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CHAPTER I

INTRODUCT ION

1.1 Descrigtion‘ of Content

Suppose that FzcRn * Rn is continuously differentiable on

the bounded, open domain .3 and J(F), the Jaeobien of F, is nonzero

at the ‘points X 2.0 for which PC!) = 1’. Then d(F,-U,Y), the degree

of E at Y with reagent to .23, is defined to be the number of points

X a  with EU!) = Y and J(F)(X) > 0, minus the number of such X for

which J(F)(X) < 0, provided Fm yéy for x on the boundary of .5.

This concept can be generalized (-[l] Ch. XII for the original

scheme or [26] pp. 147-165) so that d(F,Jf,Y) is defined for F which

are only continuous can and F0!) 76Y, X on the boundary. For such F,

the Krbneeker existence theorem ([25] or [1]) states that, if d(F,°6',Y)

7! 0, there exists at least one X Ea'D'with F(X) = Y. For this reason,

computation of d(F,¢£f,Y) is of interest in solving systems of non-

linear equations (see [8] for a discussion of usefulness).

Methods of computing d(F,JJ,Y) include quadrature schemes,

for the degree can be expressed under suitable assumptions in terms

of the Heinz integral [26] or the Kronecker integral ([1] or [14]).

The met.th most similar tn the one first developed in this disserta-

tion is related to the Kronecker integral. For that method, Stenger

[30] characterized the degree. in terms of certain determinants, then



calculated it by evaluating those determinants. An advantage of that

method (517%.) over some quadrature schemes was that F needed to be

evaluated only to sufficient accuracy to determine the algebraic sign.

The first method developed in this dissertation comes from

ideas in [50]. Required notation and several well—known characteriza-

tions of d(F’o6,'Y) are mentioned in Chapter 31. In Chapter III,

characterizations to he used for machine computation appear. One

of these, due to Stenger (ibid.), expresses the degree in terms of

determinants of matrices with entries 1 1, while the other giVes the

degree directly in terms of matrices with entries i1. This latter

characterization is proven in detail.

Chapter IV deals with an algorithm for computing ‘d(F,P,Y),

where P is a polygon. The theory is deVelopea to allow one to

economize on both time and computer storage space. An example is

then worked using this algorithm.

In Chapter V the algorithm for computing d(F,P,¥) is em—

ployed in a method of finding the roots of a system of nonlinear-

equations. This method, embodied in Algorithm 5.3.1, does not require

F to be differentiable.

In Chapter VI 8 relationship between the scheme for cal-

culation of d(F,P,Y)= based on Section 3.2 (the second characteriza-

tion of d(F,P,Y)) and a labeling scheme to define Sperner simplexea

is presented. Other search routines for Sperner aimlexes are briefly
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described and compared. Also, a search routine for a Sperner simplex

which uses concepts about a labeling scheme for nodes in binary trees

(presented in Chayter IV) is outlined.

In Chayter VII applications are considered. These include

finding stationary points (optimization), calculating linking numbers

(see [1] Ch. XII), and solving the hidden line: problem (the hidden

line problem can he stated as: "does a given curve pass through a

surface in R
"

or "does a curve or point lie in front of or behind

a surface in R5"). Calculating d(F,aO,Y), where .515 not necessarily

a polygon, is also discussed.

1.2 Backgmund for the Wogk

Various other topological methods for finding roots of

systems of nonlinear equations or fixed points of maps in B“ have

been investigated. Such procedures, including the method in this

work, may be the only yz‘ocedures to give meaningful approximations when

a system is highly nonlinear, or may be the only ones to conVerge

to fixed points other than "attractive" ones (See 15], esp. p. 2,

[26], p. 185, and [26], cu. 10). Scarf [27] presented one of the

most famous with techniques similar to applications of Spemer's

lemma ([6], pp. 417—421). The exchange algorithm [27] may perform

efficiently when ,6 is an n-simplex and F is given in terms of

baryceutric coordinates. If .0 can be transformed to an n—cu'be, then



methods from Allgower and Keller ([29] with [21]) may he used.

Variants and related methods are under investigation [‘9].

For the shore methods, one usually assumes that Fab->96

in order to find e fixed point. It is often sufficient, however, to

know that F - I’ where I is the identity may, has a root in .0. The

existence of such roots can be determined with a desired probability

by Algorithm 4.4.1 (the degree computation algorithm).

There is a close relationship between labelings for Sperner

simplexes, the degree computation algorithm, Algorithm 5.3.]. (the

generalized method of bisection), and the methods in [27] and [29].

This relationship will be described in Chapter VI. Algorithm 6.5.1,

involving both Sperner simplexes and theory from Section 4.2 (dealing

with labeling schemes for elements of simplicial subdivisions) also

appears .

l. 3 Pmblems Encountered

Problems encountered with some or all of the topological

methods mentioned above are similar. For the method in [27], yoints

on a grid are chosen a priori; other schemes may have similar limita—

tions. In all of the methods, including those of this work, true

fixed points may be "missed."

The generalized method of bisection may require more memory

than the method in [27] or [29], but uses the additional technique



of calculating d(F,e6,9h). For this reason, it may be more power-

ful in some instances than other methods.

Nonetheless, Algorithm 4.4.1 (to campute d(F,P,Sn))cannot

be used to calculate d(F,.0,en) with absolute certainty. when the

characterization in terms of determinants (in lieu of Theorem 3.2.10.

the other characterization) provides the basis for an algorithm

analogous to Algorithm 4.4.1., 5 higher degree of certainty is attained

at the expense of computation time. IndePendently of the above modi—

fication, parameters in the degree computation algorithm can also be

chosen so that more computation is done, but the computed value of

annexe“) has a better chance of being correct. Such additional

computations may then be used later in Algorithm 5.5.]. (the gen-

eralized method of bisection).

A method. for quickly calculating the special determinants

in the determinant characterization (Theorem would improve

the degree computation (Algorithm 4.4.1) and Algorithm 5.3.1 con—

siderably.



CHAPTER II

NOTATION FOR THE REGION AND THE CONCEPT OF DEGREE

In the first section of this chaptei’the notation used

thraughout the rest of this work is introduced. In the second sec-

tien, the degree of a map with respect to a polygonal region is de-

fined, its significance is discussed, and useful characterizations

are given.

2.1 The Region

The notation in this section will describe the region over

which the degree is defined.

2.1.1 Definition. Suppose that [XOQLUUUXR],u 5 n, is a

set of of points in Rn, so that [Xk
- Rani:lis a linearly independent

set of n-vectors. Then the g-eimlex S = (K ,xl,...,xu) syanned

by [XO,...,XMJis the closed convex hull of these points, i.e., it

is the set {itgykkak2 o and 2:???
= 1.

2.1.? Definition. The points Xk,k
= 0,...“ are called the

extreme pcihts or vertices of S.

In Re, e Z-eimplex is simply a triangle while in R3, :3

5~simplex is a tetrahedron. A l>simplex (A,B) denotes a line segment

whose endyoints are A and B.



We next define orientations with the following two defini-

tions .

2.1.5 Definition. If Z1, . . .,Zl1 are row Vectors in Rn,
then (Z ... Z ) is the determinant of the matrix whose k-th row1’ ’ n

is Zk.

2.1.4 Definition. If s =

(xo,...,xn) is an n—simple’x in R“,
then one assigns a positive or negative orientation to 3 according

to whether the determinant An((l,xo)...,(l,xn)) is a positive or nega-

tive (see [1.] Ch. 4, §Z,#l and [l], Anhang II).

If the k-th and m-th points (m pék) of s =

(X0,“4%.”,
Km,. .

.,

One writes; (xo,...,xm,...,xk,...,xn) =

-(xo,...,xk,...,xm,...,xn).

X“)are interahansed, then the orientation of S is reverseé.

ngosite orientations of a triangle in R2 are illustrated

in Fig. 2.1 and Fig. 2.2.

In general, an odd. permutation of the list of points of S

changes the orientation, whereas an even permutation does not.

If P is a union of u—dimeneional polygons in R“, then P

can be written as the union 9f a finite number of u-simplexes in R11

with the property that the intersection of any two of these simplexes

has empty interior. (We define a H—dimeneicnel polygon as a connected

union of u—simplexes). If these simplaxes ere $1,...,SK, thennone

writes P = $15k.
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x
.

X1 2

S =

(X1,X2,X3)

FIGURE 2.1

POSITIVE ORIENTATION
X

3

T =

{X1,X3.X2)
= -5

FIGURE 2.2

NEGATIVE ORIENTATION



An example is given in Fig. 2.3. There, the topological

boundary of P can be thought of as being "traversed" in the direction

depicted. When the bounaries of SI and 82 are also traversed in

this manner, the segment (A,C) in the interior of P is covered in

opposite directions.

As does the concept of the triangle itself) the above

characterization of the bqundery generalizes to higher dimensions.

2.lr.§ Definitio . If S =

(X0,...,Xu)is a u-simplex in

R“(n 2 u), then the algebraic bouncing of s is formally defined by:

. 15—1
(1) Ms) 1:591) (xo,...,k,...,xu)

In this formula (x
A

,...,X ) is the (u - l)—simplex in R”
, o, ,

H

obtained by deleting Xkfrom the ordered. list of vertices for S.

2.1.6 Definition. If S is as in Def. 2.1.5, then the

(LL- l)-simplex (X0,. ..,§k,...,Xu)will be called the k-th facet of S.

The formal sum in the right member of (i) is integrated

geometrically as an oriented union of (u - l)-simplexes appearing with-

in the summend. In a general sUm of the form ZKS ;

k=0
k

are all criented u-simplexes, a similar interpretation is given;

where the 8k

there is cancellation when simplexes with similar vertices but opposite

orientatians appear, and an integer weight is assigned to S if S



P = ABCD

s1
= (A,B,C); 52

= (A,c,D)

PH 51 + 52

FIGURE 23

A SUM OF SIMPLEXES

1.0



ll

aypears more than once with the same orientation. (See [2L], III

or [19], I,

For example, in Fig. 1.5,

b(P) = Mal) + b(sz) = [(B,c) — (A,c) + (A,B)]

+ [(c,D) — (Ag) + (A,C)] = ()3,c)‘ + (A,B) + ((2,1))

« (A,n) +[(A,c) - (A,c‘)] = (B,c) + (A,B) + (0,3) — (A,D)

= (A,B) + (13,0) + (0,11) + (D,A)

as one would wish.

2.1.7 Remark. The boundary operator, ‘o(-), is linear.

2.1.8 Remark. If one makes cancellations, ignores the

orientation of the component simplexes and interprets "’2" as "U"

one obtains the topological bound.st of P.

In most of the theorems and. algorithms to follow, it is

assumed that P is a simplex. However, the theorems are still true

for arbitrary polygons, and the algorithms can be made to work

for polygonal regions other than simplexes.

For a discussion of the above concepts a slightly more

general form), see [‘8], pp. 2—7.
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2.2 The Brouwez Deggee

Suppose that P is an n-dimensional polygon in Ru and that

G:b(P) -> Sn is continuously differentiable, where S:1 denotes the

surface of the unit n-d-isk in R“. Now let us produce a sequence,

{[33]:]}:=lof sets of (n — l)-simplexes so that b(P) = 2“ Si
i=1

and if J is large, then the diameter of Si is small for i = l
,

. . .

, KJ
.

This done, let us approximate G by the sequence, (L‘jjjzl, of maps which

interpolate ‘G at the vertices of 5‘1(i= l,...,kj) and. which are

affine in the interiors of the Si (See [1] pp. 341-542). Suppose now

that X e b(P), and that the Jaeobian of G at P is nonsingular at X.

ThenJ for J large enough, the images of the 5‘;containing X have the

same orientation (since the Jacobian of G has one sign in a neighbor:-

hood of X). Furthermore, for large J, no Si containing X contains

any other point, X1, with 60(1)= G(X). With this in mind, the

following definition is made.

2.2.1 Definition. Suppose that P anti G are as abovs, that

J is "large enough" (as above) and fixed, and that Y is any point

on S“. Then the rotation of G is defined to be the number of SJi
containing a point of 6.10!) which have a positive orientation,

minus the number of suah. with a negative orientation.

It can be proven that the rotation of G is independent of

the choice of Y ([25], p. as), so that Def. 2.2.1 makes sense. (See

also [1], [20],J or [8,], pp. 2-25, and esp. [5], Theorem 2.7).
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If G is assumed only to be continuous on h(?), then G can

be approximated by maps which are C:L(See [26], p. 15 ,
and [‘5]:y

or [8 D. Thus, the rotation of such G can be defined, [8]}

Now suppose that F:P ~> Rn is an arbitrary continuous map,

A e Rn, and FCC) 75A for X e b(P). Then, by restricting F to MP),

the rotation of (F - A)/ — A“ is defined:

2.2.2 Definition. If P, A, and. F are as above, then d(F,P,A),

the de ree of F at. A with res act to P, is defined to be the rotation

of (F - A)/|fF — A]

2.2.3 Remark. Note that d(F,P,A) = d(F -

A,P,en), where (an
is the n~dmeosiohel zero vector. Hence, without loss of generality,

one need only consider the degree of F at Sn to deal with dCF,P,A),

where A is any yoint in Rn.

Very often, d(F,P,eu)is defined in terms of the Heinz in-

tegraiue]. With that definition, important properties of d(F,P,6n)
can be proven with relatively simple analytic tools [26]. Nonethe—

less, it can be shown that the definition in terms of the Heinz in-

tegral is equivalent to Def. 2.2.2 above [ 5]. The main results in

this yeper stern most directly from Def. 2.2.2.

The reason for interest in c1(F,P,en)here is its relation—

ship with the solutions of F(X) = 6“ within the interior of P. Namely,

the following theorem holds.
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2.2.4 Theorem. (The Kronecker existence theorem; [1], pp.

457-463 [2.5], 1:- 15 or [3.], P. 52). If M33159“)7i 0, then F(X) =

en has at least one solution in the interior of P.

2.2.5 Remar . When F is differentiable in P and J(F)(X) = O

at each X e P with F0!) =

en, then Theorem 2.2.4 can be strengthened to

read: d(F,P,en) is equal to the number of points X e P at which

F(X) =

en and J(_F)(X) > 0, minus the number of such points at which

J(F)(X) < 0, where J(F) is the Jacobian of “[25], pp. 35-558 and. in

particular, Theorem 1).

The above characterization is often taken to be the defini-

tion of dd ([26], [23], etc.). This definition is then meaning-

fully generalized via the Heinz integral [26].

There are various approaches to computing d(F,ZP,en). Some

are quadrature schemes of which the Heinz integral [26] may form the

basis. Also, d(F,P,9n) is represented by and numerically approximated

via the Kronecker integral [25]; the Kronecker integral ([1], 111:. 415-

457) has close ties with facts used later.

2.2.6 Fomula. (The Kronecker integral: [14]):

d(F,P,en)=(1l—[Wn
X01) e M?)

Here 9n is the surface area of the unit u-sphere, and U =

(ul, . . .,un_l), where 1.11,
. .. ,nml are the parameters for any continuous,

one-to-one parametrization of MP).
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The following formula complements Formula 2.2.6.

2.2.7 Formula. In Rl, in View of Remark 2.2.5, the follawing

formula is used to characterize d(f,P,0), where P = [a,b] ([30]):

_
fb

_

f a
= safb 2 - saffgald(f,P,0) — 1—H“b TE—f8‘37 2

.

2.2.8 Eager . If the n-dmensienal polygon P is embedded in

a higher-dimensianal region with a one—to-one parametrization x (145.,

P = 713,where e c R“), and F:1= -> 'R“, then d(F,P,9n) is defined by:

d(F,P,9n) = d(Fb n, (lumen) provided an g F(b(P)) .

2.2.9 Remark. The following two properties of d(F,P,en) are

useful:

(1) d(F,P,en)depends only an values F assumes an b(P).

(2) [14] If .6 = UKPi,when each Pi is a union of polygons,
i=1

the Pi are disjoint, and F(X) ;£ an for any X e b(Pi), then

d(F,uO',9n)can be defined by:

d(F,.D,S_n)= igdwmin).
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Two CHARACTERIZATst OF d(F,P,sn)

The object of this chapter is to present characterizations

of d(F,P,Gn)which can easily be used for machine conmutstions. Such

characterizations, given in terms of simplieial subdivisions of b(P),
hold when the simplexes in these subdivisions have small diameters.

These smallness conditions are clarified in Section 5.1.

A recursion formula [30] is also derived in Section 5.1.

This formula relates d(F,P,9n), where P is n-dimensional, to

i
G _l), where 51:1ere (n—l')-dimensional regions on the£1(Elilan-l’ n

boundary of P, and Fl has (nwl) components, all of which are restric-

tions of eomynnents of E to MP). In Section 5.2 and Section 5.5, this

recursion formula is used to derive two characterizations of d(F,P,en).
(has of these (Theorem 5.2.10) expresses d(F,PJen)in terms of certain

matrices whose entries are 1:1, while the other (Theorem 3.5.1) gives

5113,39“)in terms of determinants of these same matrices. The first

characterization, proven in detail, will be seen in Chapter VI to be

related to labeling schemes to determine Sperner simplexes.

Either characterization can be used to compute ‘d(F,P,en).
Because determinants are not involved in Theorem 5.2.10, the compute-

tions based on it should usually be the most efficient. However,

Theorem 5.5.1 provides an additional method of determining the prob—

ability of correct results. This is discussed in Section 3.3.
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3.1 A Recursion Relation

In ell following work in this eheyter, it is assumed that

the domain of F is en n-dimensionel polygon P or more generally that

130’) can be written as a sum or (n - l)-simylexes, each of whose

diameters is "small" (see [50] pp. 26—28). Just how small is small

enough is indicated in the following eefinitions (15121.).

3.1.1 Definition. If P = (A,B) C R and f2R 4 R is contin-

uous, then b(P) = B‘ - A is sufficientlx refined relatiVe to f if f(E) ;5

0 end f(A) g 0.

3.1.2 Definition. Suppose u > 1, PHis a H-dimensionel

polygon, and F = (fl’...,fu):Pu » R“. Then MP“)is sufficiently re-

fined relative to F if and only if MPH)is written as the union of a

finite number of (u - l)-dinensional regions Bi_l,...,[i:&l,eseh con-

sisting of unions of oriented simplexes enrl having the following prop-

erties:

(a) The interiors of the 5:1 are disjoint and each a“: is con-

nected.

(b) At least one of the components of F, say fr ,
does not vanish

1i
on Bw‘l.

(c) If f 76c on 131 , then Mei ) is sufficiently refined rela-
ri H-l H-l

to 13‘ where}? =(f ...f r +l...‘f)=b(P)-'
1.1

J

Ti 1; :

rinl: 1.1
I J

u H

Rn'l.
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Since properties (a), (b), and (c) of Definition 3.1.2 depend only on

the signs of the components or F on b(P), we will say b(P) is suf-

ficiently refined relative to Sgt (infra. Definition 3.2.1) to

mean b(P) is sufficiently refined relative to F.

It should be noted that the above assumptiens, though some-

what weaker than the ones given- hy Stenger [1’20]Jare all that are

necessary in his work (ibidL) and the theorems to follow here (cf.

[21]).

It can be shown ([50] pp. 50-52) under mild assumptions on F

that, if the diameters of the simplexes comprising MP“)are suffi-

ciently smallJ then MP“)is sufciently refined. relative to San (F).

Methods of subdividing MP“)in order to produce sufficient

refinement will be discussed in Chapter IV. Here, the following defi-

nition and theorem set down a recursion relation ([30] pp. 52-35) for

computing d(F,Pu,eu)providezi MP“)is sufficiently refined relative

to F.

3.1.5 Definition. Let lilhe as in Definition 5.1.2. Then

corresponding to an integer r 5 [Ln] let .J'+(r)(J_(r)) consist of those

,
‘

1 1
integers 1 e [1,»:“1for which fr > e on swivel“< 0 on 5W1).

3.1.4 Theorem ([16] p. 55) A Recursion Formula. Suppose 1"l
is a polygon in R“L

,
F = (i‘l,...,i‘u):l’p* R“ and MP“)is sufficiently

refined relative to F, with regions at as in Definition
K

_l,...,pu_l
3.1.5.
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Then 2

i
d.(FPe)= 2: a(Fp_e)’ H' P4

1614(1)
1’ H 1’ “'1

where

-1

Fl
=

(f2,...,fu):b(PH)» a“ .

3.1.5 Freer of Theorem 5.1.4. Without loss of generality it

may be assumed that F is differentiable, for otherwise F may be approxi—

mated by a map, G, which is differentiable, for which d(G,Pu,Su)
=

d(F,PH,ep),and for which Ell is sufficiently refined relative to G

with the same regions paid(infra, also [26]: 6.2.1 and Lemma 3.1.6).

Then let X(ul,...,u,u_l) represent a differentiable parametrization of

MP“)and let w be any point on b-(Pu)at which F101)= (f2(w),.. .,

fu(W))
=

6W1. Then the following formula holds at such points W by

expansion of the determinant in the left member along the first row:

Br Br
. BE 61‘

_
l 1

(1) Au(F,a—ul,. . “run-l)
—

flAH_l(rul,. .

Um
) .

With the point Y of Definition 2.2.1 chosen to be the inter-

section of the positive first coordinate axis of FUl with the unit

p-sphere‘, d(F,P 9“) equals the number of points W as above for which
by

a small neighborhoad gets mayped in a one-to-one fashion onto a neigh-

borhood attaining Y with a preservation of orientaticm, minus the



20

number of such paints W for which there is a reversal of orientation

(see [225]: §5). However, unless the left side of (i) is zero, the

argument in [l], p. 466, shows that the sign of the left side of (:2)

gives the relative orientation of any such small neighborhood on the

unit sphere. If the determinant is zero at one or more such w we can

replace F by an approximation G so MP“)is still sufficiently refined

_
n 1relatiVe to s, uneven) — Manage“),and a(Fl,sH_l,eu_l)

if}. 5G
u ,...,

1 “11—1
vanish at such W for the mapping G. Hence, without loss of generality

i
.d(Gl,BM_l,8“_l),but the determinant Au“); ) does not

the sum of the sign of the leftwhsnd side of (1) over all W is

d(F,Pu,9H).
Note, however, that fl > 0 % W must lie in some Bil with

1 e J+(l). Finally observe that, excluding the factor of am, the

right member of (i) is simply the Jacobien of F1 with respect to the

parameters ‘ul, ...,uu_l, and that the points W are simply these points

in Bil at which Fl vanishes. Hence, by Remark 2‘25 (the degree in

terms of the Jacobien), the sum over all W of the sign of right—hand

side is X d(Fl,6_l,9“_l).This combined with the preceding pare-i€J+(l)
graph establishes the formula.

3.1.6 Lemma. Suppose that F, :6: Rn » R“, is continuous,
where :3 is some compact set in R“. Suppose further that b(.,0) is

sufficiently refined relative to F, with regions i_l,...,B:_land
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i
sets J (E), s = l, ...n in the definition of sufficient refinement.

Then there exists an I: such that 13(0) is sufficiently relative be G

Bl
ml

and J:(s), s = l,...,n are theif “F - G|| <,e,where the 13n_l,_---
same as those for F.

5.1.7 Proof of Lemma 3.1.6. The proof will :proceed by induc-

tion on u. If n = l the theorem is trivial. Let us then begin by

assuming that the theorem is true for (11 - l)-dimensional spaces with

n 2 2; further suppose that F: .11» R“, where 98c Ru, and the) is

sufficiently refined relative to F with the sets Bt‘l,...a:_l
i

van arbitrary r1 such that ft 750 on nd. From here, choose Ci r

. Take

1 ’ i

such that [h -GH-GH implies s1 is sufficiently refined rela-
ri i,ri n—l

tive to G, with the same sets as those for F ; set a = min 5 .

r , i,r1 1,13 1

= "
=For each such 1 and r1, set

51,1. mig llrr.(x) and set a

i Xsh_l 1
_

i/emin 5 , so that HF- GHGH => g (X) > 0 on sl ,. Set 9 =

i r r n—i

i,ri
’ i i

min(c',c"]. Then — G“ <2 % — GH<2", and HFri
—-

Gri||Gri||
for every i and.

ri- Hence, by definition of sufficient refinement such

G are sufficiently refined relative to F, Furthermore, a simple obser—

vation shows that the Bialfor G en be chosen to be the same as those

for F. The Ji(s) are then the same for both F and G. The theorem is

thus proven by induction on n.
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5.2 A Chargcterization of d§F,P,Gnl
in Terms of Certain Matrices

In this section, we present a characterization in terms of

matrices whose entries are $1. Thee matrices are formed by taking

the algebraic Sign of components of F evaluated at points on h(P).

Hence, we begin by defining 5511(F).

3.2.1 Definitien. If 1v(x) = (fl(X),...,fn(X)), 1= .. R“,

then Sgn(F) is defined by:

Sen‘) (X) =

(sen(fl(X)).- - -,sgn(Fn(X)))

where

5.2.2 Remark. The fact that 5311 y has only two values allows

one to economize on computer storage. Also, the results in [50] and

this paper are all true with Sgn(F) defined as above.

We now define the min terms appearing in our characteriza-

tion.

3.2.5 Deinition. If s = (Kyuuxn) is an (n - l)—simplex

in R'1 and Fzs-an, than the range simplex asecéieted with S and F,
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denoted (S,F)‘ is the n X 1:: matrix whose 1th row is Sgn(F(Xi)). That

is, if S = ()L—Lp..,Xn)is an (n —- l)-simplex in RF1and F =

(fl,...,fn):Rn .. R“, then:

Sgn(F(Xl))
mm) = I '

smog)

3.2.4 Definition. If 8,1“, and Mom) are as above, then

A(S,F) is termed useable if one of the following two conditions holds:

(a) 2(S,F) = (5i J) has only +l's on and below the main diagonal
’

and only (-l)'s in the ai i positions, for :L = l,2,...,n-l.
,

+1

(b) 6Q(S,F) can» be out into the form indicated in (a) by a suit-

able permutation of its rows.

5.2.5 Remark. It is often less cumbersome to formulate the

definition of use-able M53?) in terms of lobelings. To the kth row

of @(SJ‘) (for k = l,...,n) we assign a label 1k 5 [l,n] by letting

[k
= 1 - 1 if the first «1 (reading from left to right) in the kth

row occurs in the [th column; if there are no -l's in the Kth row, we

set [k
= n. It is easy to see that 6€(S,F) is useahle if and only if

£11,.. Uta] =[1, . . . ,n]. Furthermore, if R6,” is useable, then

Per( (S,F)) = 1 if and only if the permutation required to put the
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sequence 11,...ln in natural order is even, and Far (R(S,F)J = 1

if and only if that permutation is odd.

3.2.6 Definition. If M5,?) is a range simplex, then

ACSJ'T is said to have Egsitive parity or yarity +1 if the permuta—

requirea. to put Q(S,F) into form (a) of Definition 3.2.2 is even;

if that permutation is odd, then (S‘,F) is said to have negative

Exit! or Rarity -
. If Q(S,F) is not useable, then Q(S,F) has

parity 0.

For any range simplex Mam), the parity of «(5,3‘) is-

denoted by Par(6€(S,F)) .

The characterization in this section deals with the matrices

(’s,F). To enable us to prove our chracterization by induction we

next Liefine a number associated with submatri-ees oi‘ such (S,F) .

Suppose that the first column of 5Q(S,F) has only +l's in

it, and set Fl
=

(f2)...,fn). Also consider “0(5) = 2n(-l)k—1T
A k=l

where Tk
=

(XI,. .,,xk,...,xn). Then the range of simplexes

k1

«(Tk,Fl) can be gotten from 62(S,F) by deleting the first row and

kth column of «(8,F). However, ’I‘koccurs in the sum for 13(8) with

an orientation of (-l)k_l, and if the orientation of T is changed,

then ParM(T,Fl)) changes Sign. with this in mind we make the fol-

lowing definition .
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5.2.7 Definition. The net sum as of the Earities of the

ran 2 sim lexes associated with 51 lexes from b S and F1 is given by:

uu = En(-l)k_lPEr((quFl)).

k=l

For example, if

1 1 1

Map?) = 1 -1 1

1 1 —1

then the net sum is

'1 l l 1

6(5) = (—l)l-1Par + (-l)2>lPar
l -l l -l

l l

+ (—l)3-1Par = o + (-1)(-1) + o = 1
-l 1

Dealing with the aBOVe nations, the following Lemma will be

used to prmre Theorem 3.2.10 (the main characterization).

15.2.6 Lem . Suppose S‘,F, 62(S,F), and 11(3) are as above,

with n 2 5. If the second column of «(5,10 also contains only +l's,

then o(S) = o.
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gs Proof of Lemma 5.2.8. We will think of Par((S,F))
in terms of the labels 11,...,ln assigned to the rows of 6?(S,F) (of

Remark 5.2.5).

In order for 11(3) to he nonzero, Par(R(Tk,Fl));é o for some

Tk, where ‘1“kis as above. But this can happen if and only if [2, ...,n]
c (11,...,ln] from the definition of ll,...,2n and the definition of

Par(R(Tk,Fl)), so assume {2,...,n]c [11,...,£n]. But 1; [11,...,ln}
by the assumption on the second row of a(SlF). Hence, there are 11,1115

[1, ...,n] such that [k
=

1m and such that all of the other ta ’5 are

distinct. From this we deduce:

AS) = (~l)k-J'Per(6€(Tk,Fl))+ (-l)m-1Psr((Tm,Fl)).

It will now be shown that (—l)k_]?ar(\(Tk,Fl))+ (-l)m-LPar(4(Tm,Fl))
= 0. Consider these two possibilities for k and m:

(a) k and In are both odd or both even.

(‘0) k and 111 have opposite panties.

If case (5) occurs, then (—l)k-l= (—l)m_l.Suppose without loss-of

generality that k < m so that Par((Tk,Fl))is positive if and only

if the parity of the permutation required to put ll, . . .,lk_l,lk+l, . .

.,

Am,...)£n in the natural order is even, and Par(6€(Tm,Fl))is positive

if an. only if the permutation required to put the sequence 11, ...,

in the natural order is even. Since, 1 = l1k,...,1m_l,zm+l,...,zn k m,
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however, we can get the sequence [12 . . . ,tk, . . . ,£m_l,£m+l,. . . ,Ln from

ll, .. .,1k_l,lk+l, . . .,£m, . . .,£n by the (k — m)-cycle: (1191,...,£n) .

If k —

m is even, then the parity of this permutation is odd, thus

showing that Psr((Tk,Fl)) = -P'ar(~('Tm,Fl)).Hence, when k and m

have the same parity we have:

«(s ) = (—1)“ Perms F n + maer F >> = e
k" l m’ l

'

If we follow the same argument when k and m have opyosits perities, we

get:

a( s) = {(-1)“ + (—1)m’1]Par(R(Tk,Fl))= o .

Thus Lemma 5.2.8 is provan.///

Suppose now that P C Rr1 is a polygon, and that FzP » Rn

does not vanish on b(P). Then one need only examine the uses‘cle sim—

plexes produced from the sufficient refinement of b(P) in order to
‘

determine d(F,P,Sn). The renewing theorem (our main characterization)

makes this fact explicit.

3.2.10 Theogem {The Parity Theorem . Suppose F is an n-

dimensional polygon contained in Rr1 for same 11 2 2. Suppose further

that 3 is a finite set of (n - l)—simplexes such that U S = MP),
553



28

the members of S have disjoint interiors, and the simplexes in 3 make

bCP) sufficiently refined relative to Sgn(F). Then:

d(F,P,en)= 2: Ear(@(s,1v)).

Sex

otherwise stated, d(F,P,en) equals the number of useable simplexes from

members of 3 with positIVe parity minus the number of such useable

simplexes with negative parity.

3.2.11 Proof of Theorem 5.2.Lg. The proof will proceed by

induction rm n. Fir-st assume that P is a 2-dimensional polygon, that

F =

(frfz): P » R2 is continuous, and that X‘is a set of l-eim‘plexes

whose union is b(P) such that .8 causes b(P) to be sufficiently refined

relative to 5311(3). Then the conclusion of Theorem 3.1.4 holds with

u
= 2, s0 that

i
(1)d(FPe)=z c1(fao)’ ’ u‘ z, 1’

where the B:are as in Definition 5.1.2 and J+(1) is as in Definiticn

1
3.1.5. However, when n = 2 each Bl is a sum 0f S

i
s E where each

1

SJ 1
is a line segment in R2 for i 33 Smi and. i e J+(l). We write

;

S = (A ,B ) hereafter. HengeJ in View of Formula 2.2.1 we have
3,1 Li Li

(11) d(F Bi 0) = Emi[sgn(f(3)) - s n(f(A2’ 1'
5:1 3,1

5
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Combining (i) and. (ii) now gives

(in) amine?) =

‘g z“ [5311(1-‘(BJi)) - smut/L in
ie (1) 3:1 I J,

It will be shown that each [sgn(f‘(Bj’i))- sgn(f(AJ’i)]in (iii) can

be replaced by Par(0€‘(SJ,1,F))Without affecting the sum. Hereafter,

unless subscripts are important, 8 will be written for Sjli. First,

it will be shown that without loss of generality S S 55;:for some

i e J+(.'L)if and only if the first column of K(S,F) is (1,1)T. Clear—

15', if a g a: then the first column of Mgr) is (1,1)T. Per the

ccmrereIl supyese that the first column 61' R(S,F) is (l,l)T but

S t 13:fez- any 1 e J+(1). Then by the sufficient refinement hypothesis,

:2 >0 on s or 1‘ (Q on s, so that [sgn(f(BJi))
- szn(f(A i)1 =

‘, ,2

,Per-(Msm) = o. In this case, 5 may be included in the sum in

(111).

There are four ms‘bices Q(S,F) whose first column is

(1,1)T. These are:

(a) 1 1 (b) J. -1

l l l -J.

(c) -:L (a) 1 1‘
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These four cases are checked individually to prove the

theorem for n.
= 2.

Suppose now that the theorem is true with (n — 1) replacing

n, where n > 2; also let P c R?1be an n-dimensional polygon, let

F =

(fl,...,fn):P -o R” be continuous, and let b0?) =

8.25
S be suf-

ficiently refined relative to SgnU‘). Then the conclusion of Theorem

3.1.4 again holds with n replacing u, so that

:L

(iv)d(F,P,en)= z m Marl)a

iEJ+(1)
1’

where J+(l) is as in Definition 3.1.5 and. the Bil are as in Defini—

tion 3.1.2.

Em:J by the induction hypothesis, part. (c) of the defini-

tion of sufficient refinment, and the definition of a(S)J we have

(v)d(Fl,B:_l,en_l)= Par(R(T,Fl)) =

2i 17(5).2
1

_ (Bud) 555ml

for 1 a J.

It is first verified (infra; Lemma 3.2.10) that S need. be

included in the right member of (v) if and only if @(SJ‘) is useable.

Then we apply the fact that if M536) is usesble, 11(3) = Psr((s,F))

(infra, Lemma 5.2.12). Hence,
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(vi) 21 a(s) = 2 Per(0e(s,r)) = s madman)
5513 S useable SEE

n-l

Combining (iv), (v), and (vi) now gives the result of the

theorem. / / /

5.2.l2 Lemma. Suppose h(.5) is sufficiently refined rela-

tive to Sgn‘), S C b(oe), and M8,?!) is useable. Then S 5 [$111
for some i e J+(l). Also, suppose S E 13:1for some i e J+(l)

and @(SJ) is not useahle. Then 0(5) = 0.

5.2.15 Proof of Lemma 5.g.12. If 6?(le) is usesble, then

the first column of M5,?) is the only column which does not contain

both 1’s end -l's. But, by the sufficient refinement hyyothesis, at

least one component of F does not vanish on S. This forces

5 g {31:1for some 1 e J+(l).

Now suppose S g 5:4 for some i e J+(l) and @(S') is not

usesble. Then there are zero, one, or more than one -l in the second

column of @(S). If there are no -l"s in the second mlumn, then

5(3) = O by Lemma 5.2.8.

Finally, if there are one or more zeros in the second

column of «(5,10, and «(3,150 is not useshle, then there is a

J e {2, ,...,h} such thetj e ([1,...,ln]. In that case, Par((Tk,Fl))
= 0 for every k e [1,...,n] so 5(8) = 0.

3.2.1.4 Lemma. Suppose 42(S,F) is useable. Then 0(8) =

Psr( @(SJ‘M.



53

3.2.15 Proof of Lemma 5.2.14. Suppose MEI) is useable,

and set Ms) = >2“(-i)k'lTkas 111 Definition 3.2.7. Then, since :r.‘k
k=l

would not have any -l’s in its first aolumn, if Par( R(Tk,Fl)),4:0,

Per(R(Tk,Fl))
=

o for all but one 1:, e.g., k0. Let Pl be the per-amba-

th
tion on the numbers l,...,n required to put the k0 row of t{(8,17’)=

QHXI,...,Xn),F) into the first position (leaving the other ‘rows fixeni

relative to each other) anti let P be that permutation on 1.3,...)2

k0
-

l,k0 + l,...,n required. to put @(‘Or“uaoinbi‘into

form (a) of Definition 3.2.4. Similarly, let P be the permutation
5

on l,...,n required to put M5,?) into form (a) of Definition 3.2.4.

Then, thinking of P2 as a permutation on :1 objects which leaves the

first object fixed, we have

(1) P3
=

Pzpl

However, P1
=

(l,2,...,k0
- 1,11) is a k —cycle, so its

0

parity is the parity of the integer k0
- 1.. Hence:

ko-l
(ii) (-1) Par( @(Tk,F =Far((S,F))

0

ko-l
However, since (—1.) Par(&(T ,Fl)) was the only nonzero term in

0
the sum for MS), the conclusion of the lemma follows from (ii).///
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5.5 A Characterization in Tame of

Volumes and Determinants and

Analysis of £15 Characterization

Stenger [501’eombines Theorem 3.1.4 with other considera—

tions to produce the characterization in Theorem 3.3.1, presented

below.

5.3.1 Theorem. Suppose oOcRn is an n-dimensional polygon,

and that F: 00an is continuous, witn F0!) 766n for any X e b(.B).

Suppose further that A: (SJSSJis a finite set of (n — l)-aimplexes

such that b(o5) = Z S and that with Z, the) is sufficiently refined

353
relative to Sgn(F) . Then the following formula is true:

aw, awn)
= 2%“ z dew? (Sm)

55,3

373.2 Remark. In [30], agn(y) is defined by:

l x>0

san(y)= o x=o .-

-l x<0

As was mentioned earlier, however, one can replace this definition by

Definition 5.2.1 without altering the truth of Theorem 5.5.1.

Calculating the above determinants with Gaussian elimina-

tion requires more computations than deciding whether a range simplex
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is useable or not (Def. 3.2.4). Nonetheless, for n = 2 and n = '5,

the difference in computation times is not ‘very large. Moreever, when

one diViLies by Zuni,one knows that sufficient refinement has mt been at-

tained if the result is not an integer. mmhemore, the determinants

in Theorem 5.5.1 have magnitudes of at most 2(“z‘“>/2,so that this

device can be used. to guess d(F,a8,9n)with a high probability of

correctness, even Where sufficient refinement has not been attained.

5.3.5 Theorem. Let n 2 2. If An is an n—th order de-

terminant, the entries of whose matrix consist of only +1 and -l, then
2

the maximum value of [Anlis 2(n ‘11)”.

5. 5.4 Proef of Theorem 5.5.5. Apply the Gaussian elimina-

tinn process to the rows of the matrix to put it in triangular form.

Then nu element of the matrix after the k—th stage of the operation

has a magnitude larger than. 2k. Since the first through k—th rows re-

main unchanged during the k-th operation, and since the process tri-

engularizes the matrix in (n - 1) steps, the diagonal element in the

k-th row of the triangulerized matrix has a magnitude less than or

equal to 215-1for k = l,...,n. Hence

n-l g

lAnls jg 2k= 2%] k: 20‘ “0/3



CHAPTER IV

AMORI'IKMS

In the previous chapter, it was seen that d(F,P, en) could

be calculated in terms of simplexes éomprising NP), provided the

diameters of those simplexes 'were "small enough.” In order to

implement the theorems involved, one desires an iterative method

of "subdividing" the (n-l)-simplexes of MP) so that the diameters of

the resulting (n—L)-sim;olexesbecome small.

One such procedure is a generalization of bisection of line

segments in R1. To carry out this procedure on an (n-l)-simplex S,
we find. the longest line segment to be formed by taking the vertices

of S two at a time. The midpoint of this line segment is then used

to form two new (n-l)-simplexes. An illustration for (n - J.) z 2

appears in Fig. 4.1.. There the longest side of (A,E,C) is (A,C),
which has midpoint, M. The two new triangles (A,B,M) and. (M,B,C)
are formed by replacing C by M and A by M_vrespectively.

When bisections are carried out, too many (n—l)—simplexes
may be produced to be stored effectively in the machine. Further-

more
, a casual approach easily results in repeated evaluation of F at

the same points (infra), and. may also result in extra work to produce

a uniformly fine subdivision of MP), even though only some of the

simplexes 1n the subdivision need hare small diameters to assure



FIGURE 4-.1

A SIMPLE ILLUSTRATION 0F BISECTION WHEN (n—‘l)=2
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sufficient refinement. For these reasons we will introduce an ed—

dztess Scheme for labeling simplexes in subdivisions of b(P) produced

by bisection. This address scheme depends on a one-to-one correspon—

denoebetween the simplexes in the subdivisions and the nodes in a

binary search tree, where each node is labeled by an ozde’red pair of

integers.

Necessary conceyts about binary trees and the address

scheme are given in Section 4.2.

The remainder of the chapter is devoted to preacntation

and illustration of machine algorithms to compute d(F,P,Sn). In

Section 4.5, a simple algorithm [501 not requiring use of the address

scheme is given. In Section 4.45, modification using the address

scheme is explained. In Section 4.5, the action of the algorithm

in Section 4;.4 is illustrated on a two-dimensional example. In

Section 4.6, further modifications of the algorithm in Section 4.4 are

given. These modifications will improve the efficiency in special

cases, such as when the dimension of the space is 2 or 35, or when the

computational results are not going to be used in a generalized method

of bisection in R“. (This generalized method of bisection, used to

calculate roots of F0!) =

en, will be explained in Chapter V; the

generalized method of bisection in R11is not to be confused with the

bisection of the (n-l)-simp§|_exes in order to subdivide b(P), although

the two procedures are related.)
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4.1 Subdivisions of ‘nSP

4.1.1 Definition. Suppose S =

simplex in Rn. Then a Biggie subdivision of S is any pair 01? simplexes

one 1: and In between 1 and n and

(xl,...,xn) is an (11-1.)-

[ 51,32 such that, for 5

some A e

=

X“)and

m ll (x1, . . .,Xk_l,A,Xk+l,
. . .,xm, . . .,

1,A,Xm+l,...,x).s2= (xl,...,xk,...,xm_

4.1.g Regark. It follows from Definition 45.1.1 that S = 51+ SZ

if {51,52}is a simple subriivision of S.

Suypose that 3= [31], $1, 32,...JK

for each simplex T e AjwithJJ

[U,V} s; 834.1such

4.1. 5 Definition.

are sets of simplexes such that

either T e 331
or there is a yeir of simplexes

on of T. Then 83“-is callexi a ing—
thet {UN} is a simple subdivisi

generating subdivi~

division of 431,for i < j + 1. Any process of

sion of .8 is also termed subdivision a; .

4.1.4 Definition. If 13 = zmsiis a polygon, then sub—

i=1

of P are defined. in the natural way as unions of subdivi-

divisions

sions of the component sinmlexes of P.
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4.1.5 Definition. If [51,32] is a imple subdivision of

[s] =

((xv...,xn)), then [31,32]is termed. a bisection of (8}, or

for brevity, a bisection of S, if and. only if the paint A of Definition

4.1.]. is the midpoint (Xk+ KEV?of the longest one-dimensmnal side

(Xkim)formed from the vertices of 5 (here length of (X.1,XJ)can be

taken to be the square of the l distance “Xi- X1 Subdivisians
2

in which the component simple subaivisions are only bisections will

also be called bisection.

It is fairly easy to compute the vertices of the component

simplexes of a bisection of ‘5. Due to the follgwing theorem and the

fact that bisections are easy to perform, the algorithms developed

in this mark use bisectibn processas.

4.1.6 Theorem. Let s be an (n—l)-simplex. Let 151
= {s},

and. for J > 1, let allbe the set of (n—l)~simplexes forming bisections

of elements 01? £J_l- Then, as J -> w, the diameters of the elements

of [J tend to O.

The proof of Theorem 4.1.6 will appear later.

4.2 Trees

Here, a special type of binary tree is defined, and the

address scheme for madas in such trees and. simplexes in a subdivision

is presented.
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4.2.]. Definition. A simplex tree (binary tree) I is a

finite, partially-ordered set of points ("or nodes) with the following

properties:

(a) Each point of 3 either precedes no points or is the

immediate predecessar of precisely two yoints. If A precedes B, we

write A < B.

(b) There is a unique point SO5 tr , called the original

E111: (at which the_tree is rooted), such that no’ point of 3‘ precedes

SO, and all other points of 3’ follow «so.
(a) If 51 and SBfollow a point S and there are no 1151:1115

’I“.Lor T2 such that S (Tl <3:L or S < Tz < 82, then the pair [51,32]
is linearly ordered. The first element at” the Pair will be called

the lower paint from S and the second element will he called the

upger point from S.

(6.) Each point of 3‘ lather than the original mum: is

preceded by precisely one point.

4.2.2 Definition. Points of 3‘ which do not precede any

other points of v are called the leaves of :f .

If points are drawn in columns in R2 and. connected by lines,

and if the Grier is specified by letting points to the left precede

points to the right, then one can draw aimlax trees. Examylaa are

given in Fig. 4.2 and Fig. 4.3.



\Leaves

Orig1na1
Point

FIGURE 4.2

A 9-POXNT TREE

/Upper poi m:
from So

/Lawer p01 nt
from 50

FIGURE 4.3

A 5-POINT TREE

4].
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53,5 Definition. A bong]: of a simplex tree is any maximal

linearly-ordered subset of that tree.

With these definitions we can explore convenient methods of

labeling the nodes of simplex trees.

If d= [Synusx] is e simplex tree, then the location of

each SJ
5 3‘ with respect to the original point of :I’ can be labeled by

an ozered pair of integers (urns) as follows: Let 112
be the number

of points in the linearly-orered set = [S 6?}, S < S:J), i.e., let 112

be the number of points of 2! which precede SJ. Observe that G U [SJ]

consists of all points on the path in between the original goint and

SJ; reindex the elements of 6U [SJ] so that So is the original point

in this path, S1 is the first point to the right of the original point,

Si is the 1th point to the right of the original point, and Sn is the

point previously celled SJ. Then, for i e (l,...,n2], Si is eitheran

upper point or lower point in 3. Let us form the unique integer n:L

from this information by setting the ith digit in the binary expansion

of :11 (e.g., counting from the right) equal to 1 if S: is an upper sim-

plex and otherwise setting the ith digit in the binary expansion of :11

equal to zero. (It is assumed that nl has only n2 digits in its binary

expansion, thus assuring the uniqueness of n1.)

With the above definitions of n1 and 112, each point in ‘:1'

is uniquely labeled by the ordered pair (nynz). Fig. 4.4 on the

next page illustrates this labeling scheme, and later examples will

further clarify the concept (of. Figs. 4.5-4.8 and. Sec. 4.4).
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(0,0)

(8.4)

9(1),“

FIGURE 4.4

THE LABELING SCHEME
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4.2.1: Definition. The numbers hi and
112above will he

called location numbers, and the pair (nlmz) will be called a

location pair.

If [1i]:=l is a sequence of sets of simplexes such that

£i+l is s subdivision of 51 for i end .81
=

{so},we can order

the elements of .51 in a simplex tree as indicated in the fol-
i=1

lowing definition.

4.2.5 Definition. Let k, m, AJ S, S and 82 be as in the
1;

definition of simple subivisinn. We will say 5 < S and S < S
l 2’

we will furthermore distinguish El and S2 by calling $1 the M

simglex and. calling $2 the upper simplex of the subdivision [$1,82}
of 3.

Figs. 4.5, Aims and 4.7 show successive bisections of So
=

(A,B,C), and Fig. 4.8 shows the corresponding simplex tree. Note

that 31
= (A,B,D), $2

= (D,B,c), $5
= (D,B,E), and s4

= (D,E,c).

The indices of the vertices of these simplexes are written next to

the vertex inside the simplex. For example, the index of B in S
2

1s 2, while the index of C in 62 is 5; thus, 85 is the upper simplex

and 54‘is the lower simplex following 82.
In Fig. 4.8, the location numbers of the points in the

simplex tree are also given , illustrating the method of labeling

the smylexes in subdivision of So.
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C C

D

A B A B

FIGURE 4.5 FIGURE 4.6

THE ORIGINAL *SIMPLEX THE FIRST SUBDIVISION

C

FIGURE 4.7 FIGURE 4.8

THE SECOND SUBDIVISION THE TREE
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4.5 A Simple Bisec‘cion Alggrithm

Stenger ([30] p. 29) presents the following outline for

bisection :cf the (n—l)—simplexes cemprising b(P) and calculation of

d(F,»P,8n).

4.3.1 Algorithm. (1) Let p be a fixed positive integer.

(2) Read in S1
= (Yi,...,ri),...,sq= the

component simplexes of b(P).

(5) locate the longest segment (Yii)to be formed from

the verticee of SJ for J = l to q, and calculate each midpoint

A
J

= (xi+ yin/a.
(4) Replace each S;jby the two simplexes:

(‘1'j Y‘1 A Y‘1 Yi,...,¥‘gl)and
i,..., k_l, , k+l,...,

(x3 ...,Nk,...,
2'1 AYJ 2-11),{11—11‘ n1+l""’

thus storing Zq simplexem

(5) Replace a; by Eq.

(6) Calculate the sum appearing in Theorem 3.3.1; call this

sum 5.

(7) If 5 equals the previous sum, e, which moreover is an

integer, then to go step 5. Otherwise, set e“ 8, and return to

ate}; 3.
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(8)1! "‘
p

- 1. If P
= 0, then print q and 5 and stop.

The principal drawback of the above algorithm for higher

dimensions is that after i iterations, q-zi simplexes must be stored.

To illustrate the difficulty involved, take n = 5. Here, one may

need to do 20 or" more iterations, depending on F. If P were a simylex,

then MP) would consist of six é-simplexes, so that 6-220 = 2,097,152

simplexes would be in storage after 20 iterations. Since each simplex

has 5 Vertices, this amounts to 10,485,760 words of storage. (Many

large machines at present have only 50,000 to 200,000 words of fast

memory core.) Furthermore, the number of iterations required in-

creases as n increases for functions whose components have the same

degree of smoothness.

There are several avenues for modification of the above.

One is to not bisect each simplex each time, but to choose a single

simple): at each iteration, so that no more than ‘one bough of the

simplex tree (in the example above, a bough would have 21 simplexe‘s

in it) is eVer in storage at one time. With such methods, renundancy

in the functional evaluations to get successive @(Si‘) can also be

eliminated.

Another possible modification 1 to allow the lengths of

the bough in the simplex tree to vary (here, the length of 2 11011311is

the number of points in that bough).

Algorithm 4.4.1, in the next section, both keeps only one

bough in storage and allows the bough length to vary.
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4.4 Modifications of Algorithm 4.5.1

As was mentioned, to modify Algorithm 4.3.1 it is con-

venient to produce a tree for only one facet of b(P) at s time. From

there, one would do calculations for one bough of the tree for that

facet at a time, but keep track of which boughs have already been

done. Such a method shoum proceed so that information from the .

current bough which will he in common with the next bough considered

is store, but that the quantity of such stored. information will not

exteed that for one baugh.

The bough information consists of three arrays of matrices,

to be labeled SA, RA, and MA. The array SA contains the simplexes

corresponding to points in the bough currently being considere,

the array RA contains the corresponding range simplexes, and the

array MA contains information used to decide when the leaf of the bough

has been obtained (i.e., when the bough is of a sufficient size to

determine sufficient refinement).

Basically, a single iteration of the algorithm will consist

of the following steps:

(l) 1315th the current simplex S into two simplexes 51
and $2.

(2) Decide whether the lower simplex SI has already been

examined. If it has not“, than S‘- ‘S Otherwise, S ‘- S
l. a.



49

(3) Calculate R(S,F) = (z- ), and compare each r to
1,,J 1,3

the previous Iii 3,1 5 i, J g 11. Update the "agreement matrix"
1

M =

(mini)by mini
‘-

Ini’J + 1 if the two in 's coincide, and
1,3

mi’J
‘- 0 otherwise. Roughly, the information in the i—th column of

the matrix M gives how may itemtious (i.e., how many subziivisions)

have been carriecl out since a sign change in the i-th commonest of F

has been discovered.

(4) Determine whether the leaf has been obtained; simul-

taneously determine the ‘perity of «(5,3‘) by examining both the

entries of M and the entries of (S,F).

The information indicating whether the lower simplex has

already been examined is stored in an integer, n1, is the following

sense: If the simplex S of step (1) is n simplexee from the original2

simplex (i.e., if
:12 simplexes precede S) then the first 112binary

digits of mi are the first location number for S in the tree. (The

second location number, of course, is 112itself.) Hence, 51 of step

(2) will already have been examined if the sz-th digit of hi 13‘ 1.

0n the first iteration, mi is set equal to O, causing the

tough containing only lower simplexes to be considered}.

After a finite humber of bisections, a leaf is always ob—

tained. The location pair (ornz) is then stored in conjunction with

the parity of R(S,F). After this, the algorithm backtracks one unit

(:L.e., net 112
— 1), sets the nZ-th binary digit of mi equal to l, and
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sets subsequent digits of ni equal to o. The nZ—thentries of the

arrays SA, MA, and RA are retrieved and stored in S, M, and the

current 1R(S,F) matrix, respectively. Iteration of the algorithm is

then continued.

After the first tough (the one consisting only of lower

simplexes) has already been considered, it may be necessary to back-

track more than one step when a leaf is obtained. If the nE-th
digit of hi is equal to 1, then after

:12
“

n2
- l, the psrities of

the lower and upper simplexes following the nz-th simplex are added

together and stored along with the location psi:- of the simplex in

question. This "backtrack" procedure (this is not, a backtrack

algorithm as described in [6]J p. 7 ) is then repeated until a digit

of ni is found which is equal to o. The appropriate matrices from SA,

MA, and RA are then retrieved, and bisection iterations are continued.

The algorithm ends when it backtracks to n = 0 (this
2

corresponds to_the original facet) and finds that both the upper

and lower simplexes from this facet have been considered. This

happens when the first digit of n]: is I. Then, the sum of the parity

contributions of both the upper and. lower point are added, giving

the total parity contribution to the sum‘ in Theorem 5.2.3.0 (the

Parity Theorem).

The following algorithm formalize‘s the procedures described

above .
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4.4.1 Algorithm. (1) Let p be a fixed positive integer,

let max be the maximum allowed bough length, and let us be the maximum

number of points allowed in the tree.

(2') Read in the original simplex and store it in Si.
(3) Set 311 of the entries of the matrix M = [mi’J1:,3‘11

equal to zero.

(4) ni« o, u2~ o, K<— 1.

(5) Calculate @(SPF)and store in R2. (k(Sl,E) can be

stared in a vector with only n words in it by storing the i-th row

of @(SvF)in the i-th word; set the j-th bit of the i-th word equal

to 0 u r
—

—1, and set this bit equal to 1 if ri
= +1.)

1,;
'

n
(6) M14- 112,SAl« s1, MAl [ojilFr

,J

(7) nzs- :12
+ 1.

(8) If n2 > max, then stop.

(8) Find the bisection of S Store the lower simplex1.

back in SI, and store the upper simplex in 52. Store k and m, where

(er) was the longest side of the old 81.
(lo) Examine the nz-th binary digit of 111'. If this digit

equals zero, then go directly be step (ll). Otherwise, ST“ 51,

$14- 32, 52* ST, nt~ In, m‘*- k, k‘- mt.

(11) P1
4-

Hz.
(12) Calculate «(syn and store in R2.
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(3.5) Compare the (i,j)-th entry of R1 with the (LN-“Eh

entry of If they are the same, then mi”j
v

mini-fl. Otherwise

m * 0. Do this step for 1,3 = l,...,n.1,3

(14) Determine whether a leaf has been obtained and if so,

determine the parity of R2. If a leaf has imdee been gbteined then

go to step (17). OtherwiSe, continue to step (15).

(15)RA «R SA «5 m. «M.
1124-1 2’ nz—rl 2’ nz+l

(16) Go back to step (7).

(17) Store the parity of R2 in Dk
biba‘ry digits of :11},n2) in wok (the array D has length

5 store the location pair

([first 132

ns, as does the array of pairs of numbers LOO; the values in [DC are

used to identify which points of the tree the values in D belong to).

(is) K« K + 1.

(is) If the n -th binary digit of ' is c then go to
2 n1 ’

step (24). Otherwise, continue to step (20).

(20) n2
«

n2
— 1.

(21) If n = 0 then go to step (as).
2

(22) Search through LDC A = l to k - 1., until the lacs—
1)

tion numbers for the upper end lower simplexes from the simylex at

({first 112digits of n1], [32)are found, say in the jl—Et and 32-116.
positions. Then sd D and D and store the sum it: Store

.31 dz’
2

- 1 digits of mi]! 112)in KICK,then 10- K + l.

(.25) If the nz—thaigit of hi is 1, then return to step

({the first 11

(20). Otherwise, continue to step (24).
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(24 Set the n —th digit of n‘ equal to l and set all2 l ’

subsequent digits of ni equal to zero.

(25) R24- FADE,
M‘—

MAnz,sl« aqua.
(26) nze- n2

- l.

(27) Return to stay (7).

(28) Find the location pairs (0,1), and (l,l), and add

the correegonding D‘s together. This sum is the total contribution

of the original facet to the sum of the paritiee of the simplexes

comprising b(P') .

The above algorithm is repeated until sllrof the facets

of b(P) have been considered. The total contributions are then added

to get d(F,P‘,Gn).
A flowchart for Algorithm 4.4.1 will appear in some addi-

tional work.

Determining whether a leaf has been obtained and determining

the value of Per( @(S,F)) are important parts of Algorithm 4.4.1.

Determining when a leaf is obtained and determining Par(@(S,F)) can

be done simultaneously by examining in sequence either the rows or

columns of M and @(SJ'). Since the columns of ads,“ represent the

behavior of the individual components of F, examining the columns

may lead to a more efficient version of Algorithm: 4.4.1, but

examining the rows is simpler. The following algorithm accomplishes

the task by examination of rows.
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4.4.2 Algorithm. (1) Choose, a priori, a parameter p.

(2) 14- i, 3« 1.

. If m(3) Examine m <;: do step (4). Otherwisev' Iin] 1,.1

do step (5).

(4) Return to Algorithm 4.4.1 with instructions to continue

bisection.

(5) Check ri’j. If
r1,J

= -1, then go to step (5). Other—

wise go to step (7).

(5) ki“ J-

(7) :w— J + 1.

(E!) If 3 s :1, return to step (3). Otherwise, go to step (9).

(9).?“ 1, 1+ 1+1.

(lo) If‘ig 11, return to step (:5). Otherwise, go to step (11).

(ll) Attempt to put the ki‘s in order of increasing magni-

tude. If two ki's are equal, then Par(&(S,F)) = 0. Otherwise

Par( Q(S,F)) = -1 if the permutation of the ki‘s was odd, and

Per( Q(S,F)) = 1 if that Permutation was even.

4. 5 An Exam]:

The following example illustrates the working of Algorithm

4.4.1.



4.5.1 Exaggle. suppose that F(X) = (£100, rang), Where

= (x,y), £100 = x2 — ya - 2L, and 12(X)
= x2 + y2 — 2. Suppase

also that P is the rectangle [0 5 x 5 2; 0 5y 52]. Then compute

d(F,P,Sn)via. Algorithm 4.4.1.

4.5.2 Cumgutations for Exaggle 4.5.1. The polygon P is

drawn in Fig. 4.9. To begin the computations we write MP) as the sum:

HP) = (A,B> + (5,0) + (0:13) + (ILA)

where A = (0,0), B = (2,0), 0 = (2,2), and D = (0,2). The number

d(F,P,en)will then be the sum of the parities of the range simplexes

formed from the above four simplexes, provided that each is subdivided

so that b(P) is sufficiently refined relative to F.

Places where all but one of the components of F vanish on

the boundary are in this case simply the poins on b(P) where

fl(x,y) =

0 or f2(x,y) = 0. These are marked in Fig. 4.9 for clarity.

One immeéiately sees that (B,C), (C',I>)J and (D’A) need no further

subdivisions to satisfy the definition of sufficient refinement.

Furthermore, the zeros of fl and f2 on (A,B) are simple; hence it

is easy to check Sgn(F(X)) for X e (A,E).

The Value p
= 1 will be used. to demonstrate the action of

Algorithm 4.4.1. on (A,B). For eanh iteration, the following will be

given: 112, the binary and decimal reyresentatiou of the current 111:,
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the lOWer and upper simplexes El and 82, whether either 51 or $2
is chosen to be bisected further, @(S,F) and M. It will be assumed

that ni has five binary digits. When the i-th binary digit of n]:
is referenced, it will refer to the Iz-th binary digit from the right.

After each leaf is obtained, a table of the parity con-

tributions which have already been stored; a figure of the portion of

the tree which has already been examine&, and. ‘a figure showing the

correependenee between the points in that yor‘bion of the tree and

segments of (AA!) will be given.

Simplexes will be listed in matrix fem, with the i-th row

containing the coordinates of the i-th point of the simplex.

To begin the process, set

0 0

s1
= (A,B) =

50

Also
,

nzo—o, n]:
‘—

(mom)2
= o,M =



and

RAl'Rl

“14—81
a 0

MA 4-

1
o a

New for the first iteration:

Iteration l.

= . = =

n24- :12 + 1 1, nl (00000)2 o

l O, 0

$1
= and S2

=
.

Z l ,0

Since the first digit of mi is 0, SO“-‘Sl. Now

3. -l O 1.

32
=

Mayra)=

, so M =

J. l l 1

Since 1111l
= 0, it is determined that a leaf has not been obtained.

J

t. ._ s (— .

_Hence, MAZ M, SAZ 0, RAZ 32, and iteratio proceeds
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Iteration 2 .

1-5 0 l O

0 2 1.5 0

Since the uz-th (second) digit of mi 13 0, S ‘- Sr . New R1
‘- R

.o 1 2’

and the new R2 15:

R2
= mo‘)= .

r1 1

Comparing and R again gives8

It is determined that a leaf has not yet been obtained (one encounters

m1 2
i 0 in the check for the parity of R2) so bisection is continued.

1

Iteration 5.
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Since the third digit of n3: is 0, so” 31.
NOW 132" R1 again, ancl

l 1

l 1

Another comparison of R2 gives:

the parity of is zero without
)

It is new detemined that

p
= 1; hence, the Leaf

ry of M which is less than

encountering an ant

etian psi: and the parity ‘(ze
en obtained. Store the 10C

to) in

has be

the k—t‘n (l—st) position of the arrays:

mam ‘— (o, 3)

DEG(K,1)« 0

Also

K*K+l=2.

The finished part of the tree appears in Fig. 4.10.

In Fig. 4.11;, the actual subdivision of (A,B) is Shawn

and labeled with their corresponding location pairs.



(0.0)

(0.3)

FIGURE 4.10

THE TREE AFTER THREE ITERATIONS

(The Parity Contribut1on of the point at (0.3) has been stored.)

(0.2)

Ao—____4—o——o—cB
v
(0:3)

\—W——‘_J

FIGURE 4.11

SUBDIVISION 0F (A.B) AFTER THE THIRD ITERATION
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In Fig. 4.1.2, the matrix arrays SA, RA, and MA are given.

The third digit of 111 is new 0. Hence, the third igit of

n1 is set equal to l, and all subsequent digits are reset to zero,

giving :

n1
=

(00100)z
= 4.

_
1:11

New n2 n2
— 1 — 2, and the n2

R24- RA = EMS), S k SA(5), and M‘- MA(5). Iteration than can—

n2+l l

aigit cf :1]:is 0. So,

tinues.

Iteration 4. .

o- = '= = ‘—

n2 nz+l s,n (came)z 4,111 R21

1-75 1 1.5 0

s1
=

5 s2
=

2 0 1.75 0

1

Since the third digit of n‘ is nbw 1, S ‘- S
,

so R ‘-
, and

l O 2 2
l l

2 l
M‘— . Hence, it is determined that the parity Bf is z’ér and

S 3

a leaf has again been obtained. Consequently, as before: IDC(K) -

(wag) = (m)

DEG-(K)« o

K"K+l=5.
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11 SA RA MA

1 0 0 —l -l O 0

2 0 l L G O

2 l 0 l —l O l

2 O l l l l

3 LE 0 l l l 0

2 O l l 2 2

4 N.D.* N. D. NJ].

5 N.D. ELI}. BLD.

*The letters N.D. mean that the corresponding element has not been
defined yet.

FIGURE 4.12

THE MATRIX ARMYS AFTER THE THIRD ITEEATION
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The third digit of mi is now 1, so

n2
«

n2
— l; the points

in the table of IDC(K) and DEGUQcorrespanding te the point at (0,2)

(0 is the number represented By the first two digits of are added.

together (these happen to be the only, two points previously stored in

this case) and stored:

Inch») <- (0,2)

DEG(3) « 13mm + 13mm = o.

The table for the current tree infcmation appears in Fig.

4.15, and the corresponding portion at the tree and subdivision of

(A,B) appear in Fig. 4.14; and Fig. 4.15, resyectively. The current

matrix arrays are still the same as those in Fig. 4.12.

Now n2
4-

n2
— l = 2; and the second. digit ef n]: is 0, so that

digit is set equal ta 1. All subsequent digits of mi are set equal to

0 so that ni
=

(ooolo)2
= 2.

80, R29-BA(2), Slb SA(2), M‘- MMZ), and. 212‘- n + l;2

iteration is then continued.

Iteration 5 .

I— = V: =

112 n2+1 2,nl (6001(1)22,Rlv-R_,a

1.5 O l 0

O 2 .5 0
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LOG (K) DEG (K)

(0,3) 0

(4,5) 0

(0,2) 0

FIGURE 4.13

TABLE OF TREE MOI-NATION AFTER ITERATION 4



FIGURE 4.14

THE TREE AFTER ITERATION 4

(The po1nts are numbered according to how the tree

information appears in the table.)

3

HH
a———-—o———o—o—oA B

2 1

FIGURE 4.15

SUBDIVISION‘OF(A,B) AFTER ITERATION 4

66
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Since the second digit of mi is i, so“ 52, and R2.- . Com-

paring R
, El and the previous M now gives

1 2

It is now concluded that a leaf has been obtained and that the

parity of R2 is l. Hence,

100(4) .— (nl,n2) = (2,2)

DEG(4) v 1 .

K*K+l=5

The second digit of n]: is now 1, so n2
*-

n2
- l and the points

in the table which follow (0,1) in the partial order are added to-

gether. These are points numbers 3 and 4 in the table (the points

to be added together are not necessarily the last two points in the

table; in fact, they very often are not if p > 1), with looatian num—

bers (0,2) and (4,2). (The location numbers of the two points im~

mediately following the point (urns) can be calculated by the follow—

ing rule: their common second location number is n + 1, while the
2

location number of the lower point is equal to
:11, and the location

:1

number of the upper point is equal to 111+ Z a.) From this, the total

parity contribution of the point at (0,1) is stored:
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LOC(5)~ (0.1)

DEG(5) v DEG(4) + DEG(5) = l .

KhK+l=6

The table for the tree information thus formed appears in Fig. 4.15,

and the corresponding tree and subdivision appear in Fig. 4.17 and

Fig. 4.18, respectively.

The matrix arrays remain unchanged.

Now 11 ‘ n
2 2

is again checked, but found. to equal 0. Set this igit equal to l and

- l = 1 again, and the ugh(first) digit of mi

set all subsequent digits equal to 0, Sp ni
=

(00001),2
= IL. New

32" RA(1:12)
= 5M1), 50“ BAH), M‘- M(l), nab n2

-

l, and itera-

tion is continued.

Iberatiog 6 .

n «n +1=1, n'=(ooool)=1, th-R.2 2 l 2

l O O O

31
=

J. 52
=

2 Q
'

l 0

th .
Since the n2 digit of ml is 1, so

b

82. From this,

-1 -l l 1

R2
‘- and M« .

l -l l. O
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1.00 (K) DEG (K)

(0,3) 0

(4,3) 0

(0,2) 0

(2,2) 1

(0,1) 1

FIGURE 4.1a

TABIE OF TREE INFORMATION AMER I‘I’EEATION 5



FIGURE 4.17

THE TREE AFTER ITERATION 5

FIGURE 4.18

SUBDIVISION 0F (A,B) AFTER ITERATION 5

70
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It is concluded that. the leaf has been obtained, and the parity of

R2 is 0.

Hence:

109(5) « (nl,n2) = (Jul)

mm; « o

The backtrack-search scheme is initiated, but it is found

that me
= l and the first digit of ni is 1. This implies that all

leaves in the tree haVe been obtained. The total parity contribu-

tion of the side (A,B) is found by adding the contributions of the

points with location pairs (0,1) and (1,1); this total contribution

is found to be 1.

The completed tree information appears in Fig. 4.19. The

completed tree and subdivision appear in Fig. 4.20 and Fig. 4.21,

respectively. The roots on (A,B) of fl
= 0 and £2 = 0 are marked by

X's.

The trees fez- the ether three sides of h(.0) are even

simpler. The total contributions the these are all 0, so b(F,.,6,62)
= 1.

In this case, it is easy to solve the system exylicitly

for the roet within the region, and ascertain that J(F) >0 at that
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K Lon (K) DEG (K)

1 (0,5) 0

2 (4,3) 0

5 (0,2) 0

4 (2,2) 1

5 (0,1) l

6 (1,1) 0

Total 1.

FIGURE 4.19

THE COMPLETED TABLE OF TREE INFORMATION



FIGURE 4.20

THE COMPLETEDTREE
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v 4 3

\r—Nmr-A
 /\ RAW.)

2 'I

Wag
6 5

FIGURE 4.21

FINAL SUBDIVISION 0F (A,B’)
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met. From Remark 2.2.5, doing so verifies that the calculated. degree

is correct .

4. 6 Further Modificgtiong

Additional efficiency can often be gained by further

modifying Algorithm 4.4.1 to handle special cases. For example,
one may not wish to find. a root of F0!) =

9n by using information

gained from calculating D(F,4B,en). A modification eliminating un-

necessary storege and complexity to be applied in this case is ex—

plained. Also, modifioetions to eliminate redundancy in evaluations

of F(X), better tests of sufficient refinement, modifications to

reduce the amount of memory required, and special considerations

when n is small are discussed below.

Many of these modifications should be routinely built into

any program, and numerical results obtained ‘by including them will

appear in later works.

4.6.1 Calculating dan ). Only. When no generalized

bisection of the n-simplex is to be carried. out as in Chapter V, no

labels need be attached to any of the elements of DEG (i.e., KC

need not exist). Recall that DEG was the array containing parities

or Sums of parities, and Inc was the array of addresses of simplexe‘s

corresponding to these paritiea. Also, according to this modifica-

tion the only elements of DEG to be stored are those corresponding
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to the actual parities. When all leaves have been obtained, then all

of the elements of DEG are added together to get the total contri-

bution.

With this modification, the amount of memory need. is cut by

a factor of approximately twoJ and. the routine to search through the

elements of the arrays ICC and DEG after completion of a branch is

totally eliminated. This can constitute a significant saving of time,

especially in higher dimensions where the trees must be large.

4.5.2 Removal of edugdgncx. Another modification of

Algorithm 4.4.1 is, instead of storing the simplex which was chosen

for further bisection in Sling,to always store the upper simplex.

Also, if (,Xk,Xm)Were the longest one-dimensional segment formed

from the points stored in S and A were the midpoint of (wam),1

then only need be evaluated in order to produce the range

simplexas for both the upper and. lower simplexea from 51, To get

the range simplex corresponding to the‘ lower simplex, replace

the kth row of «(syn by Sgn(F(A)), and to get'the range simplex

corresponding to the upper simplex, replace them}Chrow of

481$) by Sgn(F(A‘r)).

Let us assume that, using the above mode of calculation,

the upper simple: formed from each bisection has been stored in the

array SA, the range simplexes for the upper simplexes, have been stored

in the array FA, and the matrix M has been computed for each upper
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simplex and stored in the array MA (cf. Fig. 4.22). We then do not

need to backtrack as far as before, and step (25) (the information

retrieval step) of Algorithm 4.4.1 becomes:

1: +1.J
M‘v MAD+l'

Rs-EA slew:
2 Z

22 h2+l

Step (26) is than eliminated, and we return to Step (14) (determin-

ing if leaf has been obtained) instead of Step (7) (beginning of the

bisection process). Also we must reverse the order of Step (l4) and

Step (is) (determining obtainment of the leaf and storing bough

information). In Modification 4.6.5, a modification for the test for

sufficient refinement is given for which the matrix M gotten from

considering the upper simplex is the same as the corresponding matrix

for the lower simplex, so that additional computations are not re-

quired.

With the above modification, there is no redundancy in the

calculations of bisections or in the functional evaluations; i.e.,

F0!) is evaluated at most once for each point X. It is seen by

examining the possible trees that this modification removes more than

1/ 3 of the functional evaluations previously required without

sacrificing anything other than a slight increase in complexity.

4.§.3 Use of Determinant . The Algorithm 4.4.1 can also

be modified so that Theorem 5.3.1 is used instead of Theorem 3.2.10-
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FIGURE 4.22

A POSSIBLE FIRST ITERATION OF ALGORITHM 4.4.1

WITH THE MODIFICATION DESCRIBED IN MODIFICATION 4.6.2

(A branch end was reached when n = 4)2
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As was mentioned, use of Theorem 5.2.10 requires less computations

per iteration than Theorem 5.3.1. There is an additional test of the

correctness of the result however, when Theorem 5.5.1, requiring

calculation of determinants, is used.

To implement Theorem 5.5.1, the deteminants corresponding

to both @(51,F)and (SZ,F)(see Theorem 5'.5.l) are evaluated after

step (12). The matrix M and the array MA are replaced by an integer

m and an array of integers me. It may now he said that there has

been an "agreemen" with the previous iteration if either det (“(5,”)
= O or det(6Q(Sg,F))= 0. Again, a parameter p is specified, a

priori‘, and it is decided that a leaf is obtained when there have

been 1: successive agreements.

When the leaf has been obtained according to this new

criterion, det(@(Sl,F)) and det(4(SZ,F))are immediately added

together to get the contribution of their predecessor in the simplex

tree. This contribution is stored along with the location pair

corresponding to the predecessor. The rest of the algorithm proceeds

a before.

After the total contributions of the various facets of b(P)

are found and added up, however, the result is divided by Bun! to get

d(F,P,en). If d(F,P,en) is not an integer, then it is not correct.

In that case one may wish to do the calculations over again with a

larger value of P.
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If the computer has a sufficient amount of storage spaceJ

one can store the simplexes and range aimlexes corresponding to

leaves. In the event an incorrect degree has been calculates, the

buughs can then be lengthened without redundancy in functional

evaluations, although a totally new table of DEG and LOU must be

computed. Though requiring much memory, this scheme might still be

better than Algorithm 4.3.1, since it allows for nonuniform sub-

divisions.

4.6.4 Reducinz the Amount of Memerv Required. Bisecting

the simplex may be relatively easy compared to evaluating 531104").

One may then wish to store only the range simplexes and M, and cal-

culate the appropriate 3 after each backtrack instead of retrieving

it from memory. Since the range simplexes can be stored in n words,

oeleting SA and keeping only RA and MA reduces the total storage by

a factor of approximately 2, for high dimensions.

$6.5 Various Test for Sufficient Refinement. There are

various ways of testing for sufficient refinement: the definition of

the entries of each matrix M can be altered, and. (as was seen in

Modification 4.5.5), it is not necessary to use a matrix, M. Two

additional methods of testing will be mentioned here.

First, suppose (wal) is the longest side of the (11—1)-

simplex S, and P = + X/z. Then m? m + 1 if Sgn(P) =

Sgn(xk)
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or Sgt-KP) -

Samoa);otherwise m“ 0. A leaf would then be obtained

when m > 1). It is easy to show that m~ m + 1 after each step after

sufficient refinement. With this method, no matrix array MA need

be stored.

Another test for sufficient refinement involves a change in

when we advance the entries of M. We would advance each entry

'(i.e., mi,J
*-

mi’J + l for i,J = l,...,n) after a given iteration.

Then, if (Xk,XIV)was the side whose midpoint had been found, we would

Set mk’J
" 0 only if the (k,.j)th entry of R1 equals neither the

(k,.1)th entry of R2m the (L,J)th entry of R
, forJ = 1,...,n.

If n = 2, this procedure corresponds to setting l4- 0
1

+5
sgn {1m

differs from both sgn fJ (A) and sgn {1(5),for J = 1,2. This case

if

is illustrated in Figs. 4.23-4.26. Since it is assumed fl is posi-

tive in all cases considered, the first column of R1 and. R will be
2

(1,1)Tin all cases; hence, neither ml 1
nor m2 2

would be set to
J J

0. Similarly,

sgn {f2w = 55“ {ram}

in Fig. 4.24:, and neither m2 1
nor m

y 12 2
would be set to o. In
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FIGURE 4.23 FIGURE 4.24

f2 CHANGES SIGN f2 CHANGES SIGN

1’2< 0
A_.____

2

f2 < 0

FIGURE 4.25 FIGURE 4.26

f2 DOES NOT CHANGE SIGN f2 CHANGES SIGN TWICE

These figures illustrate the second test for sufficient refinement
described in Section 4.2. It is assumed f2 > 0 on (A,B) in 311 four
figures.
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Fig. 4.25

+

sgnfzfz)
equals both 5311 fa“) and. sgn £203),and neither

ml)2
Mr :71,

2 ’ z wguld
be set to 0. In Fig‘ 4.26

A+
=

sgn f2 ( EB) +l,

= = .
_ o = .l .while sgn f2(A) 5311 £203) 1 Here, (11172“if k l (1 e

,
if

Z ,B)

will be considered in the next iteration), and mag
" 0 if k = ‘2 (if

on A?)

will be considered).

This last test seems to be the best 126 use in most cases.

The test reauces to the question: Does fi have the same Sign at the

midpoint of (A,B) as either rim) or £103)? If the answer is no,

this means that a 5151: change of f1 has been detectéd by including

the point (A + EVE, but which would not have been known if only



CHAPTER V

A GMERALEED METHOD OF BISECTION

The yumose of this chapter is to introduce and analyze an

algorithm for obtaining approximate solutions to F(X) =

amwhere

FzP CRn e Rn is continuous. This algorithm will be based on repeated

use of Algorithm 4.4.1. In the first section of the chapter, "bisec-

tion" of n-sim‘plexes is defined in s manner analogous to bisection of

(u - l)-simp1exes. In the second section, Section 5.2, a relationship

between bisection of an n-simplex and bisection of the (nn- l)-sim®1exes

on its boundary is investigated. In Section 5.5, this relationship is

useci in an algorithm to compute approximate fixed points of F by re-

peated bisections of a simplex S for whieh d(F,S,9n)y0. Some pos-

sible occurrences when using this algorithm are analyzed with examples

in Section 5.4.

5.1 Bisecting the n-dimensionel Region

Suppose that S =

(X0,Xl,...,Xn) is an n-simplex in Rn and

ms + R“. Suppose further that. d(F,S,en) ;£ 0‘ has been computed by

Algorithm 4.4.1.. Then by Kronecker's Theorem (Theorem 2.2.4), there

exists a solution of F0!) =

en in the interior of S. With this situa-

tion, one can think of the entire region S as being an eyproximate so-

lution of FCX) =

en.
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Such an appmximate sélution may be etimated more accurately

by "bisection" of S. The n-eimplex S is bisected in the same manner

as described in Section 4.1 for (n - l)-simplexes (of. Fig. 5.1).

This is femalized in the following definition.

§.l.l Defigition. Let S =

(X0,.. UK“)be an n-eimplex, let

(xK,xm)be the longest segment to be formed from the verticea of S and

let A = (‘xk+ xm)/zbe the midpoint of (xk,xm)(cf. Sec. 4.1). Then

if:

51
= (xo,xl,...,)§S_l,A,)3‘+l,...,xm,...,xn)

and

82
=

(xo,xl,....xk,...,xm_l,A,xml,...,xn)

one has:

S=Sl+82.

One says that the n simplex S has been bisected, and that {51,52}is

g Qisection of 5. ‘One further refers to the n-simplex $1 Bethe logger

simplex and to the n-simplex 82 as the gpger simylex correspomling to

the n-simplex S .



FIGURE 5.1

BISECTION 0F n-SIMPLEXES WHEN n = 3
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Suppose that the n-simplex S is bisected and that there are

no solutions of F(X) =

en on h(Sl) or 12(82).Then one has:

d(F,S,Sn) =

d(F,Sl,Sn)+ sways“) (see [26] p. 153 and [5].

Hence, uneven) 7! o for i = 1 or 1 = a or bath 1 = 1 and 1 : .2. If

d(F,Si,6n) is determined to be nonzero, there is a root of F(X) =

‘Gnin $1. The diameter of Si, however, is Likely to be smaller than

the diameter of S. The process thus stated can now be continued with

Si replacing S.

If d(F,Si,8n) were found without using results of previous

computatins once d(F,S,6n) is calculated, there would be computational

redundancy. The following section explains where the redundancy would

occur and how it is avoided.

5.2 Using the Previous Tree Information

In this section, Theorem 5.2.1 and Theorem 5.2.5 set up a

relationship between tree information for 11(8), where S is the original

n-simplex, and b(Sl) and b(sz), where [51,32] is the bisection of 3.

5.2.1 Theorem. Suppose thets, (Kw,meA, $1, and ‘52are as in

Definition 5.1.1. Then if i 75k and 1 7f m, the 1th facet (Def. 2.1.6)

of $1 is the lower simplex for the 1th facet of S. Likewise, the 1th

facet of 82 is the uyper simplex for the 1th facet of S.
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5.g.a Proof of Theoreg‘ 5.2.1. Let T1, Ti, and T:denote

the ith facets of S, S
, and S

, respectively. Then:
1 2

i,
mi=(—1)(xo,...,xk,...,xi,...,xm,...,xn),

11HP
1
(—1) {Xo,...,xk_l,A,xk+l,...,21,...,xm,...,xn),

and

2 1
.

Ti: (-1) (x0,...,)si,...,‘ki,.. ,Xm_l,A,Xm+l,...,X) .

It is seen that ’1‘:is gotten from T1 by replacing the Vertex )8; of Ti
by A, and that Ti is gotten similarly by replacing the vertex Xmof

Ti by A. However, since the vertices of T1 are all vertices of S and

(Xkim)was the longest one-dimensional segment of S, s-fortiori,

(XkJXm)is the largest ans-dimensional segment of Ti. This shows that

the bisection of T:Lis [Tji‘i].Furthermore, Xkand Xmappear in the

same order in the list of vertices for 'I‘ as they did in the list of

vertices for ‘5, .50 T1is indee the lower simplex and TEis the upper

simplex.//

The next theorem pinyoints how much new inférmati‘on is needed

to calculate d(F,S e ) and d(F,Sl, n Sn), given the trees for d(F,S,€n).a:



90

5.2.5 Theorem. If 5, El, 52, and (Xk,Xm)are as in Defini-

15 equal to the kth facet of S‘Y1

whereas the mth facet of ‘52is equal to the nth facet of S. The mth

tio‘a 5.l.l, then the kth facet of S

facet of $1 has no interior points in common with any facets of S. Haw-

ever, the mth facet of Si is- equal to -('-l)mnktimes the kth facet of

Hence, 1: Hi= (—1)irrj,where Maj)
= z“,(-:L)in?5I=

1:113,(.1=S

i=0
12.

1,2) theh ui=~ui.
Theorem 5.2.3 is illustrated in Fig, 5.1 with n = 3, k = l,

and m = 5. There, 81
=

(XO,A,X2,X5)lies to the right and. rear, and

s2
= (x ,xl,xz,A) lies to the left and front. The kth facet of S1 is

(xo,x2,x5),which equals the kth facet of s. The mth facet of 51 is

(X0,A,X2),which equals the kth facet of 32. The mth facet of s2 is

(walz), which equals the mth facet of S. One sees in the figure

that (XO,A,X2)is, indeed, a "new" face. This new face "cuts" all

but the old kth and mt11facets into bisecticns.

Thus, only the nth facet of 31 or the kth facet of 32 need

be dealt with, once the trees far 8 have been calculated.

5.2.4 Proof 0; Theerem 5.2.5. The kth facet of S is:

(—1)k(—1)k
”

x x >0,...,Xk,..., m,..., n»

whereas the kth facet of S‘ is simply:l

k A

(-1) (x ,...,XK_1,A,35{+1,...,Xm,....xn).
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Since the only difference between S and 51 was their kth vertex the

above two facets are identical. A similar argument sho'we that the mth

facet of S equals the nth facet of 8-2.
To prove the remaining aseertions of the theorem, consider

the m’thfacet of 81:

‘ 1
_

,y
A

Tm
—

(x0,. . . ,Xk_l,A,xk+1,. . .,xm_l,xm,xm+l,. . . ,xn)

where A t 0513Xm)/2. Since the verticee of S are linearly independent,

it follows that the interior points Inf '1‘;are interior points of S and

hence, not On any face of S.

To complete the proof observe that

vi = ‘(-1)mT:=—(-1)m(-1)"‘"*r:In

H —<-1)“<-1)m‘k<-1>‘ku§

= _(_l)2(m-k)ui

=-u:,

This proves the last assertion in Theorem 5.2.3.///



5.5 An‘ Economical Eisection Algorithm

The algorithm in this section is based upon results from See-

tions 5.1 and 5.2 which relate the facets of 81(1= 1,2) to the fcets

of S. The algorithm proceeds roughly as follows: once d(F,S,6n)has

been cLlculated for the original simplex S, the parity contributions of

the ith facets of the lower ample-x excludihg l = m are retrieved from

the stored information, while Algorithm 4.4.1 is then applied only to

the nth facet of S. This gives all of the information necessary to

determine d(F,S,9n)-(To determine d(F)Sl,9n), the parity contributions

for the 1th facets of the upper simplex are retrieved from storage.)

When s is bisected, the new mth (3.

places the old mth or .kth tree, while the other existing trees continue

if 1 = l) or kth tree (if :L = 2») re-

to he used in subsequent iterations.

The following problem can arise with the above scheme. Under

certain conditions, more subdivisions of the 1th facet are performed

in the bisection process than are carried out when Algorithm 4.4.].

was apgplied to the 1th side of the original simplex. This occurrence

is illustrated in R2 in Fig. 5.2. There, the tree for the second. side

of (X0,X1,X2)may not contain information for the segment (A,E), i.e.,

possibly no location pair (2,4) or parity contribution was stored for

the segment In such cases, the parity of the range simplex for

the 1th acet must be calculated directly and stored"

The bisection algorithm is formalized below as Algorithm

5.3.1. Here, Nl(i) denotes the value of the first location numbers of



FIGURE 5.2
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._(19) s1 s2 .

(20) Return to step

The following remark simplifies execution of Step (17) of

Algorithm 5.3.1.

5.5.2 Regarg. The last statement in Theorem 5.2.?) can be

used. for Step (17) of Algorithm 5.5.1, 50 that the kth tree for 52
can be calculated from the mth tree for Si without resorting to Algo-

rithm 4.4.1 again. To get the tree for the kth facet of S2, we simply

interchange upper and lower points, and then change the sign of all

of the parity contributions. Interchanging the upper and lower points

amounts to taking the binary complement of the first :1 digits of ml in
2

each location psir‘ (nl,u2}.
There are various modifications which can be carried out on

Algorithm 5.5.1. The following remark hints at the nature of some of

these.

5.3.5 Remg; . Although not included in Algorithm 5.5.1., if

a value of O is returned. for d(F,E,en), then it is clear that 11 must

be larger. The parameter, p, can then he made larger and the parity

contribution of the new s-ie can then he recalculated with this larger

value for p.

Flowcharts corresponding to Algorithm 5.5.1 will appear

el‘sewh are .
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the 1th facet of the current n-simplex in the 1th tree yresently in

storage; N20.) denotes the corresponding second location number.

5.3.1 Algoritm.

(1) Read. in the original simplex, $1, the maximum number of

iterations, MAXITR, the square of the error tolerance, E, and the

selected parameters for Algorithm 4.4.1.

(5) Initialize: Natl) ‘-
0, 311(3)“ 0, for J = l to n + l.

Also, I “ l.

(5) Calculate a(F,sl,en)via Algorithm 4.4.1.

(4-) If d(F,Sl,en) = 0, then stop. Otherwise continue to

step (5).

(5) I ‘- I + 1

(6) If I > MAXITR,then stop. Otherwise continue to step

(7).

(7) Biseet 51. Store k and m if ()ik,xm)is the longest one-

dimenaional segment. If the length of (Xk,Xm)squared is less than

E2, then print S1 and stop.

(a) Store the resulting lawer simplex from (7) in SI, and

the upper simplex in S .

2

(9) Find the mth facet of 51 and store in the nxn-matrix,

ES.

(10;) Do Al‘gprithm 4.4.1 for 1331to obtain a new mth table

of tree infori‘mation .
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(ll) Put the new tree infometion in the mth tree, and store

the ald 111thtree in teuumrary storage in case d(F,Si,6n) = O.

(12) Nah) “ N201) + l for q
= l to (n + 1) except q

= k

and q
= m.

(ls) Set the N201)“digit of Nl(q) equal to zero unless

N2(q) = O, for q
= l t9 1: + 1. This will enable the algorithm to take

information from the lower siniplexes from the trees, which is appro-

yriete for MEI).
(14) N21“- N2(m), Hahn) ‘- 9.

(1.5) For g
= l to (n + 1), look in the table of tree infor-

mation for the qth facet to find the contribution of the q.tn facet

to the sum in Theorem 5.2.10 or 3.5.1. The location pair for this

facet is ([first ‘Nz(q) digits of N1(q)3‘,N2(q)). If there is no such

locatien pair, than the number of bisections has exceeded the length of

the branch previously calculated. In this case, find. the qth facet

and calculate the parity of its range simplex directly. As the con-

tributions of the qth facet are being looked up or calculated, add

them together to get d(F,Sl,en).
(16') If MRS-1,9,3)= 0, then return the old tree informatian

for the mth facet to the permanent storage, and N203) "

NET, NZGk) *
0.

(1?) Calculate at new tree far the lath facet of SE.
(la) Set the macaw digit of Nl(q) equal to 1 unless

N2(q) = 0, for q
= l to (n + 1). (This indicates that the upper

simplex was chosen in this iteration.)
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5.4» Amlicabilitx o; the Method and

Amount of Comm. taticn Reguired

If moduli of continuity or similar infomation is not given,

npthing can be said about choosing the parameter p for Algorithm 4.4.1

(which computes contributions of facets). Furthermore, when the diame-

ter of 31 in Algorithm 5.5.1 is very small, it may take more work

to compute the parity contribution of the mth facet of 51 (Step (10)

of Algorithm 5.3.1) than it would if the diameter of 51 were relatively

large. For this reason, Algorithm 5.5.1 may converge slowly, but will

still be quite suitable as a starting method for other procedures.

The action of the algorithm depends very much not only on the

function, but also on the shape of Si and the relative location of the

roots of F1 in 5. Notwithstanding, an naly‘sis for the algorithm can

often be made in specific cases. Examples in R‘2are illustrated in

Figures 5.5, 5.4, and 6.5. In all three figures, the same level curves,

fl(X) = 0 and 1’20!): 0, are drawn.

In order to assure a correct result, Algorithm 4.4.1 must sub-

divide b(S) 59 that an endpoint of a l-simplex lies between each Naet.

"On (X0,Xl)((XO,XZ))in Fig. 5.5, the ratio of the distance between

0'sets to the length of (XO,H)((XG,XZ))is very small. When this hep“

pens, many subdivisions will possibly be required in (xo,xl)((xo,xa));
1.e., a branch may need to be very long.



FIGURE 5.3

S =

(X0,XI,X2)

FIGURE 5.4

S = (Y0,Y1,Y2)‘
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FIGURE 5.5

s = (10.21%)

99



The following remark may help in such
analyses.

5.4.1 Remar . Suppose that F:S " R"that Fm = e
‘.

is

differentiable,andn Then each level surface f (X) — O (1 =

1,... n) is
normal at X = Y to the vector

represented by the 1th column ofJ(F)(Y). Suppose also that [JCF
~5.5:

ter at; 1’.

f6 26 30* d(F, S, 8”) depends only
Thus F may have pathologies or areas
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of nonzero measure where J(F) = o in the interior of S, but a value for

~d(F,S,Gn)gen still be commuted. Moreover, this value may be given a

useful interpretation as in Fig. 5.6. There is a large area within

S =

(XO,X1,X2)where J(F)(X) vanishes. However, Algorithm 4.4.1 will

calculate d(F,SJen)= 1; this indicates that there is a nonempty set

A c s such that F(A) = (x): 7: s A] =

{en}.
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FIGURE 5.6

(frfz)
= (0,0) on THE SET A



CHAPTER VI

RELATIONSHIP no 0mm 'I'OPOIBGICAL METHODS AND ALGORITHMS

As mentioned earlier (Sec. 1.2), many problems require solu—

tion of systems of equations for which Newton's Method. and the related

class of algorithms (see [26], Ch. 7) fail due to nonexistence of

derivatives or poorly behaved partial derivatives. Also, Newton‘s

method. often converges to a solution Xlof F(X) =

an almost indepen—

dently of the initial guess, while F(X) =

9n may have several solu-

tions‘Y all of which are desired for the application [3]. Because of

this, Various approaches based upon topological fixed—point theorems,

and, in psrtieular, methods for finding "Spanner simplexes" (contain-

ing approximate fixed points) have been inVesti‘gated.

As was mentioned in Chapter I, an important contribution to

this type of methotl came from Scarf [27]. The algorithm in [27] is

efficient in terms of memory and computations, desirable in that it

often detects approximate fixed points (not merely true fixed points),

and esthetio in so far that it mimics the famous Simplex Method. for

linear programing (Dantzig) in the sense of being an exchange algo—

rithm. Nonetheless, to enlarge the variety of problems that can be

solved, variations and. other algorithm were developed. Allgower and

Keller [4:] worked with another method of subdivision, eggplicahle on
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the unit n—cube, and a way of labeling vertices of simplexes; Jeppson

[15'] extensively tested the method from [4].

B. C. Eaves [1012150 investigated the subject. Once an a1:-

pmximate fixed point has been found Via the methoa in [10], the effort

expended could. be used. to obtain a better approximation; the method. in

[l0]wss also extended to work for unbounded regions.

Interestingly, all of the above are closely related to

Theorem 5.2.l0 and Algorithm 4-4.1: A range simplex, (s,F), is

useable if and only if S has e "complete set of labels" (see [la] and

Sec. 6.1 of this chapter).

This chapter is devoted to a brief discussion of the algo-

rithms mentioned shave and the relationships existing between them.

Background and. a definition of Syezmer simplexes are presented in

Section 6.1, while an elemerltary discussion of methods appears in

Section 6.2. In Section 6.5, the relationship between such methods

and Algorithm 4.4.1 is discussed. In Section 6.4, yet another algo-

rithm combining ideas from Section 4_».2and Section 6.1 is set down.

Section 6.5 is devoted. to comparisons.

6.1 Sperner Simlexes and

Sperner's Lemma

This section introduces necessary background for subsequent

discussions of algorithms .
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5.1.1 Definition. Suppose that F = (F ,...,F ):.a+R“ is

continuous on the closed, bounded domain 95:: R“, so that G = F - I is

continuous an 08‘, where I is the identity map in Rn. Now, letting

S =

(XO,...,Xn) be a simplex inst}J define a vector 130(1),by mil =

g ngi, where ‘Sgn(') is as in Definition 3.1.4.

§.1.2 Definition. ([15], pp. 122-125 or [5 J, p. 2, etc.).

A5151: a label £1 to Xi by letting [1 be the number of ones encoun-

tered in the vector L(X1)‘to the left of the first -1. This label will

be called the label of X induced Q1 .

6.1.5 Assmption. Suppose S is an n-simplex, FES *Rn, and

£15 a subdivision of ‘6. Suppose (Xe,...,)gc) is any k-dimensional

facet of so, where some subdivision of S is contained 113—8;suppose0

A e (xo,...,xk). Then assume L(A) =

L(XJ)for some 3 e [O,...,k].

Properties of the labeling induced by F needed to define

Spemer simplexes and state Sperner's Lemma are now defined.

5.1% Definition. If S is an n-simplex in Rn, .5 is a sub-

division or S and F:S " Rn, then the labeling of the vertices of ele—

ments of 4! induced by F is proper if and only if the yoints, A, form—

ing vertices of elements of 5 follow assumption 6.1.5.

5.1.5 Definition. The set of labels of the vertices of S is

said to be complete if and only if [10,...,ln] = [o,...,n].



105

6.1.6 Definition. Simplexes with complete sets of labels are

called. Sperner simplexes.

It has been prover: that Sperner simplexes will contain sppmx~

imations to fixed points (infra Theorem 6.2.2 and corresponding ref-

erences).

The following theorem underlies the working of Sperner sim-

plex algorithms .

6.1.7 ’1‘ eorem e er’s la 6 . Suppose that S is an

n—simplex in Rn, that 43 is a subdivision of S and that the vertices

of S and elements of 5 are labeled with a proper- lsheling. Suppose

further that S bears a complete set of labels. Then one of the ele-

ments of .3 also has a complete set of labels.

Sperner's lemma is proven in [S].

6.2 Methods Derived from Steiner's Lemma

The methods described in this section are based upon the

fact that Spemer simplexes can be considered ayproximations to fixed

points X, such that F”) = X, of maps F:»8C R11*00‘. The problems are

frequently set up in one of two analogous settings, depending upon

whether the region :8 is an n-simplex or an n-eube. These two settings

will be considered in the theorems to follow.

Suppose first that at = S = (Ky. ..,Xn) is an n-simplex in

R“, so that F:S '> S‘. Then points in S and the components of F can be
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given in terms of barycentric coordinates ([15], 111:. 56—37): P s S=>

P=(:r x,...,xn): 2"“: =1: 2”“ =1, 1:120 fori=l,...,n;o’ 1:01 i ’

i=0
1

similarly, F: (ro,...,£n), NP) = ani (P ) X1; 2 £10?)= 1,
i=0 i=0

21(1’)_>o for i = 1,...n. Then:

6.2.1 Remark Z7 . 152 ‘-1529 . Suppose F28 " S is given

as above, and that the labeling of the components of F is given as in

Definition 6.1.2. Then S has a complete set of labels.

In this setting the hypotheses of Sperner's Lemma (Theorem

6.1.6) are satisfied. Coupled with the following theorem, this pro—

vides a basis for algorithms to find fixed points.

6.2.g Theorem. Let F and S be as above. Then, given 8 > 0,

there is an N such that if S' is an element of some subdivision of ‘S

with the diameter of 5' less than l/N, and S' is a Spemer simplex,

then HM) - x” < e for all x s s'.

Scarf [27] developed an algorithm from this Setting. In

that algorithm, a clever way to test the yoints corresponding to ver—

tices of simplexes in the subdivision in order to locate a Spemer sim-

plex was workeé. out.

A second important setting for Sperner‘s Lemme is when

=3: On, the unit n-cube. The n-cube is "triangulated" in some stendar

way ([4], p. 159), and. the labels corresponding to the resulting sim-

plexes are analyzed. In this setting, the conclusion of Theorem 6.1.5



108

must hold for the hypotheses of Sperner's Lemme to be satisfied. How-

ever, under mild assumptions, the existence of a Sperm-er simplex is‘

asoerteined ([4]), and an exact analogue of Theorem 6.2.2 holds ([5],

Theorem 5) .

In each of the above settings, algorithms were developed

whereby successive simplexes or component simplexes of a subdivision

were checked for a complete set of labels.

The next section deals with a relationship between such

methods and. Algorithm 4.4.1.

6.5 Relgtionshiy between amers
Lemme and Ugegble Simlexes

We first establish a relationship between Per( @(S,F)) and.

labelings for Spemer smplexes. Take the n-simplex X =

(X0,Xl,
c' R”, and let I? = (fl, ...,fn):S » Rn be continuous. Consider any facet

T of S, and suppose that fl”) > O for X e '11. Then for X =

n-l -

(xl,...,xn) e T, define fist: »R by‘Flm = (£2(x),...,rn(x)) +

(x2,. ..,xn) . Then the following theorem holds.

6.5.1 Theorem. 4(T,Fl)is useeble ii‘ and only if the label-

ing of '1‘ induced by ‘f'lis complete, i.e., if and only if ‘I‘ is e Spemer

simplex for ‘'l. Furthermore, if T = ‘(Xj,...xJ ), then the label, 2

1
1;

n

corresponding to XJ , is equal to the number k1 from Algorithm 4.4.2.

1
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5.5.2 Proof of Theorem §.3.l. Theorem 6.5.1 follows directly

from Definition 5.2.2 and the definition of the ki in Algorithm $.43.

Theorem 6.5.1 provides another way of looking at Theorem

3.2.1.0. Take the Sperner simplexes ‘I‘ to be agpmximations to fixed

points of ‘f‘;this is equivalent to taking them to be approximations to

points X where Fl”) = Sn‘l. Hence, the Spemer simplexes in Theorem

6.5.1 correspond to approximations to points at which 1‘] =

(1,0,...,o).

It is evident that useable simlexea with positive parities

correspond to coverings of (1,0, ...,0) 6 Sn by with a positive

orientation (cf. Def. 2.2.1), whereas useable simlexes with negative

yerities correspond to coverings of (l,0,...,0) with a negative orien-

tation. In particular, we have:

6.5.3 Theorem. Let FnD’C R“ —. R“ be as before. Let w be

the only point in b(o0) with = (1,0, ...,0). Suypose

(1,0, . ..,0) is covered with a positive (negative) orientation. Sup-

pose that b‘(»8) is sufficiently refined relative to F, with a subdi-

vision, 8. Let V'be the number of MSJJ‘), 5 6,8, with Par(R(S,F)) =

1(4). Then v = 1 mod 2.

Theorem 6.5.5 is a direct consequence of Definition 2.2.1

and Theorem 3.2.10.

Although Theorem 6.5.]; ena Theorem 6.5-3 point to a cor-

respondence between Spemer simylexes for 3‘1and useable eimplexes, it
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should be noted that Theorem 5.2.10 would not follow directly from argu-

ments involving Speruer's Lemma. In particular there is no guarantee

that there are no more Sperner sim'plexes then fixed points. Further-

more, the hypotheses of sufficient refinement show from a different

angle what is needed for fixed points to exist.

6.4 A Sgemer Simglex Search

Using Einem Trees

Ideas previously outlined in this chapter suggest that we

can search for Spemer simplexes by taking bieections of a n-simplex.

A tree can be produced as in Algoritm 4.4.1 to keep track of where

Syerner simplexes are located, but no points need be stored. Checking

to see if e simylex is a Spemer simplex is similar to determining

the useebility of a range simplex. The following algorithm results.

5.4.1 Alggrithm.

(1) Input the maximum branch length, MAX.

(2) Input the original n-simplex in 31.
(3) Input the diameter tolerance, FPS.

(4) nl‘-'O, n ‘- 0
E

(5) nze :12 + :L

(6) Eisect Si and store the lower simplex in 51 and the

upper simplex 111 SE. Store the diameter of $1 in DIAM.

(7) If the n
h

digit of n is 1 then switch the Values in
2 l ’

the arrays SJ. and
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(a) SA(n‘2)*51

(S) If BLAME E95 and n < MAX, return to step (5).
2

(10) Print the integer represented by first 112binary digits

ofn andn.
1

then print S

2

(11) Check to see if S is a Sperner simplex. If it is,l

l.

If :12 > MAX, print out a message.

(13) If 112thof n1 is 0, go to step (16).

(14:) n2“ n2
- l.

(1.5) If n2
= 0 then stop. Otherwise, return to step (is).

(16) Set the 212thdigit of nl equal to l and all subsequent

digits equal to zero.

(17) sl~ smug)
(18) n2<- n2

- 1

(19) Return to step (5).

The above algorithm can be modified further; d(F,Sl,eu) can

be calculated at certain stages, etc.

6. § Comgarisong

All of the methods mentioned in this chapter require that F

be evaluated only to sufficient accuracy to determine Sgn(F(X)) or

Sgn(F(X) - X), but demami varying amounts of memory and are applicable

to different types of problems. Except for Algorithm 5.3.1, the
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differences occur mainly in the method of subdivision or formation of

the simplexes or the method of carrying out the search.

The algorithm [27] requires an a priori selection of a set

of points to be vertiaes. Essentially, only those points need be stored

as the algorithm progresses, yet no two s‘implexes are ever considered

twice. The algorithm terminates when a Sperner simplex S is found.

The diameter of such 6 can he made small by choosing the initial points

close together so that S is a Sperner simplex: 3 X e S (ibid.), such

that - K" < 8 (Theorem 6.2.2). In the algorithm as first stated

(ihid.), however, 5 may not contain a true fixed point; finding an X

with HEM) — XII< a "would involve choosing a new set of initial

points and completely repeating the algorithm.

The algorithm [4] is set up to find an approximate fixed

point in the unit n-cuhe. Only the "mesh size" need be specified at

the start, for the algorithm systematically subdivides the n-cube into

smaller cubes of the specified size. The algorithm can be set up to

check all cubes for fixed points, so more than one approximate fixed

point may be found. Since the algorithm proceeds according to a fixed

pattern, little memory is required. If the mesh width is not small

enough etc.
, however , some fixed points may not correspond to Syerner

simplexes, and some Sperner simplexes may not correspond to fixed

goints. One would then specify a smaller mesh size and carry out the

algorithm again .



ll?)

Other approaches (in particular [10]) have also been tried.

In the method of bisection, neither an initial grid of points

nor a mesh width is specified. Instead, the parameter p (Algorithm

4.4.1) is chosen in an attempt to Very" the "mesh width” according to

how smooth F is. Information from previous calculations is stored. in a

binary tree. The diameters of Si and S2 (Algorithm 5.3.l) may become

small very slowly if n is large, so that 1) must be large (it is recem~

mended that p 2 n for most applications), and, hence, the amount of

information in the tree must; be large. It was found that for the 5-

dimensional example in Appendix A.l, one of the trees needed approxi—

mately 406 points (albeit a rudimentary test for sufficient refinement

W85 used)- If bisection is carried out, n + 1 trees must be stored.

However, if d(F,x£,6n)only is desired, storage for less than one tree

is needed (cf. Section 4.6). At present, no rigorous way of determin-

ing 3) or finding when a correct result has been obtained has been em-

ployed; we have experimented by varying p and varying the vertices of

the initial simplex slightly.

One does not assume that F maps the initial region into it-

self in order to apply Algorithm 5.5.1. Furthermore, Algorithm 5.5.].

can be applied directly to any simplex contained in the domain of F.

At the writing of this work, there seems to be an explosion

in the activity of development and testing of such algorithms and the

comparisons in this paper barely hint at the results which have been
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obtainea. Results of further testing and comparison will be inhed

interesting.



CHAPTER VII

FURTHER- APPLICATIONS AND EXAMPLES

The problems described below can be solved via Algorithm

4.4.1. and Algorithm 5.5.1.

1.1 Minimization Emblems

Suppose that: S CRn is an n-simplex, and Fzs -o R is con-

tinuous. Then knowledge of points in S at which F takes on maximal

or minimal values is often desired.

A standard method of obtaining this knowledge is to‘ compute

the stationary points of F in S, then test them to determine whether

they are local maximae or local minimae.

Two alternative cases immediately come ta mind for ccmpu‘ting

such stationary yo‘ints via degree theory:

(1) F has continuous derivatives, and these derivatives can

be calculated formally. In this case, one obtains F' = (Fl, . ..,Fn):‘s-»
Rn is continuous, where F:Lis the 1th yartial of 1“. One could then

apply Algorithms 4.4.]. and 5.5.1 directly ta 3" .

(ii) It is inconvenient to romauy differentiate F. Finite

differences of F are then used for Algorithms 4.4.1 and 5.5.1. This

second alternative is explained below.

Note that only SgnKF') is required to be correct in Alan-

rithm 4.4.1. Hence it should not be too difficult to obtain
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sufficiently accurate approximations (less than one significant digit

is required) to derivatives vie central differences. In adéition,

average rates of change may thus he computeni and used. even when 3” is

not continuous.

The following algorithm is suggested to replace evaluation 0f

sguGF/Bxi). It uses a scheme similar to the bne in Algorithm 4.3.l

which determined. when to stop bisectian.

In Aigprithm 1.1.1, the notation E1
= (o,o,...,o,1,o,...,o)

e Rn where the "1" occurs in the 1th position, will be used.

.1. A ithm.

(1) Choose, a priori, an integer parameter 1;, a small number,

5; and a large number, N.

(2) Input 1 and the point x = (x ,xn) g Rn at which
1,...

sgn(5F/3xi)(x)‘Will be appruximated.

(5) av ‘o

(4) J2: sgn(F(X + 5E1)
— F0: -

531))
(s) Jle 32
(6) 5‘— 5/M

(7) J2~ 5mm + 531)
— F(X —

5151))
(a) If J1

=

J2, then .1“ J + l. fD't'lerwise,J‘- 0.

(9) If J 2 q, then return the value of J for sgn(BF/6xi)(x).1.

Otherwise go back to step (5).
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In the above algorithm, when X is a vertex of S =

(Xo,...,Xn), it is assumed that F is defined in a neighborhood of S.

If this assumption is inconvenient, then, for each fixed vertex KK
take directional derivatives along the directions, Vok,

. ..,Vn k,7 J

of the l-dimensional sides, (X°,XK),(X1,XK>,...,(}&‘_1,Xk);(Xkik),
...,(Xn,)&‘). A method of doing this is explained below. First,

however, a property which these directions must have is discussed.

7.1.2 Remark. Consider the linear transformations,

LO,...,Ln, defining n(n + 1) direction vectors (V13],;
= O,‘. ..,n,

’

i = l,...,n, in terms of Ei,...,E‘n at each of the points xo,...,xn by

Vi“j
=

LJ(Ei). Then it will be assumed that there is a continuously

parametrized family of linear transformations 13xsuch that

in
=

Li
for i = O, ...,n, and such that 12,,is musingulsr for X e S.

For, otherwise,

Fvlm(x) FE1(X)
ll IT‘ ll 0(1)

x

F X F XVnm<) Er})

might have a solution in S for which not all of the partials, FE are

1

zero.

A scheme for producing a set of direction vectors with this

pmyerty is set forth below.
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O I

~

I
= ..

:Z l 5 Definition Choose Vivi V1(Xj)by

xJ
-

xi_l 1 <3

vice?)
=

x1
—

XJ k >3

When 5 is then bisected by substituting, e.g., the point

A = (XK+Xm)/2for, e.g., Xkthen only the direction vectors involving

Xk are changed, exaeyting Km
-

Xk (assuming :1 > k.) c‘r Xk
-

Xm(as-

suming k > m). Now, X“ A, and direction vectors for the changed

directions are then recalculated via the same formula.

1.1.14 Reggzk. The conditions in Remark 7.1.2 ere satis-

fied if and only if [‘11()(J)];‘____ldefines the same orientation cf R“

for all 3. It is easy to show that the above scheme for choosing

V1(XJ)gives this condition and that the orientations at the mints

of either camponent simplex in any bisection are equal to the cemmn

original arientetidn.

1.1.5 Remar . It can be shown that the degree of the

mapping F :Rn -> Rn with partial erivatives taken in the coordinate

directions is plus Or minus the degree of the mayping represented by

the left member of (i) in Remark 7.1.2. This is because Lx is homo-

topic to either the identity matrix or minus the identity matrix in

GLn(R),so that G“) = F (X) and H0!) =

Dr? (X) are hematopic via a

homotoyy whose range does not. include er1(see [25], p. 1.56, Theorem

5.22). Furthermore, d(G,S,9n}
=

nd(H,S,sn),Where n
=

5511 det(in)
[l5].
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j._l.s Remark. It should be noted that, under additional

assumptions on IF, it may be yossible to find the critical points of

F in a more direct manner. For example, if FwD» F(.a) maps Mae)

into 11mm), F has a critical point within .5 if d(F,n6en) 795:1.

This results from the fact that mappings of the n-'- disk, D“, to
D’1which map the surface of Dr1 to the surface of Dn must have at

least one critical 1701111;113 n 2 2([31’

1.2 The Hidden Line Problem

For various applications, one often wishes to know whether

a given line or curve in R5 passe through a surface, or whether a

given point A E RBlies inside or outside of a closed surface (such

as the surface of a sphere) in R5. These problems, Just as their

generalizations to R“, (See [1], 1:13. 497-496) can sometimes be solved

with Algorithm 4.4.1.

If the region uoenclosed by the surface is an n-simplex or

a polygon, then the second problem can be solved by simply calculating

d(I -

A)ee,8n),where I is the identity map on «a. rlfhe case in which

the surface enclosed a curved region .3 (en n-msnifold) can also be

done simply (curved regions are considered in Section 7.3).

To consider the problem of the intersecting line and sur-

face, sujppose that the line or curve is parameterized by:
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x= fl('t)

y
=

ram 3 5t 3 b

2. =

f5(t)

and that the surface has the parametrization:

x = gl(u,v)
c‘ s u< d

y= 2-320,”
1 l

‘czg vg :12
z = g3(u,b)

Then define a function FzP =

[a,b]x[cl,dl]x[c2,d2]-> R:5by:

th‘hv) =(fl(t)
'

5101],),f2“) ‘

82(u,v), f3(t)
'-

g5(u,v))

In this case, the results can be checked by solving the

system directly. Equating each of the three components of F to zero

gives:

Zt-u-v=0 where
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whence Mu - E) = 0. Hence, (2,2,0) is a solutiqn. Since

J(F)(t,u,v) = 2(1 - u), J(F)(Z,Z,O) = -2 < 0,

Comparison shows that the degree calculations were correct.

The curve so parameterize‘d new passes through the surface

if and only if there is a point (to,ua,v°) E P such that F(t°,ua,vo)
= S . The following example will illustrate the calculatien of5

d(F,P,95)to ascertain the existenee of such a solution.

.2.1 e 1e. Show that the line L given by:

intersects the surface M given by:

x=u

y=V

z=u2+vz

for some 11:. l s t; g 4,
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FIGURE 7.1

THE LINE AND THE SURFACE IN EXAMPLE7.2.1
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7.2.3 Calculations for Eagle 1.2.1. Set F(t,u,v) =

(t -

u,-v,2t - u2 - v2), and apply Algorithm 4.4.1 to F. To do this,

one must choose, a priori, a simplex s =

(xl,xz,x X4)in t - u - v
5:

space. If care is taken that the determinant A4((l,)&),(l,x ),(l,X3),
(1,X4))is not small, the volume of S will be large, and there will

be less ohance that a solution of F lies outside 8. One may choose

a = <(5,0,0),(4,4,0),(1,s,-1),(s,s,2r)).

It can be verifiea. (see Figs. 7.2 5115 7.25) that this S contains a

considerable portion of the surface: [(t,u,v):l s t s 4) and that,

for all (t,u,v) E 8, 13 t g ‘4.

The parameter p of Algorithm 4.4.1 was chosen to be 2. The

resulting trees produced are drawn in Appendix A.2. The degree of F

was found to be -:L.

7.3 The Degree with Resgect to Regions
other than Polygons

Remark 2.2.3 introduces the fact that (1013:0192!)is defined

for straight—line regions other than polygons. To calculate

d(F,‘a8,9 ), simply find all of the facets of:
:1

MD) = b(Pl) + + MP“)
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FIGURE 7.2

THE PARAMETER SPACE

FIGURE 7.3

PROJECTION OF THE SIMPLEX IN FIGURE 7.2 ONTO THE t-u PLANE
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= Z ..5 “Pi
i=1

Tnen apply Algorithm 4.4.1 to each of these facets. The sums of the

parity contributions of these are then added to get d(F,-§,9n).
n

There are two approeehes for handling curved regions in R
J

as indicated below.

2.3.1 ApQroximatiou Amman . Replace b(p0) by a sum 3'

of (n-l)-slmplexes each of whose vertiees lie on b(.8'). If F: «0—» R“

is continuous, then, for all such J'whose simplexes have small

diameters, the sum of the panties of the range simplexes associated

with F and elements of 5' is constant. From this, one can define

d(F,o0,en) to be this sum of panties. The Kronecker existence

theorem still holds when one defines d(F,¢6,en) in this manner [1] .

7.3.2 A thnge of Variable Aggroac . Parametrlze «:5 so

that the parameter space F is s polygon or union of polygons in R“.

Suppose X(U) denotes the mapying from P to co, and let WU) = F(X(U)).

Then, provided that X is one—to-one, F =

9n will have s solution in :9

if and. only if g: amhas a solution in P. Algorithm 4.4.1 could

then be applied to § on P.

7.5.55 Remsrk. Approach 7.5.2 indicates thatad often need

only be an n-dimensional manifold with boundary (of. [23]).
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1.5.4 Rgmar . Note that, with Approach 7.3.2, curvilinear

regions (1.3., n-manifolds of smoothness Co) can be "bisected" into

unions of curvilinear regions.

1.25.5 Remark. When composing maps of regions, we should

keep in mind. product theorems cancerning the degree sf compositions

of maps (cf. [23], p. 52, problem 1 and [8], p. 56).

For an example of Approach 7.3.2, consider the following:

1.5.6 Example. LetoG be the region in R2 defined by:

£= [(x,y)=0 Sysz - vi, x20}.

as shown in Fig. 7.4., and let F be the function in Example 4.5.1.

Then calculate dCF,.0,»92).

1.5.7 Solution 0; Exaggle 1.5.6. Parametrize .6 by setting

x= 4t, y= 2u(l 'VE), where 0 $1; $1 and o 3 us 1. Then:

F(t,u) = (15122- 4143(1— V03 —

1,

161:2. Mu - vs)? - z),

and the new region (in terms of t and u) is the rectangle:
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1’ =

((0,0),(1,0)> + ((1,0),(1,1)> + ((1,1),(0,1)r> + ((0,1),(o,o)>-

In this example, the parametrization is not one-to-one on

P, and who) is constant on ((l,0_),(l,l)). Inclusion of this side

does not affect the computations, however.

Ah orientation is assigned to .5 through the orientation

of P and the parametrization. The induced orientations of h’(.a) and

MP) are shown in Fig. 7.4.

Algorithm 4.4.1 was applied to 9' over P, and correctly

gave d‘(F,v5,92)= l. The computations are listed in Appendix A5.

1.4» Commuting the Linking Number

1.4.]. Definition. [ls] Suppose that C is a union of k'

dimensional polygons in R“ (or the image of such a union as in

Approach 7.3.2). Then 0 is called a k-cycle (or a cycle of dimension

k) if and only if 15(6) = 0.

Consider two cycles Cl and CZin Rn, the sum of whose dimen-

sions nl and n is n + n
2 l 2

Cl is the boundary of some (nl+l)-polygpn(or sum of polygons) in Rn-

= n
- 1. Also assume that the first cycle

In this setting one can deal with the concept of whether C and (121

"pass through" each other, illustrated in Fig. 7.5-Fig. 7.8. If Cl and

02 pass through each other as links in a chain, then one says that C.L
and C2 are "linked" (cf. Figs. 7.5-7.7, and also [11 ch. XI, §1, #61).



3.28

t—u space

FIGURE 7.4

THE ROOT 0F F(x,y) = (0.0) OCCURS AT A 5 (1.224, .707): AND
J(F)(A) > 0
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The amount of "linkage" is expressed by the linking number

(Vereéhlingungszahl; ibid.), which here will be denoted erce).
The geometric interpretation of various values of V(Cl,Cz)is il—

lustrated in Figs. 7.5-7.8.

The following statements give a fennel definition of

V(Cl,€z).

1.4.2 Definition. (cf [1], 111:. 493-495) Suppase that K-

is any region whose boundary is Cl. Then peremetrize K and C2with

parameter variable U =

(ul,u2, .. .,un) so that, if X s K then X =

f(ul,...,unl+l),and. if Y 5 C2then I =

5(unl+2,...,un),for some

continuous lone-te-‘one merging f and 5. Let the space of parameter

variables for the paremetzizetions f and g be 06. Then V(Cl,02)
is defined by:

_l )n+lv(C1,CZ)
= ( d(g — 133,611)-

As is illustrated in Figs. 7.5-7.8, the interpretation pf v(Cl,CE)
frcm Definition 7.4.2 corresponds to the geometric concept for

“:11
l

,=lendn=3.
2

Since ,8 ie a product region, calculation of v(C‘l,CZ)
can be simplified (11:31.). The domain .a is the Cartesian product

of the regions:
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C
1 1

FIGURE 7.5 vLc1,c2)= 1 FIGURE 7.5 1461.62)
= -1

c2
c2 \

K \ _

K

a

C
C1 1

FIGURE 7.7 “01.82) = 2 FIGURE 7.8 V(C1,C) = 0
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.51
=

[(ul,...,unl+l):(ul,nun“)E .5), and

.82
=

{(unl+z,...,un):(ul,...,un)c .8],

so that: May = 12001gag) = b(°01)® .62 + 9%® M492). Howexrer’
since C2 is a cycle, b( £8) = 0, so that:

b(as) = Meal) ® 482

Also 13(90 ) is the invarse image under 1“ of the cycle 6 This fact’ l 1.

can be used to obtain a simple representation for b(oD) (11331.).

The above analysis can ‘b'e’carried out directly from a

glance at the Gauss integral ([1] p. 497)-

1.4.5 Aurcech. Tu commute v(Cl,Cz), parametrize (I:Laver

an Ill-dimensional region P parametrize Oz ever an rig-dimensional1)

region P2, and apply Algorithm 4.4.1 to each of the simplexes com-

Frising Pl®P2.

1.4.4 Exgg'gle. Determine whether the circles in R3 given by

01
= [(x,y,z); x2 + ya = 152 = 0] and.

C =[(y—l)2+212=l;x II 0]

are linked .



152

7.4.5 Comyutgtions for Examle 7.4.4. It is clear from

visualizetiun that the above two circles are linked (cf. Fig. 7.9).

To test this fact with Algorithm 4.4.1, we will set Pl
=

P2
= [0,1].

We will now parametrize Cl by:

x(t) = cos am:

if“) = sin an: t a P1

z(t) = o

and parametrize C2by:

x01) = O

y(u)=eosznu+l ueP

2(a) = sin 21m

Then f(‘o‘) = (cos ant,siu 21rt,0), and u) = (o,cos zmu + l,sin am},

so:

3(a) - t) = (-cos 21¢, cos antu + l -

sin 21m, sin 21W)
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FIGURE 7.9

THE CYCLES (31AND (22
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In this example Pl 8: P2 can be written as the sum:

((0,0),(1,0),(l,1)) + ((0,0),(1,1),(0,1).>

We will apply Aogorithm 4.4.1 to ‘each of the above simplexes, treating

them as boundaries of S-éimplexes. The computational results are

listed in Appendix AA. It was found that V(Cl,02)
= +1.

For further applicatien of Algarrithm 4.4.1 and Algorithm

5.5.1., see [5]', etc.



APPENDIX

COMPUTER OMPLT FOR SELECTED EXAMPLES

Computer output for selected examples from the text is

listed in this appendix. Binary trees corresponding to some of this

output are also drawn. Central processing unit times are listed

after the output. Unless otherwise stated, the programs were run

on a Univac 1108 with a cycle time of 750 nanoseconds. These programs

were not fully optimized, and the best stopping tests were not used.

A.l A Five-Digegsional Exmle

The following example was used to test the feasibility of

calculating d(F,90',en)in 5 dimensions. Here, X = (xl,x2,x3,x4’x5),
and F(x) = (fl(x)),r2(x),f3(x),f4(x),t5(x)‘)where:

jHm = ’“f' *2

£200 = x22-

X?)

f5“) = x: -

x4

1’40!)= x: -

x5

f (X) = 2:2 ~ x
5 5 l
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The domain 96' was chosen to he:

s = ((1,o,o,o,o),(o,1,o,o,o),‘(o,o,1,o‘,o),(o,o,o,1,o),(o,o,o,o,1),
(—1,-1,-1,—1,-L)>= (xu,x,_,xz,x5,x4,x5>.

Now:

-e <0,GOD—'00ol-‘OOOl-‘OOOOHHHHHHoar-Hva0000014ooaor—‘ocoon—'00coHoooor-hoooo
l 0

O l

O 0

O 0

0 0

'1 '1 ,_. H H

50 the points of S are linearly independent, and the orientation of S

is negative. New, F(0,o,0,0,0) =

95, and:

es: Lla(o,o,o,o,o) + 1/s(o,1,o,o,o) + (1/s(o,o,1,o,o)

+ 1/e(o,o,o,1,o) + 1/e(o,o,o,o,1) + 1/6‘(-1,-1,-l,-l,-1_),

so (o,o,o,o,o) : a. Note also that (1,1,1,1,1) A 5. Also:
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2
= 52 xlxzxsxéx5

- l

-1 at (o,o,o,o,o),

so d(F,S,es)
= -l.

The yeremeter p was taken to be 1': in the calculations.

There were 245 points in the tree for the facet:

((1,o,o,o,o),(o,o,1,o,o),(o,-o,o,1,o),(o,o,o,o,1),(-1,—1,-1,-1,-1)).

The sum of the parity contributions of the facets was cal-

culated to he +1. Since the simplex had. a negative orientation, this

gives a correct value for d(F,S,95).
The tables of tree information for the six facets are listed

on the following pages. These tables are listed. in order, with the

one for:

(XO,X1,XE,X3,X4,X5)
= ((o,1,o,o,o),(o,o,x,o,o),(o,o,o,1,o),

(o,o,o,o,1),(—1,~1,-1,—1,-1))
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appearing first, then the one for:

(X,X, ,X,X,X),ete.Cl 345

It should be noted that two or more iterations of the bi-

section process would take much less than double the amount of time

for the computation of the six trees.

A.g Computation for the Hiden Dine Problem

Graphs of the trees produced for the problem of Example

7.2.1 are given here. If the sum of the Parity contributions at a

given point in the tree is nonzero, this sum is given next to the

yoint. The total execution time was 2.561 seconds.

It should Be recalled. that the original simplex Was:

S = ((5.0,0); (4,4,0)5(l;5:'l);(5.3.2));

and that the function was given by:

F(t,u,v) = (t -

u,-v,2t
- v.1a-

A.3 The Degree with Reagent to

a Curved Region

Computations for Example 7.5.6 are given in this section

in the form of tables of tree information.
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mm; A.l.l

TREE momnon FOR

«0,1,o,o,o), (o,o,1,o,o), (o,.o,o,1,o), (o,o,o,o,1), (-1,—1,.-1,_1,-1)>

(Total Parity Contribution: O; Execuion Time: .217 seconds)

Number :11 n2 Parity

l O 5 O

2 4 5 0

5 O 2 O

4 2 5 O

5 6 5 O

6 2 2 O

7 0 l O

8 l 5 O

9 5 5 O

10 l 2 0

ll 3 5 0‘

12 7 5 O

15 3 2 0

14 l l
'

O



«1.0.0.0.01. (0.u.1,0.e). (0.0.0.1.01, (9.0.03.1), (-1,—1,-1,—1,.1))
(Total Parity Contribution:

TABLE A.1.2

TREE INFORMATION FOR

~1. Exeeution Time: 1 .304 seéonds}

L40

m

Par-icyNumber n1 n2 Parity Number n1 :12

—__—__—

1 o 4 o 52 181 B

2 a 4 a 53 53 7
3 o 3 o 5‘ 117 B
4 4 4 o 55 245 g

5‘ 12 4 o 55 501 9

a 4 3 o 57 245 a

7 a a o 55 117 v
a 2 4 o 59 53 5
g m 4 0 so 21 5

1o 2 z o 5,1 5 4

11 6 4 o 6? 13 5
12 14 4 o 53 45 1°
13 5 3 D 64 557 w
14 2 2 o 55 45 9

15 o 1 o 55 301 10

m 1 a .1 57 513 10

17 5 7 o as 301 9
la 59 7 o 59 45 3

19 5 5 o 7,0 173 13

20 37 13 o 71 4, 259 13

21 4.133 1:1 5 73 173 12
22 37 12 o 73 2

. 221 13

23 2, 085 13 o 74 5.317 13
24 5,131 13 o 75 2,221 12
25 2, 035 12 e 75 173 ll
25 37 11 c 77 l

. 197 13

27 1.051 11 0 78 5.293 13
as 37 10 o 79 1, 197 12
2g 549 10 o 80 3. 245 15

30 37 g a, s1 19, 529 15

a; 293 10. o 32 3 . 245 14
32 905 11 o 53 11, 437 15

33 1, 329 11 a B4 27. 821 15
34 ans 16 o 85 11 . 437 l 4

35 293 9 a 55 3, 245 13

35 37 a 0 37 7,341 13
37 155 9 o 58 3. 245 12
33 421 9 o E 9 1

, 197 11

3,9 1:65 a 0‘ 90 l 73 10

4o 37 7 o 91 655 10
41 101 7 o 92 173 9
42 37 5 a 9,3 499 1°
43 5 5 g 94 941 10

44 21 7 c 95 429 9
45 as 7 o 96 I73 3

46 21 a o 9? 45 7

47 53 g o as 109 14
4a 399 g D 99 8.301 14
4g 53 a o 100 109 13

50 151 g o 101 4,2405 14.

5; 437 g a 102 12 .397 14

!

ooonoqaoooooneseooooooaaoooéooooooococoooooooonoooo
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TABLE A.l.2 can":

Number n1 n2 Parity Number n1 n2 Fancy

103 4,205 13 0 155 1, 555 12 o
104 109 12 0 155 3,513 12 o
105 2, 157 14 0 15,7 1 , 555 11 0
155 10,349 14 0 158 541 10 o
107 2, 157 13 0 159 29 9 Q
103 5, 253 14 0 155 295 9 0
109 14, 445 14 o 151 29 a 0
110 5, 253 13 o 152 157 9 O
111 2, 157 12 0 153 413 9 0
112 109 11 0 154 157 a 0
113 1, 133 12 0 155 29 7 0
114 3, 151 12 0 155 93 9 0
115 1, 133 11 0 157 349 9 0
115 109 10 0 155 93 a d
117 521 12 0 159 221 14 0
11s 2, 559 12 0 170 0,413 14 0
119 521 11 0 171 221 13 0
120 1, 545 11 0 172 4,317 14 0
121 521 10 0 173 12, 509 14 0
122 109 9 o 174 4,317 13 0
123 355 9 0 175 221 12 o
124 109 a 0 175 2,259 14 o
125 237 12 0 177 10, 451 14 0
125 2, 235 12 9 17s 2, 259 13 0
127 237 11 0 179 5, 355 14 0
129 1, 251 12 0 130 14, 557 14 0
129 3, 309 12 o 191 5, 355 13 0
130 1 , 251 11 0 132 2. 259 12 o
131 237 10 0 153 221 11 0
132 749 12 0 154 1 ,

245 12 o
133 2, 797 12 a 195 3, 923 12 0
134 749 11 o 135 1,245 11 0
135 1,773 12 0 137 221 m 0
135 3, 521 12 o 155 733 14 0
137 1 , 773 11 0 199 9,925 14 o
135 749 10 0 190 733 13 0
139 237 9 0 191 4,929 14 0
140 493 9 0 192 13, 021 14 o
141 237 a ‘0 193 4, 529 13 o
142 109 7 0 194 733 12 0

143 45 5 0 195 2,701 14 0
144 13 5 o 195 10, 973 14 0
145 29 12 o 197 2, 761 13 0
145 2,077 12 0 193 5,077 14 o
147 29 11 0 199 15. 059 14 u
145 1 , 053 12 0 200 5 . 37:7 13 0
149 3,101 12 0 201 2,751 12 0
150 1,053 11 o 202 733 11 0
151 29 1o 0 203 1,75 12 0
152 541 12 0 204 3, 305 12 0
153 2

, 551 12 0 205 1 , 757 11 0
154 541 11 o
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TABLE A.1.3

TREESINFOWIATION FOR

((1,0,0,0,0), (051103079): (050505130): (0,0,0,0,l>, (-15-15-15-15-1H

(Total Parity Contribution: O; Execution Time: .219 seconds)

Number n1 n2 Parity

1. 0 5 O

2 4 5' O

6 0 2 0

4 E 3 O

5 E 3 O

6 2 2 O

7 O l O

8 l 5 0

9 5 S O

10 l ‘2 0

ll 5 5 O

12 7 5 O

1 3 5 2 O

14 l l 0
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TABLE A.l.4

TREE mom/mom FOR

((lposoaoao)a (051505050): (0,051,0ao)‘, (0:0,0,0,1): (“la’ls'la'li'L))

Total Parity Contribution: Cr; Execution Time: .242 secends)

Number n1 n2 Parity

l D 5 O

2 4 S 0

bu o a) O

4 2 5 0

5 6 5 0

6 2 2 0

7 O 1 0

B l S O

9 5 5 0

10 l 2 0

ll 5 :5 O

l? 7 3 O

15 5 2 O

14 l l 0



TABLE A. l. 5

TREE INFORMATION FOR

144

((1,0g‘090), (051301050): (DAM-sow): (0,0,0,l,0), ('la‘la'la'ls‘l))

(Total Parity Contribution: 0; Execution Time: .216 seconds)

Number

10

1 l

12

1.3

14

m

0103

Parity
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TABLE A.l.6

TREE momuom FOR

((1,050,010): (0,1:030,0)g (0,0:la010), (0,0,Oalao), (0,0,0:°:l))
(Tata'l Parity Contributien: 0; Execution Time: .261 seconds)

Number :11 n2 Parity

l O 4 0

2 B 4 G

3 0 5 0
I; 4 4 4 O
5 12 4 0
6 4 5 O

7 O 2 O
8 2 4 0
9 10 4 0

10 2 5 0‘
11 E 4 O
12 14 4 O
15 6 5 O
14 2 2 O
15 O l O
16 l 5 0
l7 5 5 0
18 1. 2 O

19 CS 5 0
2 O 7 5 0
El 3 2 O
22 l l O
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FIGURE A.2.'|

TREE PRODUCED FOR ((4.4,0). (1,3,4), (3,3,2))

P = 2; n = 3

7 points

(This 15 the minima'l tree for p
= 2.)
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FIGURE A.2.2

TREE PRODUCED FOR ((3.0.0), (1,3,4), (3,3,2))

p = 2; n = 3

25 points



FIGURE A.2.3

TREE PRODUCED FOR ((3.0,0). (4,4,0), (33.2))

p = 2; n = 3

41 points

14.8
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FIGURE A.2.4

TREE PRODUCEDFOR ((3,0,0); (4,4,0), (1,3,-1))

p
= Z; n = 3

7 points

(This is the minimal tree for p = 2.)
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The parameter p in Algorithm 4.4.1 was chosen to he 2 in

all cases. Execution times are given separately with each table.

The tables for ((1,0),(l,l)) and ((1.,1),(0,l)) were identical

to the above. Execution time corresponding to ((l,0),(l,l)) was

.077 seconds while execution time for ((1,1),(0,l)> was .079 econda.

The table for ((o,1),(o,or)) follows.

Au; Cogguting the Lij g5 Number

Tables of tree information for EXample 7.4.4 are givan

here. Note that there are only two tables, that for ((0,0),(l,o),(l,l))

and that for ((0,0),(l,l),(0,l)). Note that since F is independent

of the third ooordinant this coordinant can be chosen arbitrarily,

e.g., it can be chosen to be 0. With this choice, Algorithm 4.4.1 will

work on ((0,043),(l,0,0),(l,l,O)) and ((o,o,o),(l,l,o),(o,l,o)) with

n 3 5.

The parameter p of Algorithm 4.4.1 was taken to be a for

each simplex. Execution times are giVen separately with each table.

A.5 A Mose Efficient Search Routine

A considerable fraction of the execution time for the degree

calculation yrogram is due to overhead in the routine which searches

through the table of tree information and adds together the appropriate

parity contributions. An improved method of search would make the

algorithm considerably more efficient.
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TABLE A.5.l

TREE INFORMATION FOR ((0,0), (1,0))

(Total Parity Contribution: 0; Exe’eution Time: .075 seconds)

Number n1 n2 Parity

l 0 2 O

E 2 Z O

3 O l 0

4 l 2 O

5 3 2 O
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TABLE A.4.l

TREE INFORMATION FOR ((0,0), (1,0), (1,1))

(Total Parity Contribution: 0-, Execution Time: .474 seconds)

Numb er n1 n2 Parity Number n
1 n2 Parity

l O 4 0 27 5 5 O

2 B 4 0 28 l 2 0

I’: O 3 O 2 9 5 4 ‘0
4: 4 4 O 50 ll 7 0

5 12 4 O 31 75 7 0

6 4 5 O 52 ll 6 O

7 0 E 0 55 45 7 O
B Z 4 O 34 107 7 0

9 10 4 0 5‘5 43 7 O

10 2 4 O 56 ll 5 O

11 6 4 0 57 Z 7 5 D

12‘ 14 4 O 38 ll 4 O

15 6 3 ‘0 39 5 5 0

14 2 2 0 4:0 7 5 0

15 0 l 0 41 23 5 0

16 l 4: O 42 7 4 0

l7 9 5 O 42 15 5 O

18 25 5 Q 44 47 E 0

IS 9 4 0 £35 1.5 6 O

2 O l 5 O 46 31 5 0

2 l 5 5 O 4 7 65 6 0

2 2 2 l S 0 48 51 S 0

E 3 5 4 O 49 15 4 O

2 4 13 5 O 50 7 5 O

2 5 2 9
‘

5 O 51 7 3 ‘0
2 6 13 4 O 52 l l O



TREE L4,?

TREE INFORMATION FOR ((0,0), (1,1), (0.1))
(Total Parity comm human: 1- Execution Tune: .751 Seconds)
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Number 112 Parity Number n1 n2

1 O 4 O E 89 9
2 8 4 O 54 345 9
3 O 3 D 55 89 8
4 4 4 0 55 217 9‘
5 12 4 9 57 473 9
5 4 3 O 56 217 5
7 0 2 0 59 59 7
a 2 4 a as 25 e
9 10 4 0 6‘1 57 6‘

10 2 3 0 52 25 5
ll 5 4 Q 63 9 4
12 14 4 O. 64 1 3
13 5 3, O 65 5 4
14 2 2 O 66 13 6
15 O 1 C 57 45 5
15 1 7 O 53 13 5
17 55 7 0 6‘9 29 5
15 1 6 O 70 5‘1 6
19 33 7 0 71 2 9 5
20 97 7 D‘ 72 13 4
21 33 a o 73 5 3
22‘ l 5 O 74 1 2
23 17 7 ,0 75 3 6
24 B 1 7 0‘ 75 35 6
25 17 6 0 77 3 5
25 49 7 0 7B 1 9 5
27 1 13 7 0 79 51 6
28 49‘ 6 0 50 l 9 5
29 17 5 0 51 3 4
30 l 4 0 82 ll 4
31 9 a 0 53 3 3
32 1.37 5 O 84 7 7
33 9 7 0 55 71 7
34 73 E 0 85 7 6
35 201 8 0 E7 39 7
36 73 7 O 38 193 7
37 9 5 Q‘ 89 39 6
35 41 ‘B O 90 7 5
3‘? 169 E O 91 23 5
40 41 7 C 92‘ 55 6
41 105 E O 93 23 5
42 233 E 0 94 7
43 105 7 0 95 15 5
44 41 6 O 95 47 5
45 9 5 O 97 15 5
46 25 9 O 98 31 5
47 253. 9 0 99 53 6
4B 25 S 0 100 3 1 5
49 153 9 0 101 15 4
50 409 9 O 102 7 3
51 153 E 0 103 3 2
52 25 7 O 104 1 1.

Parity

»—-oooacoocoooooo00000000o000000»-oooaoadoowwvvooaodooo
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It is seen that, when the table of tree information is rather

long, the parity contributions to be added together appear near the

end of the table. Indeed, very often, the points to be added together

are the last two points in the table. Here, it is better to check

the last yoints first, and. search backwards. The search algorithm

should then also stop if both parity contributions are formed.

The flowchart below take this consideration into account.

It also contains several other modifications which should also

increase its efficiency.



Input D, LOG, and k. A150 input n] and

n2 for the point whose parity contribu-
twns are to be added.

Find the rst location numbers for the
Iower point and upper point for (nrnz).
Store in n],1 and an.

IF'I 4‘0; IF2+0

FIGURE A.5.'|

AN EFFICIENT SEARCH ROUTINE

155
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FIGURE A.5.2

AN EFFICIENT SEARCH ROUTINE (Continued)

Please note that LOC(1,j) is the rst location number and LOC(2,j)
is the second Iocatfon number for the jth po1nt in storage.
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