditions than Newton's

method. In particular, suppose that X* satisfies 6(X™) a,
denote the smallest eigenvalue of JT(X*)J(X*) by M\, and denote
the largest eigenvalue of S(X®) H.e. |]3{K*} lE} by . Then we
are assured that the Gauss—Newton method converges to T only
when A\ £ ¢. (See eg. Theoprem 10.2.1, p. 222 ff. of ([2Z1.) The

case A = o can occur whan the rasiduals fi are relatively large

at X* and when the T, are also sufficiently nonlinear.

In non—interval software, the Gauss—Newton method is
combined with the method of steepest descent to assure

convergence {(cf. eg. [2, ch. &61).

An interval Gauss—Newton method can be practical because
of the following two observations. First, despite possible
divergence, the BGauss—Newton method will always be stationary at
solutions to G{(X) = 8. Sescond, &ven though ¢« = A, the BGauss-—
Newton method often will converge in some of the coordinates of
X. (This depends on the relationship of the eigenvalues and
eigenvectors of JTJ and § and the direction of these eigenvectors
in relation to the coordinate axes: edamples in Section 4
provide some insight into this.) Thus, we may combine the
interval Gauss—-Newton method with generalized bisection to obtain

an adequately rapid algorithm which is guaranteed to find the
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global optimum of ® subject to X E X.

In Section 2, we describe interval esxtensions of the
Gauss—Newton method. In Section 3, we brietfly deéﬁribe the
environment in which we tested these methods. In Section 4, we
describe the test problems, and in Section 5; we present

numerical results and conclusions. We summarize in Section b6.

2. NOTATION AND INTERVAL EXTENSIONS OF THE GAUSS—NEWTON METHOD

In this section, we assume familiarity with interval
arithmeticy see [1] or [?1, ete. for an introduction. Here,
lowercase letters (e.g. x;) will denote real numbers, uppercase
letters (e.g. X)) will denote real vectors, upper case boldface
letters (2.g. X) will denote interval vectors (i.e. boxes), and

lowsrcase boldface letters (s=.g. x;}! will denote intervals.

We madel the method on the structure presented in [3] for
(1.1). There, if X is a box, X = X, and # © X is fixed, the mean

value theorem gives

(2.1) FIXy C F()Y + J{0O)1 X - B,
where J(X) is an interval extension of the Jacobian matrix by
components. If we replace F(X) by @ and multipiy both members of

(2.1 by a nonsingular matrix Y, where Y approximates EJ(HJ]_i,
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we obtain

(2.2 BEEB+ P (X —-M),

where B =Y F(M) and P = Y J{X). (Note that P is approximately a
diagonal matrix, when the widths of the box X are small.)
Interval Newton methods consist of using interval arithmetic to
solve (2.2) for X. This will give a set K(X) which contains the
set {X € X | F(X) = 8. A particularly successful such solution
procedure appears in [31. The resulting K{X) can serve 1n a

generalized bisection method as outlined in the introduction.

In [31, F: R® 2 R". Even so, (2.1) still holds if F: R"
4 R® with 2 » n. We are thus tempted to multiply (1.1) by an
approximate gensralized inverse Y to obtain an analogue of (Z.2).

However, it ¥ = (7 1Y (where "t denotes generalized inverse),

then

Y LIT sy Ty 1" a7 .

1§, furthermore, X contains the single point X, then

p~r g = ITumacn1”raTinm FEuD,
which is a single iteration of the Gauss—Mewton method if X = H.
However, i+t x* = X is a stationary point and #¥ # x*, then, unless
m = n {(or unless the Gauss—Newton method is convergent}, we
cannot be sure that X is contained in the corressponding solution

to (2.2). Thus, if this scheme is used to compute K, then we may
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have K(X) (| X empty even though X contains a stationary point (as
our computational experiments verify). This schame,; which we

term the heurjstic scheme, is thus unreliable.

An alternate procedure involves first premultipliying both

sides of (2.1) by the interval matrix J (X). We then take

{(2.3) " ¥ ~ LI J 12

so that we obtain (analogousliy to the derivation of (Z2.2))

(2.3) @ =B+ P (X — i),

where B is now an jnterval a—vector. In this case, K(X) obtained
by solving (2.3) must always contain stationary points of @
within X (since the Gauss—Newton method is stationary at such
points); thus, the associated method of bisection must always
find th2 global optimum of ®. We term this schemg the

deterministjc method.

For an interesting observation, suppose in (2.3) that Y
= T I 1™ . Denote J(M by J and denote J(X) by J and

assume [JTJI™ ! can be computed. Then
P p =1t Y ITHitwtTHr T3} F.

The matrix in curved parentheses can be interprsted as an

interval generalized inverse.

(Interval nonlinear least sguares) (F)



Note that JT (M) J (M) can be ill-conditioned. This could
cause problems in the algorithm, and, in particular, could result
in wider cnufﬁinate widths in K{(X) (as computed in (2.32) than
necessary. I1his suggests use of an alternate preﬁunditinner
based on orthogonal transformations of the Jacobian matrix. In
particular, we may write J(M) in terms of its singular value

decomposition

(2.4) JRy =4 E V7,
where ¢ and ¥ are orthogonal matrices, where V° denotes the
transpose of V, and where L = (o; ) with o; . =8 if { # J and
where o; ; is the j—th singular value of Ji), for 1 = | = n. ke
may then change the coordinate system representing £ to obtain
Fi) = U°'F (V #H), where
(2.3}
H=V" X.

We then faorm H = V' X, and we identify ¥ with the vector of

midpoints of W. An interval Jacgbian of F is then given by

(2.86) JH) = U 'J(Xy v > E.

We may now procead as in (2.3}, sxcept that we replace X
by H, F by F, and by J. Since TTHITHY is approximately
diagonal (with the smallsst diagonal el=ment occuring last),

additional preconditiconing should not bs necessary. Thus,

solution of
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(2.7) @ EEB + P (H -

where B = J (H)F(#) and where P = J ()T (H) and P are analogous
to B and P in (2.3)) should give smaller intervals than the
solution of (2.3). However, since solution of (2.7) is embeddsd
in a generalized bisection method based on X, H must be computed
before solving (2.?1, and V K must be computed before continuing
the bisection algorithm (where K is the solution of (2.7)).
These computations may counterbalance the advantages of the
better coordinate system, and we thus need to test the method.

We term the scheme based on {(2.7) the sfingular value

decomposjition method.

The final method we consider is the usual interval Newton

methaod applied to the gradient function. That is, we begin with

(2.4) GEX) = GI(H)Y + H{XY X — B¥),
as in (2.1), where 6 is the gradient of @ and 4 is the Hassian
matrix of ©. We term this method the sxact Hessian method.
Despite the fact that interval iterations ot the exact
Hessian method are theorstically guadratically convergant to
stationary points of ® {(whereas the interval Gauss—Newton method
is at most linearly convergent), the generalized bisection method
associated with it is not necessarily more efficisnt than ths
deterministic method or tha singular value decomposition method.

This is both because much more computation may be involved 1n
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evaluating H(X) and because these internal computations may
magnify the widths of the resulting intervals more than the
computations on J. These possibilities are examined in Section

3.

3. GENERAL ASPECTS OF THE TEST CODE

The generalized method of bisection in which we tested
the three interval nonlinear least squares methods described 1n
Section 2 is an improved version of that in [83; it is similar to
the code in [7]1. Aside from changes in the data structures which

do not affect the reported test quantitiss, the major ditferences

from the code used for L&l are:

{1) utilization of the objective function ¢ to rejsct some of

the bouss produced during bissection {cf. [4, sect.

(11) an improved method for determining which coordinate
interval of X to bisect, when bisection 1s requiresds;

{(iii) madifications in the tast to determine when to do another
iteration of the interval (Gauss—)Newton method and when
to bisect a coordinate interval instead;

(1v) use of a generic routine to svaluate F and J when the

compaonents of F are polynomials;
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(v) use of a portable form of rigorous directed rounding 1in
the interval arithmetic;

(vi) use of the rigorous interval arithmsetic to evaluate the
point function value F{#); and

a modification of the schem= which determines when to

accept a box produceaed by the algorithm as a final answer.

in [&1, the code chose the k—th coordinate interval
[a,,b,] of a box X to bisect, where
{(3.1) ih, — @yud = MAxX th, — a;).
i % 1 =5
Here and in [71, we bass the coordinate selsction on the interval

extension of F detin=a2d by

(3.2) FIX) = F{#Y + JiXy (X — #),
where J{(X) is a componentwise interval extension of the Jacobilan

matrix. Let the j—th component of F(X) be Lc; ,d;14 and denote

the (j,7i}—th entry of J{X} by Ji:j = [Jj,Jii, f,j,i]' Than
(5.3} 5_,;:{_ M ]Jf,,.f,:l.i'! IJJ,._;',EI | cb,;'_aj}

i = 757 = m
is a measure of the maximum sf+ect the siz= Ebj — aj) Has on tha

uncertainty in the values af any component of F. We choose the

coordinate index & in which to bisect such that
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(3.4) Sy = max S; =
1 £ 7 = n

Computational experiments with 2 = » (solving (1.1)) indicate
that (3.4) is generally a more sffective criterion than (3.17,
and is seldom, if ever, worse. Also, (3.4) seems to be more

robust with respect to scaling than (3.1).

Here, to determine when to bisect and when to iterate the
interval Gauss—Newton method, we examine the ratio of volumes of
K and K {7 X. 1In particular, we introduce a tuning parameter 7

such that

vol (K ) X £ 7 then iterate the method.
(3.5 I+ 5
vol (X2 z 7 then bisect a coordinate
\ interval.
For solving (1.1), = = .46 seemed reasonable; we use that value
hare.

In [61, we coded the interval computations for the ¥; and

J -

i, ; separately for each problem. Here and in [71, we use

generic routines similar to those in [12] for F, J, (and 3, where
applicable): we thus need only input the coefficients and

degrees {(with respect to each variable). However, since intsrval
arithmetic is only subdistributive (cf. eg. [7, p. 131) and since

the generic routines do not make any attempt to factor
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expressions, the interval function computations here usually give
somewhat wider i1ntervals than those in [46]. This could cause the
computational cost to be somewhat more. {For the nonposlynomlal

systems here,; we coded the computations sxplicitly.?

Directed rounding is required for total reliability. In
particular, sxtensive investigation rzvealed it {and an
associated interval svaiuation of F{#}) necessary to raliably
solve problem 11 from the test sst in [4]1, on some of tha

computers at our disposal.

Here, we assume that,; if Ki{X) £ X i{whsre the containment
is strict), then there 1s a unique stationary point of @ 1n X.
Such a result has b=en proven for varipous intervai Newton methods
which solve (1.1) {(cf. eg. L£181, [i3E, p. 24631, L14713; 1t 1is
conjectured to be true more generally in [4J. We have cilscovered
no instances whers this procedure leads to errcnsocus results,

except for the heuristic method.

4. THE TEST SET

The set of test problems has the following threa

components:
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(i) selected problems from the test set from (4] tor gesneral

nonl inear systems codes;

(11) a set of simple problems with a2 > n and large residuals;
and

(ii1) A nonpolynomial problem with m > n from the test set 1in
C111.

4.1 The Test Set from L&]

These problems serve as a benchmark for the overall
procedure. The heuristic method reduces to the usual interval
Newton method, since & = n and hence Jt = 7. However, J'F = @
is a more ill-conditioned system than £ = @, and these problems
would reveal the effect of this on the deterministic method and

on the exact Hessian method.

We selected problems 1, 2, 25 12, 13, 14, 15, 14, and 17/
from the original test set. We eliminated prnb}ems 3, 4, 138, and
i1 since, as nonlinear ls2ast squares problems, they were too 111-
conditioned to be solved by considering 180808 or iless sub—-boxes.
We eliminated problems S5, 6, 7, and 8 from our tables since thess
linear problems are solved trivially in one step by all of the

methods.

(Interval nonlinear least sguares) (14)



4.2 Some Model Problems with Large Residuals

We designed these problems to examine in a simple setting
how non—convergence of the Gauss—Newton method a{{écts the
overall generalized bisection algorithm in conjunction with the
heuristic, deterministic, and exact Hessian methods. The

problems consist of the +ollowing.

Kl. An example where the Gauss—Newton methed converges.
f,. = x, + x5, + 1
1 i =2 ;F]
o = x; — xg — 1 I
2
fa = X — Xg + 1
2
fq.=xi+3f2_1

Global minima in [(—8x18%,4x10%1: at X" = (@,0).
Remarks: JT(x*)0(x*) = diag(2,4), while 5{@,®) is the

zero matrix. Thus, the Gauss—Newton method is

1

locally convergent.

A
Jj:.r} - 7 ;';__:- L .'“_-:-‘:::I':;,.._i' 4::‘,,:
nZ. A simple example where the Gauss-Newlon-method-diverges. fbﬁ
. F
; I S
Pl P N
_ i lf 7!: -~ - - ”’ Vf\ ii' A, "#;*'1
Fa = X4 — Xg — ‘ [ { nes i
3 . Il.r-. - ! - - i ; II-I:- l,"f: .
: & e o j B %- i.;
B 8 /ﬁf/* g = X — Xg * 1 |- q"”“ f" ) P"; [ [ L/
- {

It

! -- . : 'l r__|,-"-“I L 5 -;r ‘. -__-f‘_: -.."" J I-- ._: :2 L Ii '_. }FIF H
o g 2 (2eL 1 A AL
i e ._f.:n — = ¥ s i
| ._‘ ?"{ f‘* __H‘E + xi 1 )p . L
..‘. - . t

iﬁyfigiﬁ:abaz minima in [—4x18%,4x12%3: at x* = (@B,®).

Remarks: This problem differs from R1 only in the
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second-order term in f,. Still, J(x®Jx* =
diag(2,4), but S{0,0) = diag{(@,4), so X\ = 7 = 4,
Numerical experimentation reveals that the Gauss-—

Newton method fE“iﬂEéif§ df§Er£ént in x5, but

that xy converg=ss to B3 in one itesration.

R3. A diagonal system for which the Gauss—-Newton method

diverges.,

2

f, = 19 x; + x; + 1
2

fi = 14 Xy — x4 ¥ 1
2

fa = L= Xo + x5 + 1
2

Ty = « 23Xy — Xy + i

Global minima in [—4x18%,3xiD%1: at X* = (0,2).

Remarksz JT(X*)J7x*) = diag¢ , but 5{(@,0) =

e fdiag@i,.

= }ﬁh A
= -r.. . I‘l. 2 e Y] .
' ¥ / f

. . | -l_'l | 20 - - = e
' X J}Aﬁ}jﬂewtgn method is ciearly divergant in x, and

[ o AA
y o0 —rt L
» = > J'?l A I'

L/ convargent in x;. This problsam thus poses a test
of the effectivensss of generalizad bisection in

complementing the intsrval Gauss—Newton method.

4.3 Some Additional and non—-polynomial problems

Exponential nonlin=ar least sguares problems sometimes

(Interval nonlinear least squarss) (18)



occur in practice. With this in mind and for ease of coding, we

have selected the following from the test set in [111.

El. Jennrjich and Sampson Functjon {(problem A& fn [i11):

f;, = 2 + 2] — [explix,) + explixg)],
1 2 1 = 18.
Global minjima In [B,2]1 x [B,2]1: at x; > .25782, x, =~

2237823 © at minimum is less than 111.518.

2. Gaussian functjion {preoblem 7 in [111):

—Xa &y — Xy
= X; 2¥p - i
| <

p 3

']

Global minima fn [B,11 x [8,2] x [-.5,.3]: at x, =~

. 2989561, x5, X L188G001F, x5 = 8; @ at minimum 1ﬁ less than

1.0621x187 . \JM‘/}GI M

9. NUMERICAL RESULTS AND CONCLUSIONS

We present algorithmic performance for the set of
problems from [46] posed as nonlin=sar least sguares problems 1n
Table 1. PFerformance data for the s:i:mple problems with largs
residuals appears in Tablie 2. Fertormance data for the

Jennrich/Sampson function and for the Gaussian fitting function
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appear in tables 3 and 4, respectively.

4.1 Explanatiﬁn of the tables
In all ot the tables,; we have the follawing.
NFTEST is equal to the number of sub—boxes of the

original box which were tested +for stationarv

points during the generalized bisection processs

NFLIM reprasents the total number of interval Tunction
evaiuationssg
NI AT reprasents tha total number of interval Jacocbian

matrix svaluations {and Hessian matrix
evaluations, 1n the casse of the exact Hessian

methad).

The estimated total work is defined to be » NFUN + 2 n
NJAC for the heursitic method (HNLS), deterministic method
(DNLS}), and singular wvalue decomposition method {5VD}), where n is
the number of wvariables and 2 is the2 number of functions. For
the sxact Hessian metnod (XHESY , the sstimated total work is

definsd to be =» NFUM + » r (1 + r) MNJAC. Thesse me2asures arsa
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based on the assumption that each partial derivative is of =qual

difficulty to evaluate as a single component of the function.

The test effectiveness £ is a measure of how much the
diameter of the box must be reduced by splitting along a
coordinate direction before either K(X) (] X = is empty or else

K(X) C X. 1It is defined by

—LL/n]
(5.1} E = 2

where L is the maximum level in the binary tree defined by the
coordinate splitting process. In instances where each coordinate
direction is bisected an =qual number of times and iteration of
the interval Newton method gives no reduction in the widths
before K(X) € X, E represents the factor of relative diameter
reduction necessary in the bisection process. Thus, largsar
values indicate the method is more effective. For sxample,; since
the initial coordinate widths for the problems in tables 1 and 2
are B@@ and since the minimum box width is 1@ ~/14 = 6.25 x 10”7,

the minimum possible £ in these tables is 7.8 x 1 -9,

The number of variables n and thes numbsr of functions =»
are equal in all of the problems in Table 13 thesre, »n 1s given
in the second column. Also in Table 1, the first column

identifies the problems by the numbers they are given in [&1.
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As is indicated in Section 4 above, r = 2 and = 4 for

all of the problems in Table 2. Likewise, rp = 2 and = 1@ for

Table 3, and n = 3 and =» 15 for Table 4.

9.2 Analysis of the results

3.2.1 FOR THE SQUARE NCNLINEAR SYSTEMS TEST S5ET

In Table 1, the heuristic method is reliable since it
reduces to the usual interval Newton method when » = np. We note
that, in all five measur=ses of efficiency and for all praoblems, it
is better than the other methods. (For instance, the
deterministic method needed to consider 11.4 times as many
boxes.) This is forced partly by the fact that the condition

number of JTJ is the squarea of that of J. In particular, if

Y = LmLIT{X0)Jix31x~1

H

A—:I.

whera m(*) denotes the midpoint matrix, thsan

Y JTOOJX) =Y A+ 5S) =1 +# S,
where S is the matrix of widths of the elements of J (X)J(X). If
the glements of 5 are all of the form [—=2,3]1, then thers are

elements of H# § of the form [-b,bl, where b = |]H [h.

Another interesting obssrvation from Table 1 i1s that,
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overall, the deterministic nonlinear lesast sguares method {1.e.
the interval Gauss Newton method) took only about 78%4 as much
work as the exact Hessian method, when the additional derivative
evaluations ars not taken into account, and only ﬁ&ﬁ as much work
when they are. The exact Hessian method needed to consider
slightly fewer boxes in problems 9, 12, and iS5, but was worse 1n

other measures.

Finally, ovarall in Table 1, the singular wvalue
decomposition method seems to be at least 174 more efficient than
the deterministic method, when ths costs of the extra linear
algebra computations are not included. FEzceaptions ar2 problems 2

and 16.
S5.7.2 FOR THE MODEL FROBLEMS WITH LARGE RESIDUALS

Th= solution to =2ach of these problems ligs at x; = X5 =
@. However, the heuristic method signalied a unigque root at x; T
@, x; » -1 in problems R1 and RZ, although it did give the
correct result for problem RZ. Therefore, the heuristic method

should not be sariously considered in this context.
Overall in these problems, the sxact Hessian method did

not need +*o consider as many boxes as sither the deterministic

method or the singular value decomposition methad. This would b=

({Interval nonlinesar lsast sguares) (23)



expected since these are large residual problems. The exception

to this was problem R1, for which the Sauss—Newton method

canverges. However, the estimated total work, which takes

account of the sxtra cost of evaluating second defivativeg, Was
greater in all cases. Also, the number of function and Jacobian
evaluations was greater except for R2; this indicates that,

though th= interval Newton method with the exact Hessian matrix
converged, 1ts effectiveness at reducing the box size was less =
than the Gauss—-Newion based methods combined with generalized

bisection.

wWe note also that, for the detsrministic method, the test
effectivaness differad from that for the sxact Hessian method by
less than one order of magnitude; in any case it was always at
least 1@° greater than the value it would attain if we applied
pure g=neralized bisection, without raducing the box widths by
iteration of X & K{(X) ) X. We thus conclude that our interwval
extension ot the Gauss—Newton method is sffective esven in cases

whare the Gauss-Newton method is non—convergent.

By all measurss, the dsterasinistic method was
significantly cheaper than the singular value dscomposition
method +or these three problems. In contrast tao some of tha

T

problems from [61, the guantity J J is well-conditionad in

problems Rl1, RZ, and R3. Thus, the primary considsration in the

(Interval nonlinear least squares) : (24)



performance difference is the widening of intervals introduced by
transforming between coordinate systems in the singular wvalue

decomposition method.

2.2.% FOR THE EXFONENTIAL FITTING PROBLEMS

Note that problem El is a large-residual problem, whereas

problem EZ 1s a small residual problem.

For both problems, the hsuristic method incorrectly
concluded that there were no stationary points of @ within the
initial box. We thus should i1gnore the psrformance results for

the hauristic method.

For the larges-residual problem, the detarministic method.
exact Hessian method,; and singular walus decomposition method
were comparable 1n efficiency when second-darivative evaluations
ware not counted. The desterministic method was significantly

better by all measures for the small-+rssidual problem.

9.3 Conclusions

The heuristic method is highly superior for sguare

systems, where 1t gives rigorous resulis. (General nonlin=ar

systems should not be recast in terms of the normal equations.)

{Interval nonlinear least squares) (25)



However , it does not give meaningful results in other instances,

and should not be considered for them.

In general, the exact Hessian method is nﬁt as efficient
as the interval extensions of the Gauss—Newton method when thay
are both combined with generalized bissction. This is sven true
for some systems for which the point vesrsion of the Gauss—MNewton
method is divergent. It is sspecially so when we take account of
the extra work needed to evaluate sscond dasrivatives for the

exact Hessian method.

The deterministic method is supericr to the singular
value decomposition method for problems for which the matrix IT3
is ill—-conditioned. Haowever, the singular value decomposition
method can be better in some cases. We conjecture that, within a
given problem, preconditioning with (I " may work better tor
some subboxes, while preconditioning with the singular value
decomposition may be more appropriate for others. A hybrid

algorithm based on K, whare

KotXy = KOO ) KO,
where K is the interval solution of {(2.3), and where K is the
interval solution of (2.7), may bes more 2fficient than sithsr the
deterministic method or the singular value de2composition method

al one.

(Interval nonlinear least squares) (28)



4. SUMMARY AND FURTHER WORK

We have compared two interval extensions of the bGauss-—
Newton method to the interval Newton method obtained by using an
interval evaluation of the exact Hessian matrix. For problems
with n functions and n variables, we have also compared these
interval extensions of the Gauss—Newton method to “"heuristic

method", which reduces to a usual interval Newton method.

The problem set included a battery of problems from the
literature with n functions and » variables, a set of three
problems to test behavior in cases for which the usual Gauss—
Newton method diverges, and a set of two nonlinear exponential

+itting probiems.

The interval Gauss—-Newton methods compare favorably with
the method based on the exact Hessian matrix. They also ssem
practical for exponential fitting applications. @ They would be
especially desirable in this context when rigorous bounds on the
optimal parameters are required or when there isn’t a unique

local optimum.

Fortable interval sofware for nonlinear systems is about

to be made available. (See [71.} Addition of several modules,

(Interval nonlinear least sguares) (27



including generic exponential fitting function and Jacobian
routines, would make use of the technigques described here

practical.

Additional research needs to be dons on the behavior of

the algorithms on more general problems.

Acknowledgement: I wish to thank David Gay for the conversation

which lead me to consider copordinatsa transformations in the

context of interval Gauss—Newton methods.
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est. tot.

no, n method NFTEST NFUN NJAC work ef f,

1 2 HNLS 8 22 21 128 §.0E-01

DNLS 77 124 98 640 1,3E-01

XHES 93 144 111 1574 1,3E-01

SVD 77 121 94 618 1.,3E-01

2 2 HNLS 42 69 22 346 1,8E-01

DNLS 1S1 213 150 1026 4 .4E-02

XHES 206 230 158 2344 4 . 4E-02

SVD 207 224 157 1076 4 ,4E-02

S 2 HNLS 3 12 12 72 7 ,1E-01

DNLS 143 187 175 1074 7,8E-03

XHES 128 a1l 207 1250 I ,1E-G2

SVD 81 124 124 744 3,9E-03

12 3 HNLS 438 773 617 7872 1.3E=-01

DNLS* 4068 4560 316l 42129 3.1E-04

XHES* 3707 4419 2992 40185 7.8E-03

SVD 2684 3547 2594 32987 9,8E-03

13 3 HNLS 1 1 1 12 7 ,.9E-01

DNLS 1 1 1 12 7 ,95-01

XHES 1 1 1 12 7.9E-01

SVD 1 1 1 12 7 .8E-01

14 2 HNLS 14 34 32 196 3.5E-01

DNLS 99 132 93 636 4 ,.,4E-02

XHES 110 144 101 692 4 ,4E-02

SVD 73 112 89 580 6,3E-02

15 2 HNLS 1 2 2 12 7.1E-01

DNLS 623 712 054 3640 2.0E-03

XHES S 97 729 602 3866 9.8E-04

SVD 228 294 263 1640 4 ,4E-02

16 4 HNLS 1 2 2 40 8,4E-01

DNLS 9 15 135 300 5.0E-01

XHES 29 36 34 688 3.5E-01

SVD 83 84 84 1680 2,1E-01

17 S5 HNLS 149 225 212 6425 4 .4E-01

DNLS 2281 2391 1512 498755 1,9E-D1

XHES 9813 3977 3826 125535 1,3E-D1

SVD 1787 1817 1422 44635 1.,1E-01

OTALS: HNLS 657 1140 9531 15103 4 .,4E-01

DNLS 7492 8335 5759 99212 3,5E-02

XHES 10680 11891 8032 176146 4 ,5E-02

SVD o221 6324 4828 84972 6.0E-02

atios:

DNLS/HNLS 11.40 i ess 6.06 6,57 0.08

DNLS/XHES:: 0.70 0.70 0,72 0,56 0.79

DNLS/SVD: 1.43 1 323 L. 19 1,17 0.59
'able 1, Comparison of the four nonlinear least QQuares methods

when applied to some problems with square Jacocbians,



est. tot, test
no, method NFTEST NFUN NJAC work affectiveness
R1 HNLS 1 1 1 12 7TE-01
DNLS 21 76 62 800 3E-03
XHES 25 79 63 1828 1E-03
SVD 94 99 90 1116 2E-04
R2 HNLS* 1 1 1 12 7E-01
DNLS 19 Sl 42 540 6E-02
AHES 6 29 26 740 SE-01
SVD 28 60 473 584 4E-02
R3 HNLS 457 457 403 5052 1E-09
DNLS 93 133 87 1228 2E-04
XHES 53 199 153 4468 7TE-04
SVD 187 263 209 2724 2E-04
OTALS: HNLS 459 459 405 5076 SE-04
DNLS 93 260 191 2568 3E-03
XHES 84 307 242 7036 8E-03
SVD 309 422 3472 4424 1E~D3
atios:
NLS/HNLS 0.2026 0,.5664 0,4716 00,5059 3.56359
NLS/XHES; 1.1071 0,8469 0,7892 0,3649 0.39683
NLS/SVD: 0.3009 0.6161 0.5584 0,5804 2.51984
Table 2., Comparison of the four methods on simple functions

for which the Gauss-Newton method diverges. ©Sa2e the

text for additional explanation.



est, tot. test

method NFTEST NFUN NJAC work effectiveness
HNLS* 8 E 7 230 3E-01
DNLS 813 829 791 24110 4E-06
X{HES 813 829 791 55750 4E-06
SVD 817 918 892 27020 9E-Q05
atios:;
INLS/HNLS ; 101.63 92.11 113,00 104,83 0.00001
ONLS/XHES : 1,00 1,00 1,00 0.43 1
NLS/SVD: 1.00 0.90 0.89 0,89 0,04419
Table 3., Results for the Jennrich/Sampson nonlinear

exponential fitting problem,



method NFTEST

HNLS*

DNLS

XHES
SVD

atios:
NLS/HNLS :

NLS/XHES ;
NLS/SVD:

Table 4.

961
261
314
355

NFUN
596
317
358
386

0.353

0.89

Q.82

egt, tot.

work
32113
17265
61890
20865
0,904
0.28

0,83

test
effectiveness

4E-02
1E-01
8E-02
6E-02
2,51984
1.25992

1.58740

Results for a nonlinear Gaussian fitting
problem,



