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SOME GENERAL BIFURCATION TECHNIQUES“
RALPH BAKER KEARFO'ITT

Abstract. The problem H (y) =H (x, A) = 0, where H :R"“—> R" is considered. Numerical techniques
for locating bifurcation points y and for following arcs leading from y are presented. These techniques
are valid for primary and secondary bifurcation points, and at multiple bifurcation points, regardless of

whether there is a change in the sign of the determinant or the Jacobi matrix H, at 9; they can also

possibly be used when arcs intersect tangentially. The techniques do not require computation of second

partial derivatives, although Jacobi matrices are computed using nite differences in neighborhoods of

bifurcation points.
Details for incorporation into a derivative-free arc-following method, developed in a previous work,

are given. Computational results for ve test examples appear. Directions for further investigations and

improvements are listed.

The stepsize control and Jacobi matrix update techniques may be improved for large, sparse problems,
when rst partial derivatives are easy to compute, or in the absence of bifurcation points.

Key words. arc-following method, bifurcation, numerical method, rank-1 updates, steplength
algorithms

1. Introduction.- We desire to quantitatively describe the solution set of

(1) H(y)=H(X.A)=9.

whereH:lR"><|R->R" and y =(x,A)EIR" XR.

Solution sets of (1) usually consist of intersecting sets of‘codimension-l manifolds
in W“. Under sufcient smoothness and regularity assumptions, the solution set

within the region {(x,A), lelléM, OéA :1} consists of a nite number of smooth

intersecting arcs. In that situation, the numerical problem can be resolved into the

following components: (i) following the individual solution arcs of (1) accurately and

eiciently; (ii) nding the bifurcation points (points where the arcs intersect); and (iii)
successfully following one or more arcs away from a bifurcation point.

Much work on these problems has been done by H. B. Keller, W. C. Rheinboldt,
and others. For a survey of arc~following techniques, see e.g. [2]. For a survey of

techniques for bifurcation problems, see e.g. [16]. The reader may also consult [17],
where application of simplicial methods to these problems is treated. Each of these

surveys contains lists of further references.

Despite the richness of techniques and methods, further research is desirable.
Improvements and further evaluation of both arc-following and bifurcation techniques
are possible. Also, bifurcation techniques are of an ad hoc nature; primary, secondary
and multiple bifurcation points are treated separately (cf. [16]); little work has been
done in detecting “even order” bifurcation points (where an odd number of arcs

intersect); and continuation away from a bifurcation point may fail when the arcs

intersect tangentially. Other undesirable characteristics include the need for higher
order derivatives or double iteration processes.

The purpose of this paper is to present some new and more general techniques
for handling bifurcation problems. We implement the techniques with a derivative-free

predictor-corrector~type arc—following method, which we review in §2.‘We base
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detection of each bifurcation point )7 on analysis of the singularvalues of an approxi—
mate Jacobi matrix H '(y ); details are given in § 3.

We obtain directions for arcs emanating from y by locating minima of llH(y)[lz
for y on the boundary of a small ball in the afne space containing and dened

by the null space of an approximate H '(y). This technique is mostSimilarto thatof

H. B. Keller [14] in that direction vectors at the bifurcation pomt are givenexplimtly;
it diers in the method of obtaining those directions. Also, Keller’s directions are

tangent to the arcs at y, whereas our directions are approximatelysecant to the

projections of the arcs onto the above afne space. Our approach and its implementa-

tion are detailed in § 4 below.
I .

I

,

Results and analyses of computer runs are given in § 5. A summary, conclus10ns

and directions for improvements are given in § 6.

2. The arc-following method. Since the basic arc-following method is explained

in [11], only a general outline will be given here.
. .

We assume that solution arcs of (1) can be parametrized With respect to arclength

s, and we suppose yo 6 IR" X R is such that H (yo) = 0. Then:

(2) H ’(y(s))yf(s)= 6’. lly’(s)|l
= 1. y(0) = y‘°’

may be integrated to nd an arc y(s) with H (y (s)) = 0, where H’ is the n by n + 1

Jacobi matrix of H, and y’(s) is the componentwise derivative of y e W” relative to s.

Our method is based on “predictor—corrector”techniques (cf. e.g. [1], [6], [15]).

The predictor step corresponds to an implicit Euler step for (2) and is dened by:

(3) Zgwi)= y(k)+8kb(k)

where 8;, e R is suitably small, H (ym) i 0, and bu“),Ilbu‘)“= 1 isapproximately tangent

to y(s) at yu‘).The next iterate yU‘H)is then obtained by solvmg:

H

(4) G(Z) = (b(k)t(z£:)gk+1)))= 0

with a generalized secant method.
I _ I

In [11] a derivative—free predictor—corrector method for (2) is given. There, H

is computed by updating with a least-change secant (Broyden)technique.Such-tech-
niques allow computation of a new approximate derivative matrix each time a

new value of H is obtained, without any additional function or derivative evaluations.

To assure that H’ is approximately correct, Powell’s idea of special .correction updates
is used ([19] and [11]); the effect is to supply a matrix H’ which reects, as a linear
transformation, the action of the true H’ in a region containing the past 2n +3 points
z)” and y“). (Powell corrections require, on the average, less than one additional

function evaluation per step).
. O . .

Stepsize algorithms for adaptively choosing 6,, are also givenin [11],in.
addition

to publications of several other researchers. In the absence of bifurcation points,such
stepsize controls are usually based on keeping the numberof corrector iterations

required to solve (4) within bounds, or upon keeping the‘cosmeof the angle between
successive approximate tangent directions b“) and b‘ + ) within bounds; to do this,

8H1 is set to 8k, 26k, or §8k as appropriate.
.

Numerical tests in [11] indicate that the predictor-corrector technique, combined

with Broyden updates of H’, is competitive with general algorithms suchas the
Chow—Yorke algorithm in [25], provided one assumes evaluation of a Jacobi matrix
from scratch would require it function evaluations. This fact has also been veried
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by Kurt Georg [8], who independently investigated a similar predictor-corrector
scheme with Broyden updates.

Our basic idea for handling bifurcation points, in addition to a framework for its

implementation, are also given in [11]. Below, we expand, in rened form, these

ideas; we then present the results of numerical tests and outline possible improvements.

3. Detection of the bifurcation points. If y is a bifurcation point of (1), then
the dimension of the null space N '(y) of H '(7) must be greater than 1 (cf. [20]). In

particular, the determinant det (H, (x, A)) must vanish at the point )7 = (x*, A,,,) with

corresponding arclength s,,,. Let {1-,-(s)}§:'1'+1be the eigenvalues of the Jacobi matrix

G'(y(s)), where G is as in (4). Then two or more 7-,(s) must vanish at s = s*.
If an odd number of 1,-(s) cross the axis 7 = 0 at s =s*, then det (G’(y (s)) must

change sign at s =s*. Some techniques for locating bifurcation points are based on

detection of such sign changes (see the references in the surveys) or on detection of

changes in a topological degree (cf. e.g. [10]). Here, we deal with the more difficult

problem of detecting all bifurcation points.
In general, any quantity q(s) which is a continuous function of arclength s and

which equals zero at values of s for which H ’(y(s)) is rank decient may be used to

detect bifurcation points. In the initial experiments presented here, we elect to examine
the reciprocal of the condition number of H

'
relative to the 2-norm, expressed as the

ratio of the smallest nonzero singular value 0-,. (s) to the largest nonzero singular value

01(5') of H ’(y(s)). To obtain this quantity, we actually did a singular value decomposi-
tion of the approximate H ’(y("));though not optimal from the point of view of

overhead, this stable technique gave us valuable additional information concerning
the behavior of our algorithms and test functions.

Bifurcation points are found by detecting minima of 0-,.(s)/a-1(s) (or, more

generally, minima of Iq(s)[). Besides having the properties listed in §2 of this paper,
our predictor stepsize control should decrease 5,, before encountering a bifurcation

point, in such a manner that the position of each bifurcation point may be eiciently
bracketed and rened. If exact derivative matrices H ’(y(’0)are assumed, linear conver-

gence to a bifurcation point can be achieved by allowing |q(sk+1)l—|q(sk)| > —aq(sk),
for some 0 < 1, until Iq(sk)l reaches some threshold value, after which the step 6,,
is unchanged until a minimum of Iq(s)| is bracketed.

As was mentioned in §2, the matrices H L, and hence the q(sk), formed from

Broyden updates with Powell correction steps are not exact Jacobi matrices at ya”,
but depend upon the action of the exact linear transformations H ’(y) in a region
containing the past 2n +3 corrector iterates and points y"). In our experiments, we

handled this problem by setting 8,,“ to be a small fraction of 8,, whenever the average
decrease in Iq(s)| over the past 2n +3 points y”) exceeded alq(sk)|; 8;,“ was not

allowed to be greater than 8,, except after a cycle of Zn +3 predictor steps over which

6,, was not .decreased due to q(s).
The above step control in the neighborhood of bifurcation points is inefcient

when n is large, since 2n +3 times as many points y‘“ are computed as in the case

where “exac ” H’ are available. A possible improvement, in later computations, would

be to discard the Powell update procedure, use Broyden (or other quasi-Newton)
u ates only for the corrector steps, and compute H’ using nite differences at each

y ’0. The H’ could then be considered exact, with the step control threshold set

according to the accuracy of the differencing scheme. (Of course, exact H’ would be

even better, if they are easy to obtain).
If we assume H L = H ’(y (k ))is an exact Jacobi matrix, minima of q(s) are bracketed

whenever |q(sk_1)l<|q(s,,_2)l and Iq(sk-1)l<|q(sk)|. If H L is the result of applying
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quasi-Newton updates and l’owell correction steps, the computed q(sk) will vary

irregularly near a minimum of the actual q(s). In our experiments, we handled this

by comparing average values of lq(sk)| over the rst third, middle third, and last third

of the past 2n +5 iterates. As in stepsize control, this method is cumbersome and

undesirable for large n, but worked reliably in our experiments.
Once the minimum has been bracketed, it may be rened using successive

quadratic or linear interpolation, etc. Standard techniques may be used, but linear

combinations of previous approximate singular points y are taken to produce new

y = y(s'); in this process, each new y is corrected via formula (4) in order to lie on

an are H (y (s)) = 0, until the condition of H’ renders this inadvisable. In our experi-

ments, relatively exact H
'

obtained from nite differences were used during such a

“line search" (over arclength).
In our experiments, the smallest singular value 0,, (s) typically had an absolute-

value-type singularity in its derivative at points i where 0,,(E) = 0. Since we imple—
’mented a hybrid quadratic interpolation, linear interpolation line search, renement

of the point y typically consisted of successive linear interpolation.
Occasionally, minima of Iq(3)] not corresponding to q(s) = 0 are computed. This

must occur since we do not assume q(s) changes sign at singular points 7 =y(§).
These may be eliminated in the stepsize control (setting of 6k), in the line search, or

after each y is located. In our experiments, we chose the conservative method of

analyzing the null space of each H ’(y) once 37has been rened.

It is desirable to compute the singular points y accurately. This is because minima

of "H" over a low—dimensional manifold are computed to obtain tangent directions
leading from y, and distinct minima are relatively close together when )7 1s given

inaccurately. (See the discussion in the next section and Fig. 1.) Thus, the tolerance

in the line search is set according to the accuracy to which q(s) is being computed.

4. Determining arc directions at a bifurcation point. The ansatz and basic struc-

ture of the algorithm employed appear in the introduction and in [11, §4]. Here, we

give a summary, more details, and improvements.
We assume that the component arcs y(s)CH'1(9) are smooth functions of

arclength s; then any such arcs passing through a bifurcation pgint)7 masthave
tangent vectors at y

= 37 in the null space of H '(y). Suppose {v ,
- - -

, v } is an

orthonormal basis for this null space, and let H be the aine space given by H=

{)7+27=1aiv(’)la,-e R}. Let .91 :11 be a small region containing 57 in its interior, and

let {m‘1),mm, - - -

, m’“’}be the locations of the minima of Then‘)direction
vectors for arcs intersecting at )7 are given by a subset of {(m

'

—y)/I|m —)7||l1§
i éq}.

To proceed, three tasks must be undertaken: (i) determinatidn of an orthonormal

basis for the null space of H ’(y); (ii) choice of a size and shape for the region 92;

and (iii) choice of and execution of a method for nding the minima m") of

In the experiments reported here, we form a basis for the null space of H '(y)
from the right singular vectors of H '(y) corresponding to singular values equal to

zero. Less general techniques and exploitation of special structure in H’ can improve
the efciency of this computation.

_

The region 9? was chosen here to be a k-ball S, of radius 6-centered at y, so

that 3% is without boundary and an unconstrained minimizer can be used. We

parametrize 655 in terms of the standard spherical angular coordinates:

{(4H, ' ' ' y¢k—2,C/1)l"1T/2§¢1§7T/2, léiék—Z and —7r§¢§1r}. The region
[—1r/2,1r/2]"'2X[—1r,1r] was divided into (2p)"“1subregions, dened by dividing
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each of the spherical coordinate intervals into 2p subintervals. The unconstrained
minimizer was then applied (21))"‘1times, with starts in each subregion.

.

.

Choice of the radius 8 requires some thought for numerically difcult problems.
If yl’)= )7 is a bifurcation point, then approximations 2-0”) to the next iterate y”“’
will be given by:

.

1 .

zu+ )
=ma)=y(n+(mm_ym)

for some i, léi éq. Thus, it is important that H ’(mm) be of rank n to within the

computational precision of H’. Dene:

Jil- ={y 6 IR" ><[0, 1]|0;(y)=0}
for 1 éf g n, where a,(y) is the jth singular value of H ’(y). Then, under appropriate
regularity conditions, «it, is a nite collection of codimension-l manifolds in IR” x [0, 1],
and 9 salt}, n —k +15 j g n. Also, if there are q’ arcs in H "(0) intersecting at )7,
dene Mr, léj'éq’, to be the projection of the jth such are onto the affine space H

corresponding to the null space of H ’(i). Then H ’(m“’) can be made nonsingular
by increasing 6 provided the 521,:and the «It, intersect sufciently transversally at y.

In our experiments, the following test Was used to decide nonsingularity of H '.
Suppose the machine can represent m decimal digits, and suppose H is computed by
differences with relative stepsize equal to 10“, so that H is accurate to approximately
m —s digits. Then, if H

'
is computed with forward differences with optimal stepsize,

H’ will be accurate to approximately (m —s)/2 decimal digits. Let 3 be the number
of decimal digits accuracy in a-,., where a, is the fth singular value of H’, 1; 1'En.

then, since IIH'II;= 0-1, we have

Be (m -s)/2~logm (cl/a.) = (m 4's)/2—L——I,
where L =logioa'1 and I: —logio (7,. (cf. e.g. [22, p. 321]). Since H ’_is singular when
a,l = 0, H’ will be singular to within the computational precision whenever I 2 . Thus,

'

H’ is considered singular whenever:

(5) I:(m—s)/4—L/2.
As an additional considerationin choosing6 large, all arcs emanating from y

can be detected only when )7 is in the interior of SS; this will not be the case if 37is

given only approximately and 8 is too small; numerically, )7 relatively near as, will
make distinct arcs more difcult to detect (see Fig. 1).

FIG. 1. Mnima of llHlHaS,are easier to distinguish when the center of S; is near the bifurcation point.
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On the other hand, if 6 is chosen too large, the arcs intersecting at y do not lie

approximately in II. This can cause the surface of "H" to be “atter” near the m“)
and can also cause corrector iterations starting with mm to fail. In view of this, the

smallest 8 consistent with easy detection of the m
m

and with H '(m m)being nonsingular
should be used.

In our experiments, we initially set 8 equal to the maximum of the minimum

allowable predictor stepsize and x/n +1 times 5,, where 6f is the relative accuracy to

which )7 has been located. As the m“) were computed, inequality (5) was checked;
if (5) was false for any i, 6 was replaced by the minimum of M6 and the maximum

allowable predictor stepsize. After increasing 6, the minimization process was restarted

with i = 1. We mention that (5) and_this process are very conservative, and improve-
ments in efciency are possible.

We have found the simplex method of Nelder and Mead [18] suitable for direct

location of the m"). A descent method similar to the method of steepest descent, the

simplex method of Nelder and Mead begins with a starting simplex; this simplex is

then changed one vertex at a time by “reection”, “expansion”, and “contraction”.

The iteration ceases when the diameter of the resulting simplex has become smaller

than some tolerance 64.

The values of the minimization search accuracy 34 which are reasonable to demand

depend upon which 6 is selected, and both 6,; and 5 depend on the machine accuracy

5... and the order of accuracy in the values of H. It can be shown that a tolerance of

Ed in the (k —1)-dimensional parameter space corresponds roughly to a distance of

Vk —— 17765,, in W”. Since the relative accuracy of coordinates of mme W“ cannot

exceed the machine epsilon cm, it is prudent to have:

“lm
6 8 >—-——.( ) d

~/k -171'5

In practice, 54 is chosen somewhat larger than the right-hand side of (6), since the

computational precision is somewhat larger than em and also since the minimization

is less costly with larger stopping tolerances In particular, em in (6) may be replaced

by a fraction of the arc-followingtolerance. In the tests, 64 was automatically doubled

every time a location m“) was found such that the scaled magnitude of IIH(m“))||was

less than .1 times the corresponding tolerance in the arc-following method, and was

decreased proportionally whenever 6 was increased.

5. Numerical experiments. Here, we present results from several test examples;
our goal is to demonstrate feasibility of the techniques as alternative approaches, to

give an idea of their versatility, to describe the algorithms’ behavior and to point out

possible diiculties. ,

Five examples were treated. All involve special H of the form

(7) He. A>=Ag(x)+(1—A)g‘°’(x),
where g :IR" —> IR" and gm): IR"—> R". The continuation method was begun at (0, 0), and

continuation along each individual arc was halted when either the A = 1 hyperplane
or A = 0 hyperplane was reencountered. The goal of the algorithms was to detect all.

bifurcation points and follow all arcs.

In the rst four examples,

(8) ,

g(x)=Ax -f(x),

where A is the matrix correspondingto discretization of the boundary value problem

(9) —u”=0;u(0)=u(1)=0,

(6‘
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with central dierences and n internal meshpoints, and the ith component of f is
given by

fi(x)=x?.
Examples 1, 2 and 3 correspond to g(x) as in (8), with gm)dened by: g)°)(x)= ~x‘
andwith n = 2, 4 and 7, respectively. In Example 4, we took n = 3 and we took g as,
in (8), but with g(°)(x)=-—Ax. In the nal example, we took n =1 we took gm)tobe the identity function, and we took the components of g to be

’

310:) = 21:10:?+x§)~ n, gz(x) =Xz(xi +x§)- .5x2.
(A variant of this appears in [23] in an example of a multiple bifurcation point.)

.

For therstthree examples, it has been shown in [10] that there are exactly n
primary bifurcation points, occurring at

(10)
I Alf:1—mi/(1+mi)r i=1,2,"'yn- ‘\

Here, m! is the ith eigenvalue of the matrix A and is given by \
(11) m.- = 2(n + 1)2[1+cos (in/(n +1))]

-

x

.(cf.[9]). In these examples, the primary bifurcation points are all simple, and the arcs

intersecttransversally. Furthermore, it can be shown that a-,.(s) is exactly linear
immediately to the left and immediatelyto the right of each primary bifurcation pointwhere s is arclength. Thus, the successive linear interpolation scheme (cf. §3) £01:renementof )7 will give, in theory, exact bifurcation points )7, without necessity ofline searches. However, the primary bifurcation points are spaced unevenly and are
very close together for n large (cf. formulas (10) and (11)). Thus, the stepsize coiitrol
scheme near bifurcation points is tested. 3/

9’
Example no . I ‘

y‘

I
“if

E

I A”?!
s 42".

’

,I'
,1

I i’
f; i
b
d

k

a

2 4 6 8

norm

FIG. 2. Example 1.
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In the fourth example, a single multiple bifurcatiOn point occurs at A =%(cf. [10]),
where H’ equals the zero matrix, and four arcs intersect. Thus, it poses a test for the

direction-nding algorithm in §4.
'

In the fth example, the unique primary bifurcation point for A e [0, 1] occurs at
= There, H

'
is the zero matrix and three arcs intersect.

The actual computations for Example 1 were straightforward, with no encountered
diiculties. The norm and rst coordinate of actual iterates are plotted with respect
to A in Figs. 2 and 3, respectively. Note that the step size on the arcs intersecting at

A2 becomes small; this is because «7,,(s) is decreasing and H’ is singular on these arcs

at A = 1. ‘

Example no. 1

00.0’30—Q 01

x( I )

FIG. 3. Example 1.

The algorithms also performed satisfactorily for Example 2. However, secondary
bifurcations occurred on the arcs intersecting at A2. Also, minima of 0,. (s) not corre-

sponding to bifurcation points were detected on the arcs intersecting at A3. See Figs.
4, 5 and 6 for graphs of the iterates.

Example 3 was straightforward, but the algorithms performed a sizable amount

of computation. Numerous minima of 0-,. not corresponding to bifurcation points were

found.

The fourth example was by far the most difcult. The matrix H
'

was nearly
singular in a large region, so proper automatic selection of the radius 8 for S, was

important. The hypersurface IIHIKy)seemed, in addition, to have numerous “wrinkles”
,

near the bifurcation point; though actual tangent directions were computed accurately,
the minimization gave numerous m

m
not corresponding to arcs IIHII= 9. These

“imposters” were promptly detected when corrector iteration in the arc—following
method failed, but a ne grid (i.e. p large and a large number of starts in the
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Exampl. no. 2

‘
.

norm

FIG. 4. Example 2.

Examplo no. 2

xCZ)

FIG. 5. Example 2.
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Examplo no. 2

x(I)

FIG. 6. Example 2.

Exampl. no. 4

4 8

norm

FIG. 7. Example 4.
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‘Examplo no. 4

010'!!!—

x(i)

FIG. 8. Example 4.

minimization process) was required. With p = 3 (216 minimizations in 3—space), all 7

arcs proceeding away from the bifurcation point were found, but 14 false directions

were also given; Plots are given in Figs. 7, 8 and 9.

The fth example was perhaps the most straightforward. Here, there is no change
in sign of the determinant of H, at the bifurcation point on the trivial branch, since

both eigenvalues pass from positive to negative; thus, the special capabilities of the

stepsize control and bifurcation point renement algorithms mentioned in §3 are

demonstrated (Figs. 10, 11).
As was indicated, the examples reveal behavior of the following facets of the

algorithms: (i) the efciency and reliability of deceleration and the “line search” when

the arc-following method approaches and renes the bifurcation point; (ii) the

efciency and reliability with which directions for arcs intersecting at bifurcation points
are computed, (iii) eiciency and reliability of the acceleration/deceleration scheme

between and past bifurcation points. Performance data with regard to these qualities
is given for Examples 1 through 5 in Tables 1 through 5, respectively.

The rst part of each table deals with quality (iii): In the rst column, the

coordinates of the intersection of the arc in question with the A = 1 hyperplane are

given, while the coordinates of the last bifurcation point on this are are given in the

second column (BP). The total number of function evaluations required to follow the

are between these two points is given in the third column (FE). We note that this

phase of the algorithms is extremely reliable; the discussion in [11] is for the most

part valid, although the steps are increased somewhat more slowly here to assure that

bifurcation points are not missed.

00.0'30—

DQJTBO—

1.2

0.8

0.6

8.4

0,2
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Example no. 4

xCZ)

FIG. 9. Example 4.

Examplo no. 5

0.l 8.3 0.5 3.7

8 0.2 0.4 8.6 0.8

norm

FIG. 10. Example 5.
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Examp l o no . 5 TABLE 1(a)

’ ' '
it: root 8? FE

‘ 1 (0,0,1) (0, 0, .1) 158

2 (3, 3, 1) ,, 556*
a . 9 3 (e3, —3. 1) .. 556*

4 (—5.2, 5.2, 1) (0,0, .0357) 385
a. s 5 (5.2, —5.2, 1) .. 377

9- 7 * H' was singular at A = 1 on these arcs.

I a . 6
a

"‘
TABLE 1(b)

3 B S

a

a 4
at BP PBP FEP PITL FEB

1 (0, 0, .0357) (0,0, 0) 340 219 675a ‘ 3
2 (0, 0, .1) (o, 0, .0357) 315 180 180

Total number of function evaluations, 4033. Total number of predictor steps, 1144.

Number of function evaluations per are, 806.

a
—e.s —o.3 —a.l 0.1 0.3 0.5 TABLEZW

-B.6 ‘0.4 -B.Z B 8.2 0.4 8.6

x<1 ) is root 8? FE

FIG. 11. Example 5. 1 (0, 0, 0, O, 1) (0, 0, 0, 0, .0948) 223

2 (1.83, 3.41, 3.41, 1.83, 1) n
581

3 (-1.83, —3.41,—3.41,—1.83, 1) .. 588

4 (—6.41, —2.3, 2.3, 6.41, 1) (0, 0, 0, 0, .0281) 1706:The second part of each table deals with qualities (i) and (ii). The rst and second 5

(6-417'27-33'4’3-gh’6g‘1511)(_4 83 3 62 3 £2 _4 83 0216) 1:2?columns (labeled BP and PBP, respectively) list the coordinates of the located bifurca- g ((18:55,1;5E .67 '23,1)
. ’ I ’ . ’ . P

475tion pointand the coordinates of the previous bifurcation point (or origin), respectively. 8 (4:23:5'7,[11.56:4‘65:1) n
503

The third and fourth columns (FEP and PITL) give the total number of function 9 (3.47, —7.34, —7.34, 8.47, 1) (4.83, —3.62, —3.62, 4.83, .0216) 408

evaluations required to obtain the bifurcation point from the previous one and the 10 (7.23. —.67. -8.56. 8-65. 1) n :32corresponding number of prediétor steps, respectively. The nal column (FEB) gives 11 (2655—98575‘9-6877'78383511)) (0 0 o '6 0109) 745the number of function evaluations required by the minimization process to locate gs},_’_9'87'9 8'7:8:83'1)
’ '

’n“ 738
the m"). Finally, the total number of function evaluations for the entire example, the
total number of arcs intersecting at A = 1 and the average number of function evalu—
ations per are are listed.

In all cases, the arc—following tolerance (a, in [11, Algorithm 2.1]) was set to

“‘ Local minima of 0-,. not corresponding to a singular H’ were located on these arcs.

10"”, and 6",“ was set equal to 1. In Examples 1, 2 and 3, p = 6 (cf. § 4) was adequate; TABLE 21b)

p =3 was adequate in Examples 4 and 5. The initial redictor step size (60 in [11,
Algorithm 2.1]) at (6, 0) was in all cases set to the minimum8min. In Examples 1, 2,

1' BP PEP FE? Pm FEB

4 and 5, 8mm was set to 10-5; in example 6, 8...,“ was set to 10". (The minimum a

I 1 (0,0,0,o,,o109) (0, 0, 0, 0, 0) 500 303 724

stepsize 8",,“ was judged small enough if it was less than the minimum distance between 3 2 (o, 0, 0, o, .0150) (0, 0, 0, 0, .0109) 265 112 701

bifurcation points divided by 10(2n +3).) The tolerance 54 in the simplex method of
'

3 (0. 0,0, 0, .0281) (0. 0. 0.0. 11150) 373 253

24:Nelder and, Mead was set to max (Hill,Day/(108) where 8 is the radius of the ball ‘5‘ 4 83 (30%;):2:601»134:;0216) Egggrgvg); 111;: is: 1136*.S" An other tolerances were set as in [111'
6 £4.85,:3i61:—.3.6,1,4:83::0216)

' '

1165 19s 1192*
The Fortran programs were run on a Honeywell Multics 68/80 system. The

, ,

'

Fortran programs are in experimental form, and there were some unnecessary redun- j,1" Total number of function evaluations, 18,188. Total number of predictor iterations, 3341. Numbeu

dant function evaluations, included for convenience in I/O, etc. Thus, the values in 1,; function evaluations Per am- 1399.

Tables 1 through 5 should be considered somewhat large. .
* These are secondary bifurcation Points
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TABLE 3(a)
—-—_—_______________________

it root 8? FE

1 (0, o, o, 0, o, o, 0, 1) o, 0, o, 0,
2 (-1.19, ~2.34, —3.3. —3.7, —3.3, —2.34, —1.19, 1)

(

0,20,
0’ .0931) 33:

3 (1.19, 2.34, 3.3, 3.7, 3.3, 2.34, 1.19, 1) ,, 830
4 (—4.26, —7.31, —4.26, 0, 4.26, 7.31, 4.26, 1) (0, 0, 0, 0, 0, 0, o, .0260) 1037
5 (4.26, 7.31, 4.26, 0, —4.26, —7.31, —4.26, 1) ,, 1043
6 (—10.1, —4.2, 2.82, 9.49, 2.32, —4.2, —10.1, 1) (0, 0, 0, 0, 0, 0, 0, .0125) 2989*
7 (10.1, 4.2, -—2.82. -9.49, —-2.82,4.2, 10.1, 1) ,, 2946*
8 (11.3, o, —11.3, 0, —11.3, 0, 11.3.1) (0, 0, 0, 0, 0, 0, 0, .00775) 2265*
9 (—11.3, 0, 11.3, 0, —11.3, o, 11.3, 0) ,, 1367*

10 (—13.8, 13.7, .0977, -11.8, .0977, 13.7, —13.3, 1) (o, 0, 0, 0, 0, o, 0, .00562) 29691
11 (13.8,13.7,—.0977, 11.3, —.0977, —13.7, 13.8,1) ,, 29471
12 (—14.1,15.6,—14.1,o, 14.1, 15.6, —14.1, 1) (0, 0, 0, 0, o, 0, 0, 00456) 45771
13 (14.1, —15.6, 14.1, o, —14.1, 15.6, ~14.1, 1) ,, 45771
14 (14.1, —15.8, 15.9, —16, 15.9, —15.8, 14.1, 1) (o, 0, 0, 0, 0, 0, 0, .00404) 20061
15 (—14, 15.3, —15.9, 16, —15.9, 15.8, ~14.1, 1) ,, 19861

—————-———-——_______—___—__
"‘ Local minima not corresponding to singular H’ were found on these arcs. »

. “Dueto a too-large tolerance, local minima not corresponding to a singular H
'

were identied as

bifurcation pomts on these arcs; the minimization process correctly gave only one direction.

TABLE 3(b)
—————___—__________~_

4% BP PBP FEP PITL FEB

1 (0, 0, 0, 0, 0, 0, 0, .00404) (0, 0, 0, 0, 0, 0, 0, 0) 878 531 643
2 (0, 0, 0, 0, 0, 0, 0, .00455) (0, 0, 0, 0, 0, 0, 0, .00404) 450 197 617
3 (O, 0, 0, 0, 0, 0, 0, .00561) (0, O, 0, 0, 0, 0, 0, .00455) 567 278 605
4 (0, 0, 0, 0, 0, 0, 0, .00775) (0, 0, 0, 0, 0, 0, 0, .00561) 611 250 632
5 (O, 0, 0, 0, 0, 0, 0, .0125) (0, 0, 0, 0, 0, 0, 0, .00775) 681 336 649
6 (0, 0, 0, 0, 0, 0, 0, .0260) (0, 0, 0, 0, 0, 0, 0, .0125) 704 365 701
7 (0, 0, 0, 0, 0, 0, 0, .0931)

’

(0, 0, 0, 0, 0, 0, O, .0260) 768 419 721

Total number of function evaluations 40,467. Total number of predictor steps 8,358. Number of
function evaluations per arc: 809.

TABLE 4(a)
______________________

=0 root BP FE -

1 (o, 0, 0, 1) (0. 0. 0, .5) 16
2 (7.05, —7.8, 7.05, 1) .. 161
3 (2.13,3.66,2.13, 1) ,. 156
4 (—7.05, 7.8, 2.13, 1) .. 161
5 (5.66, o, —5.66, 1) ,. 160
6 (—5.66, o, 5.66, 1) .. 157
7 (—2.13, —3,66, —2.13, 1) .. 132

——-—-——————_____—____—___—
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TABLE 40:)

# BP PBP FEP PITL FEB

1 (0, 0, 0, .5) (0, 0,0, 0) 662 437 235, 732

Total number of functiOn evaluations, 240,624. (Some function evaluations

occurred while rejecting false directions at the bifurcation point.) Total number of

predictor iterations, 1194. Number of function evaluations per branch, 34,374.

TABLE 5(a)

4: root BP FE

1 (0, 0, 1) (0, 0, .667) S7

2 (0, .707, 1) ,,
205

3 (.5, 0, 1)
~

,,
193

4 (0, —.707, 1) ,.
204

5 (—.5, 0, 1) ,, 185

TABLE 5(b)
______________________.____..____

4% BP PBP FEP PITL FEB

1 (0, 0, .667) (0, 0, 0) 468 315 54, 492

Total number of function evaluations, 55,804. Total number of predictor steps,

535. Number of function evaluations per arc, 11,160.

6. Summary, conclusions and possible improvements. We have explained various

techniques for locating general bifurcation points and for following all arcs intersecting
at such bifurcation points. These techniques were tried on ve test examples.

The test results indicate the acceleration/ deceleration scheme (§ 3) reliably nds

bifurcation points, regardless of whether there is a change in the determinant of H,,

yet does not force excessive computation to be done where it is unnecessary. The

efciency can undoubtedly be further improved with a better choice of multiplication

parameters for increasing and decreasing 8, etc.

The direction-nding algorithm (explained in § 4) seemed to work well on simple
bifurcation points (where only two arcs intersect), but comparison with other methods

would be desirable. Larger numbers of function evaluations were required when the

dimension of the null space of H '(y) was greater than 2, but arc directions were

given very accurately, and restarting the arc following method caused no problems.

Perhaps the technique of adjusting the radius of S5 will allow computation of arc

directions when the arcs intersect tangentially; this needs more investigation.
The excessive numbers of function evaluations in nding the m“) when the

dimension of the null space of H
'

is greater than 2 are due partially to the small

tolerance 5.; used in the minimization routine; additional experiments are necessary

to determine the effects of choosing 84 larger. Perhaps a better way of nding all

minima of a function of a small number of variables could be implemented.
There was an intrinsic difficulty in Example 4: numerous minima of ||H|I not

corresponding to arcs occurred on ass. This phenomenon needs further study.
As presented above, each predictor—corrector step of the arc-following method

will run in o (n 3)algebraic operations; this is because solution of the system in formula
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(4) and a singular value decomposition.are both required. Appropriate use of matrix
factorization and updating techniques will allow solution of the system in o(n2)
operations [24]. Also, it may be possible to nd minima of determinants related to
this factorization in place of nding minima of a-,,, so that only o(n2) operations are

required overall in a predictor-corrector step. The special structure of the problem
can also be used to give more accurate H’ without additional computations [24]. This
will be reported on in the future.

Finally, we emphasize that the examples in §5 were meant merely as tests of the

techniques; not much can be said about the underlying differential equation when

using a discretization with n = 7.
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AN EXACT PENALTY METHOD FOR CONSTRAINED, DISCRETE,
LINEAR la) DATA FITTING“

BARRY 1013‘? AND RICHARD BARTELST

Abstract. This paper presents an algorithm for solving linearly constrained, discrete, linear 1...,approx

mation problems which makes use of a penalty linear programming approach. An Implementationfor sun:

dense problems has been prepared and tested against two other codes, one published and the other in

Results of this testing are given. The paper is concluded with a short summary.

Key words. l—innity,Chebyshev, data tting, regression, exact penalty method, optimization,'linc

programming, constraints.

1. Introduction and formulation. We wish to solve the following problem:
Given a vector c =[c1, c2,

- - -

, c,,]r, an m Xn matrix A, an m Xp matrix B, a

m Xq matrix G, a p—vector f and a q-vector h,

minimize "C— A Ty“an

(1.1) subject to ETy =f

and G Ty; h,

where y
= [y1, y2,

- - -

, ym]Tis a vector of unknown parameters. We will not be assumir.

anything about the nonnegative integers n, m, p or q.
'

It is assumed that all vectors and matrices are real. None of the matrices A, 1

or G are required to be of full rank—indeed, E and/or G may be vacuous—nor

it assumed that vectors y satisfying the constraints actually exist, so the problem :

posed is completely general.
.

Problem (1.1) can be formulated as the linear programming problem:

. . .

T[Y0]minimize e1
y

e AT c

e —AT —c

(1.2) subject to 0 ET [W]a f
0 _ET y

_f
0 GT h

and yogo,
. . T . .

where yo is a variable representing llc—ATyllm,ex is the vector [1, 0] of dimensrc

m +1, i.e. the rst unit vector, and e is the n-vector containing a 1 in all component
Problem (1.2) can be converted to its dual linear programming form:

t

u

D

11.3) maximize [CT —cT fT —fT hT 0 0T] w

2

So

s
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