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Classically, we obtain numerical solutions of systems of non-
linear algebraic equations by Newton's method or by related
gradient methods. In the past decade, however, several new
approaches have been explored. In particular, fixed points (or
roots) of continuous functions can be approximated by construc-
tive methods of combinatorial topology ([21, (31, (51, [71, [131,
[14]). Resulting topological (or combinatorial) algorithms may
be employed to locate reliably all roots of a map (121, 3.

To ascertain a priori the number of such roots within a given
volume of l?n, it is possible to compute the Brouwer degree of
the map. Related to other combinatorial methods, new ideas for
degree computation have recently been investigated (181, 91,
[111, [15], [16]). Below, we define the Brouwer degree, summa-
rize our method of computation, discuss the algorithm's salient
characteristics, and give c.p.u. times for test problems.

References are provided where necessary.
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I. THE CONCEPT AND THE COMPUTATION FORMULA

Consider a continuous map F from a compact n-polygon D
into ®', such that F(X) # 0 if X €b(D), where b(D) is
the boundary of D. Suppose det(F'(X)) # (0 when F(X) = 0.
Then the degree of F at 0 relative to D, denoted d(F,D,0),
is equal to the number of zeros of F where det(F'(X)) > 0,
minus the number of zeros of F where det(F'(X)) < 0.

We generalize d(F,D,0) to non-differentiable continuous
maps by defining the index of a zero X of F. Given a suffi-
ciently small neighborhood M of X, f(M) covers a neighbor-
hood N of 0 in an m-to-one fashion. Considering the m
branches of f/M, the index of X is the number of coverings
of N with positive orientation minus the number of coverings of
¥ with negative orientation. Then, d(F,D,0) is the sum of the
indices of the zeros of F in D ([4], ch. 1).

The above definitions for d(F,D,0) coincide when F 1is
differentiable with no multiple roots.

To compute d(F,D,0) we consider F/||F|| |b(D). 1If
Y € F(b(D)), it can be shown that d(F,D,0) is equal to the
number of times F/||F|| |b(D) covers Y with a positive orien-
tation in an_l, minus the number of times F/\|F|| |b(D) covers
Y with a negative orientation ([4], ch. 1). Assume b(D) 1is
polygonal, and triangulate b(D) into simplexes {Si}i=1 such
that at least one component of F does not vanish on each Si'
Choose Y to be the intersection of the unit n-sphere with the
positive first coordinate axis, and assume appropriate components
of F = (fl’fz""’fﬁ) do not vanish on the (n-2)-dimensional
boundaries b(Si) ({81, ch. 3, etc.). We then have:

m
d(F,p,0) = ] d(F ,8, ,0).
J=1 J
Above, the sum is over all Si on which fl > (0, and

-1
Fy = (Fpaemnafydt Sij—>an ((81, [111, [151).
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Formulas not involving recursion (in the computer programming
sense) have also been presented ([8], [9], [15]). However, the
recursion formula has been easiest to implement if we do not

allow heuristic determination of the mesh on b(D) ([11]).

II. THE ALGORITHM

We proceed as follows:

(1) Triangulate b(D) to obtain a sufficiently small mesh,
as in Section 1, then continue to step (2).
. (2) Replace F by Fl and D by Si )
If.or J=1,...,m. J

, and do step (3),

(3) (a) TIf the ;5'7: are one-dimensional, compute
d(F,5, ,0) directly. 7
dJ
(b) If the dimension of the Si is greater than I

3

repeat steps (1) and (2) with Si. and }771 in place of D and
7. J

In one dimension, d(f,5,0) = d(f,<a,b>,0) = %{sgn[f(b)]

- sgn[f(a)]}. Also, observe that a stack of executions of steps
(1), (2), and (3) is generated if #un > 2.

' It is convenient to construct the triangulation by "general-
ized bisection", which we define as follows: given the (n-1)-
simplex S = < Xl’Xz-""—‘Xn >, we define two new simplexes by
replacing Xk by (Xk + Xm)/2 or Xm by (Xk + Xm)/2, where
KXk,Xm > 1is the longest side of S ([8], [10], [15]). The
simplexes in such triangulations correspond to nodes in binary
trees, and the elements in the final triangulation can be con-
sidered with a minimum of computation and storage by a depth-first
search of such trees ([11]). The depth of each path is set by
examining the moduli of continuity of the components of F ([11]).

A more detailed exposition of the algorithm appears in [11].
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III. PERFORMANCE OF THE ALGORITHM AND SCOPE OF APPLICATION

To date, few other methods for computing d(F,D,0) have ap-
peared. Erdelsky ([6]) described an efficient method, equivalent
to ours except for the triangulation, for n = 2. 0'Neil and
Thomas ([12]) computed the degree for arbitrary n by quadrature
involving the Kronecker integral ([11, p. 465). These computa-
tions involved probabilistic estimates for the accuracy of the
result.

Our approach lends itself naturally to root-finding ([8], [9],
[11]). Assume D = < XO’XI""’Xﬁ > 1s an n-simplex, and com-
pute (F,D,0), triangulating b (D) by bisection. If d(F,D,0)
# 0, bisect the n-simplex D, forming Sl and 52, and compute
d(F,Sl,O) and d(F,Sz,O) = d(F,D,0) - d(F,Sl,O). This computa-
tion is expedited with information retained from computation of
d(F,5,0) ([11]). We repeat the process, bisecting the first Si
over which F has non-zero degree and storing the other Si in
a list if F also has non-zero degree on it ([11]). The proce-
dure continues until a simplex with diameter less than a specified
tolerance is found. We then repeat the bisection-degree computa-
tion process on the stored simplexes until the list is empty
(ibid).

Our root-finding algorithm shares properties with other com-
binatorial fixed point algorithms. Function values only are
required, and only rough accuracy is needed. Moreover, all roots,
including ones difficult to obtain with gradient methods, may
often be located. Our degree-computation method, however, gives
lower bounds on the number of roots within the search region,
while other methods may find approximate zeros which are not near
true roots ([2], [3], etc.).

Degree computation-bisection has several disadvantages. The
diameters of the resulting simplexes decrease linearly as bisec-
tion proceeds, and the rate of decrease increases with n  ([10]).

Furthermore, due to the recursive nature, execution time for



RECENTEXPEMNENTSTOCOMPUTETHETOPOLOGMALDEGREE 631

functions of comparable smoothness increases exponentially with
n. Lastly, we must assume that there is no root of F on the
boundary of any n-simplex produced by bisection; also, there must
be no roots of the truncated functions on the boundaries of any
of the lower—-dimensional simplexes (when 7 > 2). When such
roots exist, they are found in the process of degree computation,
preventing the algorithm from proceeding further.

In practice, it is possible to avoid roots on boundaries by
changing the vertices of D slightly. Also, the algorithm is

not necessarily too costly in small dimensions.
IV. NUMERICAL RESULTS

We present results for several test examples in 2 and 3 dimen-
sions.

The experimental program involved root-finding by bisection.
Tt contained a parameter controlling information storage between
successive degree computations ([11]), but we present c.p.u. times
for optimal values of that parameter. In all cases, the stopping
diameter (tolerance) was .1, and all roots and corresponding in-
dices within D were found.

The PL/I program was run interactively on a Multics 68/80
system. The results in 2 dimensions appear in Table 1. The trial
function in 3 dimensions was: f; = x% - %, fp = xi - g,
o=t - ay, and D= < (.9,.1,-.1), (0,1,0), (-1,0,1.2),
(-.9,-.8,-.7) >. The c.p.u. time for that example was 94.1

seconds.
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TABLE I. Two Dimensional Examples
D=<(-4.1,-3.9),(4,-4),(-.15,4)>

function e.p.u. time
22 3.6
22+1 3.7
23 13.6
23+1 11.9
gt 37.8
at+1 37.2
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