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for a Generalized Method of Bisection

Baker Kearfott

Department of Mathematics, University of Southwestern

Louisiana, Lafayette, Louisiana 70504, USA

Summary. Let P be an n-dimensional polyhedron and let b(P)

: 2 (X4, ...,X> be the oriented boundary of P in terms of the oriented
(1* 1

(n— l)—simplexes Sq=Sq=Sq= Sq=...,Xg>, q: l, ...,m. Let F=(f1, ...,f,): P —>R", and

assume F(X)==6 for Xeb(P). For each eb(P) define a matrix

%(Sq,F) by setting the entry in the i-th row, j-th column of 92(Sq,F) equal to

1 if sgn(f}(X§))==land 0 if sgn(J[_i(X?))=—1, where sgn(y)=1 if ygo, and

sgn(y)= Ml otherwise. To each such matrix %(Sq,F) assign a number

Par(.92(Sq,F))in the following way: Set Par(9?(Sq,F)): +1 if the entries on

and below the main diagonal of 931511,F) are 1 and the entries one row above

the main diagonal are 0. Also set Par(%(Sq,F))=1 if .9?(Sq,F)can be put into

this form by an even permutation of its rows, and set Par(%(Sq,F))= —1 if

@(Sq,F) can be put into form by an odd permutation of rows. Set

Par(.%’(Sq,F))=0for all other matrices 9?(Sq,F). Then, under rather general
hypotheses and assuming diameter of each Sqeb(P) is small. the topological
degree of F at 6 relative to P is given by:

d(F, P, a): Par((Sq,F)).

The assumptions are identical to those used by Stenger (Numer. Math.

25, 23—28).
Use of the characterization is illustrated, an algorithm for automatic

computation is presented, and an application of this algorithm to finding
roots of F(X)=0 is explained. The degree computation algorithm requires
storage of a number of (n — l)~simplexes proportional to log n, and sgn(fj(S‘§))
is evaluated once at most for each i,j, and q.

Subject Classifications. AMS(MOS): 65H 10; CR: 5.15.

0029—599X/79/0032/0109/$03.80



110 B. Kearfott

1. Introduction

Suppose that F: —>R” is a differentiable function mapping some bounded

domain .9 CR" into R”, and suppose that Flb(9) does not vanish, where HQ) is

the boundary of Q. Suppose further that if X69 is such that F(X)=0 then

J(F)(X), the Jacobian of F at X, is non-zero. Then the degree of F at (9 relative

to £2, written d(F,6), can be defined to be the number of points X 69/ with

F(X)=6 and J(F)(X)>0 minus the number of X69 with F(X):6 and

J (F )(X) <0.

The above definition can be generalized when F is merely continuous ([4,
11]). Furthermore, when d(F, 9) is thus defined for continuous F, Kronecker’s

theorem ([1, 4] p. 25, [11] p. 161) states that F has a root in 9 if d(F,Q,0)==0.
Moreover, if 9 =91 U 92 where 91 and 92 have disjoint interiors and F(X) :20

for all Xeb(.@1)ub(92), then the degree is additive, i.e.:

d(F,§i,0):d(F,91,0)+d(F792,0)-

Kronecker’s theorem and the additivity of the topological degree form corner-

stones of a generalized method of bisection based on computation of d(F,@, 6).
To date, several characterizations of (1(F, Q, 9) have been expounded and

implemented in machine computations. Perhaps the oldest of these is the

Kronecker integral ([1] p. 465, [7]). This integral has been evaluated with

Gauss-Legendre quadrature ([10]).
A characterization involving calculation of determinants with entries i1 has

also been proposed for computation of d(F,.@,0) ([13]). This characterization

has the advantage of requiring the components of F to be evaluated to sufficient

accuracy only to determine their algebraic sign.
In Sect. 3 of this paper, a third characterization of d(F, 0) will be presented

and proven. This characterization also only requires the algebraic signs of the

components of F to be evaluated. but it does not involve computation of

determinants. The number of functional evaluations required for a given F and

is the same or less than that required for the determinant characterization.

In Sect. 4 of this paper, an algorithm to implement the new characterization

is given. It seems to compare favorably with previously existing means of

computing d(F, 0).
In Sect. 5, the algorithm for computing d(F,Q, 6))is applied in a generalized

method of bisection. This method of bisection does not require redundant

calculation of F (X) and only 1/(n+ 1) times the number of operations involved

in initial computation of d(F,Q,0) are usually needed per iteration of the

bisection algorithm.
In Sect. 6, results of some preliminary degree-computation tests are given. In

the last section, the scope and applicability of the method is discussed.

It is mentioned that objects considered in the characterization of d(F,£Z,6)
happen to be Sperner simplexes for a labeling function determined by 11—1 of

the components of F (see [2, 3, 8] for an explanation of the labeling function).
This relationship is discussed in [9].
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2. Notation, Assumptions, and a Preliminary Lemma

Throughout, S will denote an oriented n-simplex in R", i.e. S will be the oriented

closed convex hull of n +1 linearly independent points in R" (see [4, 6], etc). The

equation:

S=S=

will read: S is the oriented n-simplex whose set of vertices is {X 0, .‘.,X n} and

whose orientation is given by the order in which the vertices occur ([1, 4, 6],
etc.). If X0, ...,Xm are m+1 linearly independent points in R" where mgn, then

we will speak of the oriented m-simplex (X1, ...,Xm> to refer to the oriented

Closed convex hull of {X1,...,Xm} in R".

IfS:IfS:IfS: IfS:...,Xn> is an oriented n-simplex then the algebraic boundary ofS

will be given by:

b(S):‘7ZO(—1)ib(S):‘7ZO(—1)i
where (X0, ...,Xi, ...,Xn> is the oriented (n—1)-simplex in R" formed by
deleting X i from the list of vertices for S and 2 has the usual meaning (ibid).
The simplex Ti=Ti=Ti= Ti=...,Xi, ...,Xn> will be called the i—th facet of S.

4

If P: U Si where each Si is an n-simplex and the Si have pairwise-disjoint
1'71

interiors, then we refer to P as an n-polygon. We write:

‘1

P=Zs
i=1

and:

2705:2196.»
The results in this paper are stated for polygons or for simplexes. However,

d(F,@, 6) can be calculated for general regions 9 by either approximating 9 by
a polygon or mapping a polygon onto 32.

The characterization of d(F,P,6) proven in this paper depends upon b(P)
being written as a sum of (n—1)-simplexes, all of whose diameters are small.

This property of b(P) is clarified in the following two definitions, which are

slight modifications of those in [13].

Definition. Suppose P = [61,b] C R and f: P —> R is continuous. Then b(P) = b — a is

suiciently refined relative to sgn(f) if and only if f(b):=0 and f(a)== 0.

Definition. Suppose P is an n-polygon and F=(f1, ...,fn): P —>R". Then we say

b(P) is sufficiently refined relative to sgn(F) if and only if b(P) is written as the

union of a finite number of (n—1)-polygons l ...,’;_1 which have the

following three properties:
n~17
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(a) The interiors of the [32,1 are disjoint and each 13;-1 is connected.

(b) At least one of the components of F does not vanish on g, 1 for each r

between 1 and k.

(c) If fir=4=0on 52,1, then ,8;_1 is sufficiently refined relative to sgn(Fiy),
where

Pi,=(f19"'ifi,—17fir+1="-7.1:1)’
It is not difficult to show that the above definition can replace Definition 4.4

in [13] without altering the truth of any theorems ([14]).
A recursion formula can now be stated. This formula relates d (F , P, 6), where

P is an n-polygon and F: P —>R", to degrees of a truncated mapping F defined

on (n— l)-polygons obtained from P.

Lemma. (The Recursion Formula.) Suppose P is an n-polygon, suppose F

=(f1, ...,fn): P —>R" is continuous, and suppose b(P) is sufficiently refined

relative to sgn(F). Let [3,11, ..., L1 be as in the definition of sufficient refine-

ment, and let J be the set of indices such that ieJ if and only if f1 >0 on Bibi.
Then the following formula holds:

d(FaP7 Zd(Fl7;—139)s
iEJ

where F1=(f2, ....fn): b(P) —>R"_1.
A general version of the above lemma appears as Formula (415) in [13]. See

also [9] for a proof.

3. A Useful Characterization of d(F,P, 6)

The following concepts will be used to state the main characterization

Definition. Let S=S= be an (n— l)-simplex in R" and let F=(f1, ...,fn):
S —>R". Then the range simplex associated with S and F, denoted @(S. F), is the n

>>> >matrix whose entry in the j—th column and i-th row is 1 if f}(Xi)>0 and

whose entry in the j—th column and i-th row is 0 iffj(Xi)<0.

Definition. Suppose S. F, and 9?(S, F) are as in the preceding definition. Then

99(8, F) is termed useable if one of the following two conditions holds:

(a) The entries of 939(8,F) on and below the main diagonal are 17 and the

entries in each column of 92(8, F) in the row immediately above the diagonal
entry are all 0.

(b) .%(S, F) can be put in to the form indicated in (a) by a permutation of its

rows.

Definition. If 9?(S,F) is useable, then Par(%(S.F)) is defined to be 1 if the

permutation required to put @(S. F) into the form (a) of the definition of useable

is even; if that permutation is odd, then Par(i@(S,F)) is defined to be —1. If

92(8, F) is not useable, we set Par(.02(S.F)):0. We refer to Par(92(S,F)) as the

parity of the matrix 92(S, F).
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Fig.1aw (a) (b) (C)

For example, if @(SJ) is as in Fig. 1a then Par(@(S,F))=1, while in Fig. 1b

and Fig. 1c Par(9?(S:F))= —1 and Par(9§(S,F))=0, respectively.

Remark. It is often less cumbersome to formulate the definition of useable

%(S,F) and of Par(9§3(S,F)) in terms of labelings. To the k-th row of 92(8, F) (for
ke{1, ...,n}) we assign a label lke{l, ...,n} by setting lkzl—l if the first 0

(reading from left to right) in that row occurs in the l-th column; if there are no

zeros in the k-th row, we set lkzn. It is then easy to see that 92(5, F) is useable if

and only if {[1, ...,ln} = {1, ...,n}. Furthermore, supposing £6, F) is useable,
then Par(.%(S,F))= 1’iff the permutation required to put these sequencerll,r...,l
in natural order is even and Par(y7£(S,F ))= —1 iff that permutation is odd.

Suppose now that P is an n-polygon and that F: P —>R” is continuous and

does not vanish on b(P). Then one need only examine the useable simplexes
produced from a sufficient refinement of b(P) in order to determine d(F,P,6).
The following theorem (our main characterization) makes this fact explicit:

Theorem (The Parity Theorem). Suppose P is an n-polygon contained in R" for
m

some n22. Suppose further that {Sh-:1 is a finite set of (n—1)-simplexes such

that Z Si=b(P), the members of {SL‘}§":1have disjoint interiors, and the
1'21

simplexes Si make b(P) suffiently refined relative to sgn(F). Then:

d(F,P,6)= Z Par(.@(Si,F)).
i: 1

The Parity Theorem deals with the matrices %(S, F). To enable us to use

induction to prove the Parity Theorem we will define a number associated with

submatrices of such @(S, F): Suppose that the first column of 99(S, F) has only

+1’s in it and set F1=(f2, .t.,fn). Also, consider [9(8): 2 (—1)“1 Tk. where Tk
k=l

==. We see that the range simplexes 92(TR,F1) can be ob-

tained from £6. F) by deleting the first row and k-th column of %(S, F).
However, Tk occurs in the sum for b(S) with an orientation of (—1)k’1. and

changing the orientation of any (n—Z)-simplex T changes the sign of

Par(i%(T, F1)). With this in mind we make the definition:

Definition. The net sum 0(8) of the parities of the range simplexes associated with

simplexes from b(S) and F1 is given by:

0(8): :1(—1)“1 Par(92(Tk,F1)).
k 1

71,,
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For example, if:

@(S): Ht—xH
1 1

O 1

1 0

then the net sum is:

a(S)=(—1)11Par<(1)(1))+(—1)21Par(1(1)>+(—1)31Par<$
=0+(—1)(—1)+0=1.

Dealing with the above notions, the following lemma will be used to prove
the Parity Theorem.

Lemma. Suppose S, F, .%(S,F), 0(8), and n are as in the preceeding definitions,
and n; 3. If the entries in the second column of @(S, F) are all 1, then o(S)=0.

Proof. We will think of Par(9?(S,F)) in terms of the labels 11,...,ln assigned to

the rows of @(S, F). In order for 0(8) to be non—zero, Par(,¢2(Tk,Fl))==0 for some

k. But this can happen if and only if {2, ...,n} E {11,..., In},from the definition of

Par(9§3(Tk,E)), so assume {2, ...,n} C{ll, ...,ln}. But 1¢{l1, ...,ln} by the assump—
tion on the second row of 92(8, F). Hence there are a k and m such that lkzlm,
and such that all of the other lj’sare distinct. From this we deduce:

o(S)=(—1)k’ 1

Par(9€(Tk,F1))+(— 1)’"’ 1 Par(9’i’(Tm,F1)).

It will now be shown that (—1)“ 1

Par(9§f(Tk,Fl))+(—-1V”1 Par(92(Tm,F1))=0.
Consider these two possibilities for k and m:

(a) k and m are both odd or both even.

(b) k and m have opposite parities.

If case (a) occurs, then (—1)".1 =(—1)’"’1. Suppose without loss of generality
that kkk kSince lk=lm, however, we can get the sequence ll, ..., 1k, . l

"7 mil!

1m“, ..., In from the sequence 1,, ..., lk_1, lk+1,. l Inby the (k—m)-cycle:"7 m7

(lkH, 1H2, ..., lm_1, I”). If (k—m) is even then the parity of that permutation is

odd, and Par(%(Tk, 171)): — Par(H7£(Tm,F1)). Hence, when k and m have the same

parity we have:

0(S)=(—1)k_1{Par(%(Tk3E))+Par(9?(Tm,F1))}=0.

If we follow the same argument when k and m have opposite parities we get:

(7(S)={(—1)k_1+(—1)’”’1}Par(.99(T ,F1))=0.

Thus the lemma is proven

Proof of the Parity Theorem. The proof will proceed by induction on n. First,
assume that P is a 2-polygon, that F=(f1,f2): P —>R2 is continuous, and that

{53,11 is a set of 1-simplexes whose union is b(P) and such that {83:21 causes
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b(P) to be sufficiently refined relative to Sgn(F). Then the recursion formula in

Sect. 2 holds with n22, so that:

ieJ

where the [3; are as in the definition of sufficient refinement. However, when

n=2 each ,8"1is a sum 2 SN. of Sj,ie{Si}§":1,where Sjii=Sjii= is a line

j: 1

segment and 1gj§m, for some mi. Hence, ([13] p. 24):

dog, t , 0) = [sgn(f2(Bj,m
— sgnsgn)J. (32)

Combining (3.1) and (3.2) now gives:

M, P, e) =

g tsgnrferj, 9) — sgn(f2sgn(f2sgn(f2 sgn(f2(3.3)

7

if m 'be shown that "eat; ’[égiia,5)Lsgmf,(A,m in' (3.3)¢an"t;"e";gaa¢ea‘
'

by Par(9§(Sj’i,F)) without affecting the sum. Hereafter, unless subscripts are

important, S will be written for S
Li.

First it will be shown that without loss of

generality 59/31 for some ieJ if and only if the first column of QMS,F) is (1,1)'.
Clearly, if S631, for some ieJ, then the first column of @(S, F) is (1,1)‘. For the

converse, suppose that the first column of ,%’(S,F) is (1, 1)”.Then by the sufficient

refinement hypothesis f2 >0 or f2 <0 on S, so that

[Sgn(f2(B,-,1-))— Sgn(f2(AJ-,i))]= Par(%(57 F)) = 0-

In this case, S may be included in the sum in the Parity Theorem.

There are four matrices £6, F) whose first column is (1,1)’. These are:

11 10 10 11
(a) (11)’(b)(1o>’(C) (11)’(d)<01>'

These four matrices are checked individually to prove the theorem for n22.

Suppose now that the theorem is true with (n— 1) replacing n, where n>2;
also let P be an n—polygon, let F=(f1, ...,f,,): P —>R" be continuous, and let b(P)

: Z S, be sufficiently refined relative to sgn(F). Then the Recursion Formula
1': 1

holds and:

d(F,P,6)=Zd(F1, 2,1,9) (3.4)
ieJ

where the [92,, are as in the definition of sufficient refinement. But by the

induction hypothesis, the inductive part of the definition of sufficient refinement,
and the definition of 0(5) we have:

d(F1,[3j,_1,6)= Z Par(§t’(T,F1))= 2 0(5) for ieJ. (3.5)
TCMhar) Scljfvl
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Combining (3.4) and (3.5) gives:

d(F,P,9)=Z Z 0(S). (3.6)
iEJ 525%71

It is first verified (infra) that S need be included in the right member of (3.6) if

and only if @(S, F) is useable. Then we apply the fact that, if @(S, F) is useable,
then 0(8): Par(9?(S, F)) (infra). Hence:

2 2 0(8): 2 Par(9?(S,F))='Zm:Par(,~%(Si,F)). (3.7)
ieJ SEl-L—l Suseable

Combining (3.6) and (3.7) gives the result of the theorem.

The following are auxiliary lemmas used in the proof of the Parity Theorem.

Lemma. Suppose b(P) is sufficiently refined relative to Sgn(F), Scb(P), and

%’(S.F) is useable. Then Sgil for some iEJ. Also, suppose S;;,1 for some

it] and @(S, F) is not useable. Then 0(S)=O.

Proof. If .%(S,F) is useable, then the first column of @(S, F) is the only column

which does not contain both 1’s and 0’s. But, since at least one component of F

does not vanish on S by the sufficient refinement hypotheses, SQL1 for some

ieJ.

Now suppose S;,B;,1 for some i6] and 92(8, F) is not useable. Then there

are more than one, precisely one, or no zeros in the second column of Q6, F).
If there are no zeros in the second column of @(S, F), then 0(S) =0 by the lemma

preceeding the Parity Theorem. Finally, if there are one or more zeros in the

second column of92(S, F) and 2(8, F) is not useable, then 1 appears at least once

in the list {ll,...,ln}, so there is aje{2,3,...,n} such that j¢{l1,...,ln}. In that

case Par(.%(Tk,171)):0 for every ke{1, ...,n} so 0(8): 0.

Lemma. Suppose %(S, F) is useable. Then 0(5): Par((S,F)).

Proof. Suppose :%(S, F) is useable and set b(S)— Z (—1)"’1Tk as in the de—
k=1

finition of 0(S). Then, since 372(Tk,Fl)would not have any 0’s in its first column if

it were useable, Par(.0/’2(Tk,Fl))=0 for all but one k, e.g. k0. Let P1 be the

permutation on 1, ...,n required to put the kO-th row of .%(S,F)
2%(2%(2%( 2%(...,Xn>,F) into the first position, leaving the other rows fixed relative

to each other; also, let P2 be the permutation on 1,2,..., k0~1, k0+1,...,n
required to put %(%(,Fl) into form (a) of the definition of

useable §2(S, F). Let P be the permutation required to put @(S, F) into form (a)
of the definition of useable. Then, thinking of P2 as a permutation on n objects
which leaves the first object fixed, we have:

e=ee. me

However, Pl=(1,2, ...,k0~1,k0) is a kO-cycle whose parity is the parity of the

integer ko— 1. Hence:

Par(%(S,F)):(—1)k0_1 Par(%(Tko,F1)). (3-9)
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Fig. 2

However, since (—1)"°’1Par(9§f(TkO,E))was the only non-zero term in the sum

for 0(8), the conclusion of the lemma follows from (3.9).
Before going on to investigate automatic computation of d(F,P, 0), an

example of the Parity Theorem will be given.

Example. Suppose that 71:2, and F(X)=(f1(X),f2(X)), where X=(x,y), f1(X)
2x2 —y2~1, and f2(X)=>c2+y2 —2. Suppose that P is the rectangle

{0§x§2; 0§y§2}. Then compute d(F, P, 6) via the Parity Theorem.

The polygon P is drawn in Fig.2. Set E=l.25. Then b(P) is sufficiently
refined relative to F provided we write:

b(P)—b(P)— : : 1 ++. (3.11)

We then have:

d(F, P, 9) = Par(@(Par(@(Par(@( Par(@(13>,F)) + Par(§2(Par(§2(Par(§2( Par(§2(B>. F))

+ Par(92(Par(92(Par(92( Par(92(C>, F)) + Par(9?(< C, 13>,F))

+ Par(9€(Par(9€(Par(9€( Par(9€(A>,F)). (3.12)

We immediately see:

0 0
d A E F =92K , >, ) (10)

l 0
@(@(,F> =(11)
92KB, C), F) 2
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01

01

9?(9?(9?( 9?(A), F) 2<3

9% C,D>,F) and

Or—tVV
Hence

Par(9’2(Par(9’2(Par(9’2( Par(9’2(E), F» = Par(§f(Par(§f(Par(§f( Par(§f(C), F» = Far(ge(< C, D>, F»
= Par(9?(Par(9?(, F)=0,

and Par(9€(Par(9€(,F)= 1. Therefore, d(F, P, (9): 1 by the Parity Theorem.

It is easy to see that X=(]/%i1@)is the only solution in P of F(X)=6, and

that J(F)(X)>0 for this X, where J(F) is the Jacobian of F, thus illustrating the

validity of the Parity Theorem for our example.

4. An Algorithm to Compute d(F,P, 6)

The result of the Parity Theorem indicates that we can easily compute d(F , P, 6)
in terms of simplexes comprising b(P), provided the diameters of those simplexes
are “small enough” (i.e., so sufficient refinement is attained). Below, an iterative

procedure of subdividing the (n—l)-simplexes of b(P) so that the diameters of

the resulting (n— l)-simp1exes become small is described.

This procedure is a generalization of bisection of line segments in R1. To

carry out the procedure on a simplex S, we find the longest line segment to be

formed by taking the vertices of S two at a time, then use the midpoint of the

longest segment to form two new simplexes from S. This is illustrated for (n— 1)
=2 in Fig. 3a and we formally define bisections below.

When bisections are carried out, too many (n—1)-simplexes may be pro—
duced to be stored effectively in the machine. Furthermore, a casual approach
easily results in repeated evaluation of F at same points ([9]). Simplistic
approaches may also result in extra work to produce a uniformly fine sub-

division of b(P), while only some of the simplexes in the subdivision need have

small diameters to assure sufficient refinement. For these reasons we will

introduce an address scheme for labeling simplexes in subdivisions of b(P)-
produced by bisection. This address scheme depends on a one—to one cor—

A B

Fig.3a. A simple illustration of bisection when n— 1 :2
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respondence between the simplexes in the subdivisions and the nodes in a binary
search tree. where each node is labeled by an ordered pair of integers.

This correspondence between bisection and binary search trees and the

address scheme is presented in this section following the formal definition of

bisection. The remainder of the section is devoted to the actual presentation of

an efficient algorithm to compute ol(F.P, 0), where P is a polygon.

Definition. Suppose S=S= is an (n—1)-simp1ex. Then a simple sub—

division ofS is any ordered pair of simplexes {$1.82} such that for some k and m

between 1 and n and some AEAE >:

Sl=Sl=, and

SZ=SZ=SZ= SZ=A,Xm+1.....Xn>.’ mil?

Remark. It follows from the definition that S:S1+S2 if {SDSZ} is a simple
subdivision of S.

Denition. Suppose .9; ={S}. 72, are sets of simplexes such that 'for'each

simplex T656 with iii ieither Te. H 1 or there is a pair {UV} 9%“ such that

{U,V} is a simple subdivision of T. Then .71will be called a subdivision of for

i < j g 1c. Any process of generating subdivisions of 5’1 will also be termed

subdivision of S.

Denition. If b(P) = 2 Si is the boundary of an 12—1 polygon, then subdivisions
i=1

of b(P) are defined in the natural way as unions of subdivisions of the

component simplexes of b(P).

Definition. Let S, k, m, A, and {S152} be as in the definition of simple
subdivision. Suppose (Xk,Xm> is the longest one-dimensional side to be formed

from the vertices of S, where the length of (Xi,X‘/->is taken to be llXi—leli,
and suppose A =(Xk+Xm)/2. Then the pair {81,82} is called the bisection of S.

We will henceforth consider only subdivisions of b(P) formed from bisec-

tions, and proceed to form the correspondence between such subdivisions and

binary search trees. We use special terminology to define a particular kind of

binary search tree suitable to our purposes.

Definition. A simplex tree .7 is a finite, partially ordered set of points with the

following four properties:
(a) Each point of 7 precedes no points or is the immediate predecessor of

precisely two points.
(b) There is a unique point $067, designated the original point, such that no

point of .7 precedes S0, and all other points of 7 follow SO.
(c) Each point of 7 other than the original point is preceded by precisely 1

point.
(d) If S is the immediate predecessor of S1 and S2, then the pair {$1.82} is

ordered. The first element of the pair will be called the lower point from S and

the second element will be called the upper point from S.

If {5?}221 is a sequence of sets of simplexes such that .

H1
is a subdivision of
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Fig. 3b~e

54 for i< n, and sq 2 {SO},we can order the elements of U .9; in a simplex tree

as indicated in the following definition. i: 1

Definition. Let k, m, A, S, 51. and S2 be as in the definition of simple subdivision.
We will say SSS Sand SSS Swe will furthermore distinguish S1 and S2 by
calling S1 the lower simplex and calling $2 the upper simplex of the subdivision

{S1,82} of S.

Figures 3b, 0 and 3d show successive subdivisions of SO=== ==C> and

Fig. 3e shows the corresponding simplex tree. (The flow of paths in the simplex
tree is implicity given from left to right).

If J”: {SJLO is such a simplex tree, each point Sj of .7 will be labeled with

an ordered pair of integers (n1, nz) as follows: We let n2 be the order of the set .93
= {86.7, SSS Si.e., n2 will be the number of points of .7 which precede Sj. To

define nl, we observe .w {Sj} consists of all points on the path in ,7 between

the original point and Si; we re-index the elements of u {Si} so that S0 is the

original point in this path, S1 is the first point, Si is the i-th point for lll
and Sn2is the point previously called Sj. Then, for ie{l, ...,n2}, Si is either an

upper point or a lower point in .7. We form the unique integer n1 from this

information by setting the i—th digit (eg. counting from the right) in the binary
expansion of n1 equal to 1 if Si is an upper simplex and otherwise setting the i-th

digit of the binary expansion of n1 equal to 0 (It is assumed that n1 has only 112

digits in its binary expansion. thus assuring the uniqueness of 111).
When we define n1 and n2 as above. each point in .7 is uniquely labeled by the

ordered pair (n1, n2). We illustrate the labeling of the tree in Fig. 3e with Fig. 3f.

Denition. The pair (111,112)will be called the pair of location numbers for the

corresponding point of .7. If .7 corresponds to a set of simplexes, we will refer to

(nhnz) as the pair of location numbers for the corresponding simplex.
With introduction of binary trees and the labeling scheme, we are equipped to

present an efficient algorithm to compute d(F, P, 0). The following concepts aid the

exposition.

Definition. A bough of a simplex tree is a maximal linearly-ordered set of the tree.

Fig. 3f (2,0)
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Definition. A leaf of a simplex tree is any point which preceeds no points in the tree.

Remark. Ifyj, 5Q are sets of simplexes such that .91= {S} and is a subdivision

of .9; ifj> i, then there is a simplex tree corresponding to U 3;. The leaves of this
i: 1

tree correspond to elements of 3;.
I"

Ifb(P) 2 2 S, we will subdivide each Si one at a time to get Si 2 2 SH, so that

i: 1 j: 1

Z Par(.%(S‘ .)F)) is the contribution of Si to the sum for d(F, P, (9)in the Parity
1,]

i:1

Theorem. The algorithm will follow one bough of the simplex tree at a time,

proceeding until all leaves SM, have been considered.

An iteration ofthe procedure to follow a given bough consists of: (1) producing
a bisection {$1, $2}; (2) discarding of one of the elements of the bisection and

keeping of the other, e.g. SJ.(j = 1 or 2) for subsequent iterations; (3) Calculation of

@(SPF); and (4) Comparison of .%’(Sj,F) with the range simplex of the previous
iteration.

The comparison of range simplexes is carried out to determine whether more

iterations need be performed to assure sufficient refinement; the comparison
includes a test for sufficient refinement so that iteration is interrupted if the test is

positive. Par (;%(Sj,
F )) is determined in the course of the stopping test, provided the

test is pos1t1ve.
We outline one possible stopping test: We specify a priori a parameter p. We

then observe that the range simplex in a given iteration of the algorithm differs from

the range simplex of the previous iteration only in a single row, which is designated
the new raw. If the new row is identical to a row of the previous range simplex, we

will say there is an agreement. The result of the stopping test will be positive iff there

has been an agreement in p consecutive iterations.

If the stopping test is positive, we store Par (93?(S,F )) in an element of an array D.

Iteration then starts again and a different bough is followed. The whole process

repeats itself until all boughs (and hence, all leaves) have been checked. The

elements of D are added together to get the contribution z Par(9?(Sith)).
The boughs are checked sequentially by examinationjaiidadjustment of the

parameters n’1and n2. Between each sequence ofiterations of the bisection—taking
process, n’1and n2 are adjusted to determine what bough will be followed next.

During the bisection—taking process, 113,and n2 are examined to determine which

element of each bisection is to be retained; if S
j

is the element to be retained, then

the location numbers of SJ.in the simplex tree are (n’l,n2).
An array of simplexes SA and an array of range simplexes RA are stored to

enable us to avoid computational redundancy. These arrays contain only simplexes
and range simplexes from the previous bough considered, and have relatively few

elements. Some additional information may also be stored for the stopping test.

An outline of the algorithm is presented below. Further details can be found in

([9]) and future publications. These details include stopping tests, calculation of

%(S, F), modifications, etc. (Calculations of contributions of d(F, P, 6).)
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4.1. Algorithm

(1) Read in the boundary simplex to be subdivided and store in in S 1. Also

specify a stopping parameter p.

(2) n’1<—0.11260, k<—1,q<—0
<3) waspo
(4) RAIHRZ, SA1<‘S1
(5) n2 e n2 +1

(6) Find the bisection ofSl, storing the lower simplex back in $1 and storing
the upper simplex in both S2 and SA"2+1.

RAn2+1 912(527 F)»
(8) Examine the nZ-th binary digit of 111.If the digit equals 1, S1 e—Sz.
(9) R1 “R2

(10) R2 992(81,F).
(11) (Comparison of Range Simplexes). Compare the new row onNS. F) to the

rows ofthe previous .%(S.F). If each entry of the new row equals the corresponding
entry ofone ofthe previous rows. then 11<— q + 1; otherwise. (1 <— 0. Also, QAm + 1

+— q.

(12) Perfmfltwiig test (q z p?) If negative, return toWoceed
if positive.

(13) Dk <— Par(R2)
(14) k <~ k + 1

(15) 112<—n2
— 1

16) If the n2+ 1st digit of n’1does not equal 1, go to step (18)
1k~

(

(17) If 112:0, find 2 DJ.and stop; otherwise, return to step (15).
1:1

(18) Set the 112+ 1st digit ofn’lequalto 1 and set all subsequent digits ofn’1equal
to 0.

R2 (TR/1122+}?Sl ESAnzer? (IEQAn2+27 nZ 9’12 +1

(20) Return to step (12).
A Fortran program for Algorithm 4.1 was implemented, and some test results

appear in Sect. 6 below.

5. A Generalized Method of Bisection in R"

Algorithm 4.1 can easily be modified for inclusion in a root—finding algorithm for

determining XEP such that F(X)=9. where F: P—>R" and P is an n-polygon.
The root-finding algorithm is based on subdivision of each n-simplex of P into

n-simplexes with smaller diameters. It is determined in which of these smaller

simplexes a root lies. The subdivision process is then repeated with the smaller

simplex.
The method of subdivision of the n-simplexes is analogous to production of

bisections of(n — 1)-simplexes. 118 is one ofthe n—simplexes,the existence of a root

Xe S ofF(X): t) is ascertained by computation of d(F. S, 6). If d(F, S, 6) :0 for one

of the original n—simplexescomprising P. then we are assured ([4] p. 32) that the

degree relative to one of the smaller simplexes is also non-zero.

Computation of the degrees relative to simplexes in bisections of an original n-

simplex usually requires 1/(n+1) times the number of computations needed to
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calculate the degree relative to an original n—simplex.This is due to relationships
between the elements of the bisection of an n-simplex S and the elements of the

bisections of the n+1 (n-1)-simplexes comprising b(S).
We begin by defining bisections of n—simplexesand delineating the relationship

between such and bisections of (rt—1)—simplexes.
‘

Denition. Let S === =...,Xn> be an n-simplex in R", let

iiXk—Xmiiz: max llXj_Xill2a
O§iO§iO§i

and set A:(X,C+Xm)/2. Then if we set:

Sl=Sl=

and set:

SZ=SZ=SZ= SZ=SZ=X A.Xm+1,...,Xn>7 111—17

we have S = S 1 + 82. We will say that the ordered pair (S 1, $2) is the bisection of the

n-simplex S. We say S1 is the lower n-simplex for S, and S2 is the upper n-simplex for

S.

5.1. Lemma. SupposeSWSandjareamthedefinition ofbiseetienref—

n-simplexes. Then ifi__ k and i“ m, the i-th facet ofS1 is the lower simplex for the i-

th facet ofS; likewise, the i-th facet ofS2 is the upper simplex for the i-th facet ofS.

5.2. Lemma. Let S1, Xk, Xm, S1, and S2 be as in the definition of bisection of n-

simplexes. Then the k-th facet of S 1 is equal to the k-th facet of S, while the m—th facet

ofS1 is equal to the m-th facet ofS. The m—th facet ofS1 and the k-th facet ofS2 have

no interior points in common with any facets of S but the m-th facet of S1 equals
— ( — 1)’"’ktimes the k—th facet ofS2 . Hence ifo is( — 1)"times the k-th facet ofSl and

if U’g is (#1)“ times the m-th facet of S2 then U’l‘: —U’§.
The proofs ofLemma 5.1 and Lemma 5.2 are straightforward and appear in [9].
Figure 51 illustrates Lemma 5.1 and Lemma 5.2. There, n: 3, k: 1, m: 3. S1

== lies to the right and rear, and S2 == X1, X2, A) lies to the

left and front. The k-th facet ofS1 is X2, X3), which equals the k-th facet ofS.

The m-th facet of S2 is (X0, X1, X2>, which equals the m-th facet of S. We see in

Fig. 5.1 that (X0, A, X2) is both the m-th facet ofS1 and the k-th facet ofSZ. We also

see how the bisection of S induces bisections of the 0-th and second facets of S.

The root-finding algorithm begins by calculating d(F, S, 6), where S is a given n-

simplex. If d(F,S, 6):: 0, then d(F,S1, 6)::0 or d(F,SZ, 6):: 0, where {51,82} is the

bisection of S.

The algorithm then iterates by: (1) taking the bisection of S; (2) selecting one of

the elements Si of the bisection for which d(F,Si, 6) =0; (3) repeating step (1) with

the element selected from step (2). We take advantage of the relationships presented
in Lemma 5.1 and Lemma 5.2 to simplify computation of d(F, Si, 6) if S. is an

element of a bisection. This is done by storing and retrieving location numbers and

“contributions” for simplexes in the trees for the facets of S. The “contribution” of a

ms

simplex S in the tree will be 2 Par(R(S. F)), where {Sj’inflis the set of leaves
1J7

i=1

following S. (These contributions are calculated in the course of performing steps



124 B. Kearfott

(12)—(l8) of Algorithm 4.1; see [9]). The algorithm is designed so that F(X) is never

evaluated twice for the same X.

The root—finding algorithm is outlined below.

5.3. Algorithm. (A Generalized Method of Bisection)
(1) Determine a stopping diameter E.

(2) Read in the original n—simplexand store in 81.
(3) Calculate d(F,Sl, 6) via Algorithm 4.1; return to step (2) if d(F,Sl,9)=0.
(4) Calculate the bisection of $1, storing the lower simplex back in S1 and the

upper simplex in $2.
(5) Determine d(F,Sl, 6) and d(F,SZ, 6) by retrieving appropriate stored

information about the i-th facets of S1 and S2 (1' k or i m) and applying
Algorithm 4.1 to the new facet (cf. Lemma 5.2).

(6) If d(F,Sl,6)=O then: Sle—Sz.
(7) If the diameter of S1 is less than E, then print S1 and stop.

(8) Return to step (5).
Several problems can arise instep (5). For eXample, m'ore'biSections of n-

"

simplexes may be taken then were taken for corresponding (11— l)-simplexes in the

course of Algorithm 4.1. These problems are discussed in [9].
The method seems particularly suited to serve as a starting method when the

function F is not smooth, when the original n-simplex has a very large diameter, or

when it is difficult to evaluate the components of F accurately ([9]).
The method has features in common with the class of fixed point algorithms

developed by Kuhn, Scarf, Eaves, Saigal, Allgower, Keller, Jeppson, etc. These

methods involve labelings similar to the one given for an alternate definition of

useable .%’(S,F). X0

Fig.4. Illustration of bisection of an n-simplex when n=3

6. Some Numerical Examples

In [9], some computational examples for n = 2, n = 3, and n = 5 were presented; the

algorithm was similar to Algorithm 4.1, except that the stopping test (step (11)) was

more involved. Here, we give some additional examples.
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The algorithm was programmed in Fortran on a Multics 68/80 system. The

actual code differed from Algorithm 4.1 only in the manner of storage and retrieval

of the simplexes and range simplexes. (It is only necessary to store the midpoints

produced in bisection, instead of entire simplexes, in steps (4), (7), and (20).) The

program was written so that there were no redundant function evaluations.

In two dimensions, we tried the analytic functions F (2) 2 22,F (2) = Z3,and F (2)
:24, and we arbitrarily chose the simplex: <(—4, —— 4), (4, —4), (0, 4)). The

computed value of the degree, the maximum depth in the trees produced, and the

total number of function evaluations are summarized in Tables 1(a), 1(b), and 1(0).
We note that the algorithm behaved predictably and reliably.

In addition, several other simplexes not containing the root (0,0) were tried. In

all of those cases, the correct degree d(F , S, 9)=0 was computed with a small

number of function evaluations.

The program both required more function evaluations and was less reliable in

higher dimensions, although it worked satisfactorily for n: 3.

Four distinct functions were tried for n : 3. The results for the identity function

F(x1,x2,x3):(xl,x2,x3)andthefunctionF(x1,x2,x3)=(x§,xix?)wereidentical;
these results are summarized in Table 2(a). The results for

2 2 2

F(Xi=x2ax3)=(xi ‘xzaxz _x3:x3 _X1)

are summarized in Table 2(b).

Table 1. Experiments in two dimensions. S = <( i 4, — 4), (4, — 4), (0, 4)). “M.D.” indicates maximum tree

depth, “NE.” indicates the number of function evaluations, and “12” indicates the computed value for

d (F, S, 0)

p M.D. NE. 1) p M.D. NE. 1) [) M.D. NE. 0

1 3 12 2 1 4 18 1 1 4 12 1

2 5 34 2 2 5 54 3 2 6 62 4

3 6 68 2 3 6 108 3 3 7 124 4

4 7 136 2 4 7 216 3 4 8 248 4

5 8 272 2 5 8 432 3 5 9 496 4

6 9 544 2 6 9 864 3 6 10 992 4

(a) F(z):z2 (b) F(z)=z3 (c) F(z):z4

TableZ. Examples for n23. S=<(1,0,0), (0,1,0), (0,0,1), (—1, —1, —1)>, Note S has a negative
orientation

p M.D. NE. 0 p M.D. NE. D

1 4 32 —1 1 4 l6 1

2 7 82 —1 2 7 38 1

3 9 206 —1 3 9 146 1

4 10 412 —1 4 11 412 1

5 11 824 41 5 12 824 1

6 15 2,026 —1 6 14 2,152 1

(a) F:(X1,XZ,X3) (b) F=(X1eX2,X§—X3~X§—X1)
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Table 3. Experiments for F :(xf —x§,2 x1x2,x3)

s p MD. NE. 0

(140,0),(0,1,0)=(0,0,1),(—1,—1, *1) 1 5 18 0

(1,0, 0), (0, 1,0), (0, 0, 1),(—1, — 1, —1) 2 131 1,022 —1

(101,002,003). (0.04, 1.05, 0.06), (0.07, 0.08, 1.09),
(—1,71,71) 2 11 182 72

(101,002,003), (0.04, 1.05, 0.06), (0.07, 0.08, 1.09),
(—1,—1,—1) 3 16 558 —2

(1.01, 0.02, 0.03), (0.04, 1.05, 0.06), (0.07, 0.08, 1.09),
(— 1, — 1, — 1) 4 4 4 7

Results for the fourth function F(x1,x2,x3)=(x§—x§,2x1x2,x3) are sum—

marized in Table 3. For this F, the behaviour of the algorithm is sensitive to

perturbations in the vertices of S, due to roots of components of F near the

boundary of S. For p24, exponent underow in the function evaluations in-

validated the results.

Functions and simplexes analogous to the above were tried for n = 4, n = 5, and n

=6. Correct results were consistently given for F(X)=(xf —x2, x3—x3, xé
—x4, ...), but perturbations of the vertices of S needed to be tried with the other

functions. In the cases that no roots ofF lay within S, however, Algorithm 4.1 gave

correct results for all values of p.

7. Summary and Assessment

The recursion formula, the parity theorem, and the characterization in terms of

determinants [13] are in many cases useful in hand computations. Also, these

formulae show promise, as they require only the signs to be correct in the function

evaluations, and they hold for non-differentiable functions.

Automatic computation of the degree and use in root-finding at present seems

to be intractible in large dimensions, and experiments have shown that Algo—
rithm 4.1 has some other short-comings. However, Algorithm 4.1 seems to compare

favorably to other methods ([5, 10, 13]) in efficiency; additionally, previous
computations may be used in a generalized method of bisection, without

redundancy. With an appropriate choice of stopping test (by modifying steps (11)
and (12), Algorithm 4.1), and, prehaps, with schemes for automatically perturbing
the vertices of S, Algorithm 4.1 is potentially very useful.
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