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CHAPTER I

INTRODUCT ION

L.l Description of Content

Suppose that F:¥c B® 4 pgB is econtinuously differentisble on
the bounded, open domain L and J .(.F-:)-., the Jacobisan iof F, is tnonzero
at the points X e for which F(X) = Y. Then da(F,d,Y), the degree
of F at ¥ with respect to A, is defined %to be the number of points
X ¢ P with F(X) = ¥ end J(F)(X) > 0, minus the number of such X for
which J(F)(X) < 0, provided F(X) # Y for X on the boundary of L.

This concept can be generalized ([1] Ch. XII for the original
scheme or [26] pp. 147-165) so that d(F,f5,Y) is defined for F which
are only continuous on B and F(X) # Y, X on the boundery. For such F y
the Kronecker existence theorem ([28] or [1]) stetes thet, if d(F,.0,Y)
# 0, there exists at least one X ¢dU with F(K) =Y. For this reason,
computetion of d(F,&,Y) is of interest in solving systems of non-
linear equetions (see [ 8] for a discussion of usefulness).

Methods of computing a(F,L,Y) include quadrsture schemes,
for the degree can be expressed under suiteble assumptions in terms
of the Heinz integral [26] or the Kronecker integrel ([1] or [1a4]).
The method most similar to the one First developed in this disserta-
tion is related to the Kronecker integral. For that method, Stenger

[ 30] eharacterized the degree ifi terms of certain determinants; then



calculated it by evelusting those determinsnts. An sdvantage of that
method (ibid.) over some quadreture schemes was that F rHeeded to be
evaluated only to sufficient accuracy to determine the algebraic sign.

The first method developed in this dissertstion comes from
ideas in [30]. Required notation end several well-known cheracteriza-
tions of ﬁ(Fg#ﬁff) are mentioned in Chapter IIL. In Chepter III,
characterizations to be used for machine computetion appear. One
of these, due to Stenger (ibid.), expresses the degree in terms of
determinents of metrices with entries + L, while the other gives the
degree directly in terms of matrices with entries +1. This latter
charscterization is proven in detail.

Chapter IV deals with an algorithm for computing d(F,P,Y),
where P is & polygon. The theory is developed to allow one to
economize on both time and computer storage space. An example is
then worked using this algorithm.

In Chapter V the algorithm for computing ad(F,P,¥) is em-
ployed in & method of finding the roots of a system of nonlinear
equations. This method, embodied in Algorithm 5.3.1, does not require
F to be differentiable.

In Chapter VI a relgticriship between the scheme for cal-
culation of d(F,P,Y) based on Section 3.2 (the second characterizae
tion of &(F,P,Y)) and & labeling scheme to define Sperner simplexes

is presented. Other search routines for Sperner simplexes are briefly



S
deseribed and compared. Also, & gesrch routine for @ Sperner simplex
which uses concepts sbout & lﬂbeling.scheme for nodes in binary trees
(presented in Chepter IV) is outlined.

In Chepter VII applicetions are considered. These include
finding stetionary points (ﬂptimizatinni, calculating linking numbers
(see (1] Ch. XII), and solving the hidden line problem (the hidden
line problem cen be stated as: "does & given curve Pass through a
gurface in R3 " g "does a curve or point lie in front of or behind
a surface in R?"“). Caleculating d(".ﬁ‘,pa ,Y)', where «is not necessarily

a polygon, is also discussed.

1.2 Beckground for the Work

Various other topological methods for finding roots of
systems of monlinear equations or fixed points of meps in‘Rﬂ have
been investigeted. Such procedures, including the method in this
work, may be the only procedures to give mesningful approximations when
g system is highly nonlinesr, or mey be the only ones ‘to converge
to fixed points other than "attractive" ones (see { 3], esp. P- 2,
[26), p. 185, end [26], Ch. 10). Scarf [27] preserted one of the
most famous with tgchniQPEE;similar to applicetions of Sperner's
lemns ([6], pp. 417-421). The exchange algorithm [27] mey perforn
efficiently when &I 18 an n-simplex and ¥ is given in terms of

barycentric coordinates. I & can be trensformed to &n n-cube, then



methods from Allgower and Keller ([29] with [21]) mey be used.
Varients and relsted methods are under investigation [ 9].

For the sbove methods, one usually assumes that F:H-»o&
in ‘order to find & fixed point. It is often suffieient, however, to
know that F - I, where I is the identity map, has & root in «. The
existence of such roots :can be determined with a desired probeability
by Algorithm 4.4.1 (the degree computation algorithm).

There is & close relationship between lebelings for Sperner
simplexes, the degree computation algorithm, Algorithm 5.3.1 (the
generalized method of bia'ect-iaﬂ); and the methods in [27] and [29].
This relationship will be described in Chepter VI. Algorithm 6.3.1,
involving both Sperner simplexes and theory from Section 4.2 (dealiﬂg
with lebeling schemes for elements of simplicisl subdivisions) also

appears.

1.3 Problems Encountered

Problems encountered with some or all of the topologieal
methods mentioned above are similar. For the method in [27], points
ocn @ grid are chosen & priori; other schemes may have similer limita-
tions. In all of the methods, inecluding those of this work, true
fixed points may be "missed."

The generalized method of bisection may require more memory

than the method in [27] or [29], but uses the additional technique



o £ caleulating a(F, L ,_'ﬁn}. For this reason, it may be more power-
ful in some instances than other methods.

Nonetheless, Algorithm 4.4.1 (to compute d(F,P, Bn)) cannot
be used to caleulate d(F,.0,8 ) with absolute certainty. When the
characterization in terms of determinaents (in lieu of Theorem %.2.10.
the other characterization) provides the besis for an algorithm
analogous to Algorithm 4.4.1, s higher degree of certainty is attained
at the expense of computation time. Indepéendently of the above modi-
ficgbion, parsmeters in the degree computation algorithm can also be
chogen so that more computation is done, but the computed vslue of
'd.(F,p&,e"n) has a better chance of being correct. BSuch sdditional
computations may then be used later in Algorithm 5.3.1 (the gen-
eralized method of bisection).

A method for quickly calculsting the special determinants
in the determinant characterization (Theorem 3.3.1) would improve
the degree computation (Algorithm 4.4.1) and Algorithm 5.3.1 con-

siderably.



CHAPTER ITI
NOTATION FOR THE REGION AND THE CONCEPT OF DEGREE

In the first section of this chapteé, the notation used
throughout the rest of this work is introduced. In the second sec-
tion, the degree of a mep with respect to a polygonal regicn is de-
fiﬂaﬂ, 1ts gignificance is.iistuﬁaéd, and useful characterizaetions

are given.

2.1 The Region

The notetion in this section will describe the region over

which the degree is defirned.

2.1.]1 Definition. Suppose that {xb,xl,...,xuj, M<Ln, is' &
. . ar Han BT ey 48 A e " HEEPLYr THAaDERI N
set of of points in R, so that [xk 3b]k;1 is @ linearly independent
set of n-vectors. Then the -simplex 8 = (X ,Xl!...ﬂxp} spanned

by [XO?"'JXE} is the closed convex hull of these points, i.e., it
is the set zJ;: PiKeMe 2 0 end g M = L.

2.1.2 Definition. The points X,k =0,...u are called the
extreme points or vertices of 8.

In Ea, & 2-simplex is simply & triangle while in RS, a
3-simplex is & tetrshedron. A l-simplex (A¢E) denotes & line segment

whose endpoints are A and B.



We next define orientations with the following two defini-

2.1.3 Definition. If Zl,...,Zn,are rew vectors in Rﬂ’

then 4, (2,,...,2 ) is the determinant of the matrix whose k-th row

is Z‘k .

2.1.4 Definition. If S = (Xb?...,xn} is an n-simplex in R®,

then one assigns a positive or negative orientatich to 8 according
to whether the determinant ﬂ%ﬁ(l,xb)...,(l,ﬂﬁj) is a positive or nege-
tive (see [L] Ch. 4, §2,#1 and [1], Anhang II).

If the k-th end m-th points (m # k) of 8 = (X, 00, X,00e,
Xm,-w-,xn} are interchanged, then the orientation of 8 is reversed.
One writes: '{xg, TS PRI SRTRES I -{xa, e X e X, X0

Opposite orientations of & triangle in-Rz are illustrated
in ¥Fig. 2.1 and Fig. 2.2.

In general, an odd permutetion of the list of points of S
changes the orientation, whereas an even permutation does not.

If P is @ union of p-dimensional polygons iniﬁn? then P
can be written es the undon of a Finite number of {-simplexes in R™
with the property that the intersection of any two of these simplexes
has empty interior. (We define a p-dimensional polygon as @ connected
union of p-simplexes). If these gimplexes are 8, ,+e+,8,, thencone

writes P = E§=l$k'



S = {x1= n3sha )

FIGURE 2.1
POSITIVE ORIENTATION

FIGURE 2.2
NEGATIVE ORIENTATION



An exsmple is given in Fig. 2.3. There, the topological
boundary of P can be thought of as being "traversed' ia the direction
depicted. When the boundsries of Sl and 82 are also traversed in
this menner, the segment (A,C) in the interior of P is covered in
opposite directions.

As does the concept of the trisngle itself, the above

characterization of the boundary generalizes to higher dimensions.

2.1.5 Definition. If 8= (X X ) 1s @ w-simplex in

0’2

R-n(n > I-l) , then the algebraic boundery of S is formally defined by:

( ) h(S) “‘kE;L($l)k l 0:“':‘%&:“‘!;{“)

In this formula, (xﬁ!...,ﬁk,...,xP} is the (i - 1)-sinmplex id R®

obtained by.deleting-ﬁk from the ordered list of vertices for S.

2.1.6 Definition. If 8 is @s in Def. 2.1.5, then the

(u = 1)-stmplex (X,...,%,..., %) will be celled the k-th Ffecet of S.
The formal sum in the right member of (i) is interpreted

geometrically es en oriented union of (p - l)=simplexes eppearing with-

in the summand. In & general sum of the form s

2
| k=0 &
are sll oriented u-gimplexes, a similar interpretation is given;

where the Ek

there is cancellation when simplexes with similar vertices but opposite

orientetions gppear, and en Iinteger welght 1s sssigned toc 8 if S



P = ABCD
S, = (A,B,C); S, = (A,C,D)

P s 51 + 52

FIGURE 2,3
A SUM OF SIMPLEXES

>

10



appears more than once with the same orientstion. (See [1], III
er [19], I, #5).

For example, in Fig. 1.3,
b(B) = b(8;) + v(8,) = [(B,C) - (4,0) + (4,B)]
+ [{C,D) - (A,D) + (A,c)] = (B,C) + (&,B) 4+ {c,D)
- {A,D) +[(A,C) - (A,C)] = (B,C) + (A,B) + (C,D) ~ (A,D)

= (A,B) 4 (B,c) + (C,D) + {D,A)

as one would wish.

2.1.7 Remark. The boundary operator, b(-), is linear.

2.1.8 Remark. If one makes cancellations, ignores the

orientation of the component simplexes and interprets "z" as "U"
one obtains the topologleal boundary of P.

In most of the theorems end algorithms to follow, it is
assumed thet P is & simplex. However, the theorems are still true
for arbibrary polygons, and the slgorithms can be made to ‘work
for polygonal regions cther than simplexes.

For a discussion of the above concepts (in a slightly more

"EEHEI'E:L fﬂl"ﬂl), see ['ﬁ]: TP, 2_7.

i W
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2.2 The Brouwer Degree
Suppose that P is an n-dimensional polygon in R* and thet
G:p(P) » gt 18 continuously differentiable, wherersp.&enctas-the
surface of the unit n-disk in R®. Now let us produce a sequence,
{:{83 ;}J —p Of sets of (n = 1)-simplexes so that b(P) = " EJ

=1 t
and if J 1s large, then the diameter of Ej is small for i = 1

greeaRye
This done, let us approximste G by the sequence, {tﬁji;l’ of maps which
interpolate G at the vertices af;Si(i = l,...,kj) and.which are

effine in the interiors of the Si (See [1] pp. 341-342). Suppose now
thet X e b(P), and thet the Jacobian of G at P is nonsingular at X.
Then, for j lerge enough, the images of the 8
same orientation (since the Jacobisn of G hes one sign in a neighbor-

containing X have the

hood of X). Furthermore, for lerge Js'ﬁo-ﬁi containing X contains
any other point, X, with G{Ki)'='G(X). With this in mind, the

following definition is made.

2.8.1 Definition. Suppose that P and G are &g above, that

J is "lerge enough" (es sbove) snd Pixed, and that Y is eny point
2 {

on 8. Then the rotation of G is defined to be the number Qf'ﬁg
containing a point of G_l(Y) vwhich have a positive orientation,
minus the number of'sucthi with a negative orientation.

It can be proven that the rotation of @ is independent of
the choice of ¥ ([25], p. 28), so that Def. 2.2.1 mskes sense. (See

also [1], [20], or ['8.], pp. 2-25, =nd esp. [ 8], Theorem 2.7).
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If G is sssumed only to be continucus on b(P), then G can
be spproximated by maps which sre C- (See [26], p. 15 , end [5]]
or [8]). Thus, the rotation of such G cen be defined, [8]]
Now suppose that F:P » R is an arbitrary continuous mep,
A e R®, ana P(X) # A for X ¢ B(P). ‘Then, by restricting F to b(P),

the rotation of (F - &)/ |F - Al 1s defined:

2.2.2 Definition. If P, A, and F are as above, then a(F,P,A),

the degree of ¥ at A with respect to P, is defined to be the rotation

of (F - A)/|F - &

2.2.3 Remerk. Note that a(F,P,4) = a(F - A,P,.’@h)’_a where 8
1s the n-dimensional zero vector. Hence, without loss of generality,
one need only consider the degree of F st 6, to deal with d(F,p,4),
where A is any point in P,

Very often, d(FtP,Gn) is defined in terms of the Heinz in-
tegral[l8]. With that definition, important properties of d(F,P,Eh}
can be proven with relatively simple analytic tools [26]. Nonethe~
less, 1t cen be shown that the definition in terms of the Heinz in-
tegral is equivalent to Def. 2.2.2 gbove [ 5]. The main results in
this paper stem most directly from Def. 2.2.2.

The reason for interest in d(F,P, eﬁ) here is its relastion-
ship with the solutions of F(X) = 6 within the interior of P. Namely,

the following theorem holds.
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2.2.4 Theorem. (The Kronecker existence theorem; [1], pp.

467-468 [26], . 16 or [ 8], p. 32). If 4(F,P,0) #0, then F(X) =

Bn hes at least one solution in the interior of P.

2.2.5 Remark. When F is diffeventisble in P and J(F)(X) =

at each X € P with F(X) = ﬁ%,'thEH-ThEGrEM.E.Z.%WEaH be strengthened to
read: ﬂfFiP,enJ is equal to the number of points X ¢ P at which
F(X) = €, end J(F)(X) > 0, minus the number of such points at which
J(F)(X) < 0, where J(F) is the Jacobian of F([23], pp. 33-38 and in
particular, Theorem 1).

The asbove characterization is often teken to be the defini-
tion of d(F ,_-P,.-a-ﬂ}' ([26], [23], ete.). This definition is then meaning-
fully generalized via the Heinz integral [28].

There sre various epproaches to g@mputing_d(F;Pién). Some
gre guasdrature schemes of which the Heinz integrsl [28] may form the
bagils. AlEa,iﬁfF,P,EﬁJ is represerited by and numericslly epproximated
via the Kronecker integrsl [25]; the Kronecker integrel ([1], pp. 415-

437) has close ties with facts used later.

2.2.8 Formula. (The Kronecker integral: [14]):

d(F P e ) l HF l”n /A (F(X} (X),, .o 'Ja_(x) Jﬁ-ul' . 'd"_-ln._-l

' %(u) ¢ b(F)
Here fi is the surface area of the unit n-sphere, and U =
(uyseen,u 1), where u ,v.0,u . 8re the peremeters for eny continuous,

one-to-one parametrization of b(P).
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The following formule complements Formula 2.2.8.

2.2.7 Formula. 1In R;, in view of Remark 2.2.5, the following

formula is used to cherscterize d(f,P,0), where P = [&,b] ([30]):

te o F(b) fla) _ sgalf(b)) = sen((
a(t,P,0) = I£Lb) | If(:)!'" —— 2 nirle))

2.2.8 Remark. If the n-dimensional polygon P is embedded in

@ higher-dimensional region with g ohe-to-one paraemetrization = (i;e.,

P = %, where B < RP), and F:P » R, then a(7,?, 6.) is defined by:
d(F,P,6 ) = d(Fon, m"l.(ﬁPJi,aﬁ) provided @ ¢ F(b(P)) .

2.2.9 Remark. The following two properties of d(Fjﬂgeﬂ) are

useful:
(1) d(¥,P,0,) depends only on walues F assumes on b(P).

(2) [14] Ir & = .UﬁPi, where each P, is & union of polygons,
=L

the P, are disjoint, and F(X) # 6, for any X e b(P,), then

d(Fid&,eﬁ) can be defined by:

a(F,.8, ani) i if;_d (F ,_-Pi_...ﬁn_} .



CHAPTER III
TWO CHARACTERIZATIONS QF.ﬁ(F,P}Gn)

The object of this chepter is to present charscterizstions
mﬁ.d(F;Pien) which can essily be used for mschine computations. Sich
characterizations, given in terms of simplicisl subdivisions of b(P),
hold when the simplexes in these subdivisions have smell diameters.
These smallness conditions are clarified in Section Jels

A recursion formuls [30] is also derived in Sectiof 3.1.
This formula relstes &(F;P,En), where P is n-dimensiocnal, to
d(Fi,E;_l,Bn_il, where Ei_l are (h—L)+dimensional regions on the
boundery of P, End.Fl has-(nul) components, all of which sre restric-
tions of components of ¥ to b{P). In Section 3.2 and Section 3.3, this
recursion formuls is used to derive twa?thérécterizatioﬁsamf'd(F;P,en).
One of these fThEGrEm=S;Eth}.exﬁreﬁBeﬁ d(F,PJen) in terms of certsgin
matrices whose entries sre ¥, while the other (Theorem 3.3.1) gives
a{F,P,en) in terms of determinents of these same matrices. The First
charecterizetion, proven in detail, will he seeh in Chapter VI to be
releted to labeling schemes to determine Sperner simplexes.

Either characterization cen be used to eompute-d(F,P,eh).
Because determinants are not involved in;@hEﬂfem-Sqa;lG, the computa-
tions beased on it should ususlly be the most efficient. However,
Theorem 3.3.1 provides an additionsl metHod of determining the prob-

ability of correct results. This is discussed in Seetion 3.3.



7

3.1 A Recursion Relzgtion

In all following work in this chepter, it is assumed thet
the domain of F is an n-dimensional polygon P or more generally that
b(P) can be written es & sum of (n - 1)-simplexes, each of whose
diasmeters is "smell" (see [30] pp. 26-28). Just how small is small

enough is indicasted in the following definitions (ibid.).

2:.1.1 Definition. If P = (A,B) c R egnd f£:R =+ R is contin-

uous, then b(P) = B - A is sufficiently refined relative to f if £(B) #

0 and £(A) # 0.

3.1.2 Definition. Suppose p > 1, P” is & p-dimensional
polygon, end F = (fi,...,fu):Ph > R™, Then -b'(PH) is sufficiently re-
fined relstive to F if &snd only if E(P“) is written as the union of a
finite riumber mf-(p - 1)-dimensional regions Bt-l""’ﬂﬁel’ each con-
sisting of unions of oriented simplexes and having the following prop-
erties:

() The interiors of the Bi"l are disjoint end each Bﬂfl is con-
nected.

(b) At least one of the components of F, say £, , does not vanish

. i
sk
on Bpnl'
(e) If £ #0 on B ., then b(pl .) 1s sufficiently refined rela-
to T where P = (£ ,...,F £ 41, ...,0 ):b(P ) =
By B S T R T

Rn '-l..
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Since properties (a), (b), and (c) of Definition 3.1.2 depend only on
the signs of the components of F on b{(P), we will sey b(P) is suf-
ficiently refined relestive to Sgn (F) (infra. Definition Z.2.1) to
meen b(P) is sufficiently refined reletive to F.

It should be noted that the above sssumptions, though some-
what wesker than the ones given by Stenger [30], are all that are
necessary in his work (ibid.) and the theorems to follow here (ef.
(211).

It cen be shown ([30] pp. 30-32) under mild sssumptions on F
that, if the dismeters of the simplexes comprising b(P“} gre suffi-
‘ciently smell, then hfPh)-iB sufficiently refined relative to Sgn (F).

Methods of:subdividiﬂgzb(P“} in order to produce sufficient
refinement will be discussed in Chapter IV. Here, the follewing defi-
nition end theorem set down & recursion relation ([30] pp. 32-33) for
-campmting-d(F;P#,eh} provided B(P ) is sufficiently refined reletive

3.1.3 Definition. Let ﬁi-l be as in Definition 3.1.2. Then

corresponding to an integer r e [1,n] let I (r)(37(z)) consist of those

0 wE 1 & N Pew wETaY O i
integers i ¢ [l,ﬁ“] for which fr >0 on Bu-l(ff < 0 on gu_l),

3.1.4 Theorem ([18] p. 33) A Recursion Formula. Suppose P“

is & polygon in RM | F = (fl,...,f'p)_:Pu + RW ena b{PP) is suffieciently

refined relative t6 F, with regions ﬂi-1="'rﬁ£-1 as in Definition

3.1'6'
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Then:

where

po=i(f

L TIPS - S =1
1 qu).b(PH) R ;

Zl"'l

3.1.5 Proof of Theorem 5.1.4. Without loss of generaslity it

mey be sssumed thet F is differentiable, for otherwise F may be approxi-
mated by & map, G, which is differentisble, for Whiﬂh'ﬂ(G;Pu,ép} =
a(F,PH,aL)! and far;whieh.ﬁp is suffieiently refined relative to &

with the Eﬂme-résinﬂﬂ.ﬁi_l (infra, slso [26]: 6.2.1 and Lemma 3.1.6).
Then let K(ul,...,%u_l} represent a differentisble parsmetrizstion of
b(P,) end let W be any point on b(P ) at which F,(W) = (£,(W),...,

£ (W) = 8 1"

expansion of the determinant in the left member slong the first row:

Then the following formuls holds at such points W by

With the point Y of Definition 2.2.1 chosen to be the inter-~
section of the positive first coordinete exis of RM with the unit

u-sphere, 4a(F,P ,8 ) equals the number of points W as sbove for which

"j—L"
a small ﬂEi@hh&rhﬂﬁi gets mapped in a one-to-one fashion onto a neigh-

borhood containing ¥ with a preservetlon of orientation, minus the
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number of such points W for which there is @ reversgl of orientstion
(see [23]: §5). However, unless the left side of (i) is zero, the
argument in [1], p. 466, shows that the sign of the left side of (i)
gives the relative orientation of any such smsll nelghborhood on the
unit sphere. If the determinant is zero st Cne or more such W we can
replace F by &n spproximetion G so b(P‘) is still Euffiﬂiently refined

) but the ﬂetermlnﬁnt.ﬁ.(G - ,..*,ag ) does hot

Uy U1
venish at such W for the mapping G. Hence, without loss of generslity

d(G “ l_,

the sum of the sign of the left-hand side of (i) over all W is
d_(F’,PprJ_-.

Note, however, that fl > 0= W must lie in some .E'i' with

(=1
ie d7(1). Finally observe that, excluding the factor of £ (W), the

right member of (1) is simply the Jacobian of Fi with respect to the
parameteﬂﬂ'ul,...,uu_11 aﬁd that the points W sre simply those points
= E:Ji—.l at whiech 'Fl vanishes. Hence , By Remark 2.2.5 (the degree in
terms of the Jacobisn), the sum over all W of the sign of right-hand
side is EJE(IL)&( l’ﬂi-l’su-l)'
graph establishes the formulas.

This combined with the preceding para-

5.1.6 Lemms. Suppose that F,&c R~ Rn, is continuous,

where o ig some compaet set in RE, Suppose further that b(.H ) is

sufficiently refined relative to F, with regions ﬁ s ..,BF‘ and
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&
sets J (8), & = 1,...n in the definition of sufficient refinement.
Then there exists sl ¢ such that b(.8) 1s sufficiently relative to G
£.

if |[F - o <e, where the B ., .. .B

ap o8d 7(s), 5= 1,...,0 are the

same es those for F.

3.1.7 Proof of Lemma 3.1.6. The proof will proceed by induc-

tion on n. If n = 1 the theorem is trivial. ILet us then begin by
assuming thet the theorem is true for (n - 1)-dimensional spaces with
n > 2; further suppose that F: B Rn, where 2c R™ , and b(-8) is

sufficlently refined relative to F with the sets Biﬁl"' B L Teke
en arbitrary r, such that ffi # 0 on B+ From here, choose E’i,i‘i
such that [P -G <e! _ implies BL . is sufficiently refined rela-
Ti i,ri =1
tive to G, with the same sets as those for F_ ; set ¢ = min ¢
i 1,3
£, (X) ]| end set e =

-

1,7,

For each suech i and T, ; set -'-_51:1,_ = _f#ig} |
&/Emin.ﬁ

i.p ' ' ¥ e ' =1
>

¥y i

minf{e',e"}. Then | - G| <e > |F -6| <e", and F, -G =
i i 1Ty

for every i end » A Hence, by definition of sufficient refinement such
G are sufficiently refined relative to F. Furthernore, a simple obser-

vation shows that the Fi_:;“ for G catt be chosen to be the ssme as those

1
for F. The J':I:(S) are then the ssme for both ¥ and G. The theorem is

thus proven by induection on n.



azc

3.2 A Cherscterization of d(F.,P,6.)
in Terms of Certain Matrices

In this section, we present & characterization in terms of
matrices whose entries are 1. These matrices are formed by taking
the algebraic sign of components of F evaluated at points on b(P).

Hence, we begin by defining Sgn(F).

3.2.1 Definition. If F(X) = (£;(X),...,2 (X)), P - RP,

then Sgn(F) is defined by:

Sen(F)(X) = (sgnls; (X)), ..., sen(F (X))

where

3.2.2 Remark. The fact that sgn y has only two values sllows

one to economize on computer storage. Also, the results in [30] and
this peper sre all truE'With=ﬁgn(F}-&efinﬂd g8 above.
We now define the main terms appeesring in our charscteriza-

tion.

3.2.3 Definition. If-5:=f{3i,...,xﬁ} ig ar (4 - 1)-sinplex

in R" and F:5-R", then the range simplex sssoéisted with S and F,




&3
denoted ﬂ(ﬁ _,F).- l1s the n X n matrlx whose 'd.th row is '5-@5(3'('}{1) ) That
is, 1f B = (Xl,-,xn) is'an (n - 1)-simplex in R" and F =

I(fl.s Vee fn-) R RP , ‘then:

[ sen(F(X,) )\

&(S,F) = .

_\ss_n'_(i‘(xﬂ)‘)}

3.2+4 Definition. If 8,F, and A&(S,F) are as above, then

®(8,F) is termed useable if one of the following two conditions holds:
(a) A(8,F) = (ai J-) has only +1's on and below the main disgonal
g
and ﬂﬂ'-l&"-.(-l)"s in the 'ai,_ 41 positions, for i = 1,2,...,8-1.
(b) ®(8,F) can be put into the form indicsted in (a) by s suit-

eble permutation of its rows.

3.2.5 Remark. It is often less cumbersome to formulate the

definition of useable &(8,F) in terms of lebelings. To the k'O row
of &(8,F) (for k¥ =1,...,n) we assign e label !, e [1,n] by letting
.Ek = ¢ - 1 if the first -1 (resding from left to right) in the It'bh
row oceurs in the JE-th eolumn; 1f there are no -1's in the R'th row, we
set 4, =n. It is essy to see thet &(S,F) is usesble if and only if
£y e :."En} ={1,...,n}, PFurthermore, if R(S,F) is usesble, then

Par(&(8,F)) = 1 if and only if the permutation required to put the
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seguence zl,...i in naturel order is even, and Par (;ﬁ-fS_,F) )

if end only if thet permutation 1§ odd.

5.2.6 Definition. If @.( S jF ) 18 a renge 'Efj_mplg;[ ) then

R(S,F) 18 seid to have positive parity or perity +1 if the permuta-

required to put A(S,F) into form (&) of Definition %.2.2 is even;

1f thet permutation is odd, then AR(S,F) is said to have negative

parity or parity -1. If ®(S,F) is not usesble, then &(5,F) has

parity O.

For any range simplex ®&(S,F), the perity of Q&(8,F) is
denoted by Par(R(8,F)).

The cheracterization in this section deals with the mstrices
6?(’8‘;, F). To enable us to prove our characterization by induction we
next define a number e@ssociated with submatrices of stch R(S,F).

Suppeose that the first column of &(S,F) has only +l's in

it, and set ¥, = E" e ) Also consider b(S) = 5( -l)_k_lTk;

k=1
where T, = (Jﬁl,_ i 3 .,Xk veey K ). 'Then the range of simplexes

R(T, ,¥,) can be gotten from R(S,F) by deleting the first row and
I:th columd of &(S ,F’). However, Tk occurs in the sum for b(S) with

)k-l

an orientation of (-1 , and if the orientation of T 1s changed,

lowing definition.
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3.2.7 Definition. The net sum ¢(8) of the parities of the

renge simplexes sssocigted with simplexes from b(S) snd F. is given by:

L

o(8) = £(-1)'Per(&R(T,,F.)) .
=1

For example, if

R(S,F) = L =i,

then the net sum is

. = | 1
a(8) = (-1)-]'-1?5-3: + ﬁ-l)z'_lPar
1 1
1 1N
R | =g+ LD 8 =1
-1 ]_

Dealing with the above notions, the following lemma will be

used to prove Theorem 3.2.10 (the mein characterization).

3.2.8 Lemma. Suppose S,F, ®(S,F), and o(8) are as above,

with n > 3. If the second column of &(8,F) elso contains only +1's,

then o(8) = 0.
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3.2.9 Proof of Lemme 3.2.8. We will think of Par(&(s,F))

in terms of the labels .e:l_ g ,,e'n. assigned to the rows of .&'(.S,F)- (of
Remerk 3.2.5).

In order for U‘-("S) to: be nonzero, Par(.&'(‘Tk ,'Fl)") # 0 for some
Ti» where T, is as above. But this cen heppen if and only if (2,...,h)
< [#3,++-51, ) from the definition of £yy0-0y8 8nd the definition of
Par(R(T,,F,}), so assume {2,...,n}c (gpeveyt e Bub ¢ [0,000,2 )
by the assumption on the second row of R(8,F). Hence, there are k,m e

(1,...,0} such that £y =1, end such that all of the other Z 5 's are

distinct. TFrom this we deduce:

It will now be shown that E-l)k-]?-;a-r("ﬁ('fk,l"'l}) + .(-l)m-lP"&r(ﬁL(TM,FI_-L')?
= 0. Consider these two posgsibilities for k and m:
() k end m are both odd or both even.

(b) k and m heve opposite parities.

k-1 _ , -l
= ("‘l) .

If case (a) occurs, then (-1) 'Bup;pars.e without loss of

generality that k < m so that Par{&(Tk,,_Fl)')- is positive if and only

1f the parity of the permutetion required to put Biyees by ’zk-l-“l gomey

-.E_-m,_. weydy in the natural order is even, and P—ar(ﬂ'(Tm:,Fl)_) is positive

if and only if the permutation required to put the sequence Liseeey

Bygonogh qok L qyeeeyl - in the natursl order is even. Since, L =1,



27

however, we cen get the sequence I !

L. Trom

1.2 =2 " :EK:F il Eﬁi-‘l”’ .'m+l}' e B

preeeady qabyqreena iy eee, by the (k - m)-cyele: (8, ,000,4 ).

If k - m is even, then the parity of this permutation is ©dd, thus

L

showing thet Per(®R(T,,F,)) = -Par(R(T _,F,)). Hence, when k and m

have the same parity we have:
a8 ) = (15T par(R(T.,F.)) + Par(@(T ,F )) =0

If we follow the same argument when k and m have opposite perities, we

get:
o( ) = (-1 + (D)™ 1) Par(R(T,,7,)) =0 .

Thus Lemms 3.2.8 is prﬂven.fff

Suppose now that P'c R™ 15 & polygon, and that F:P -+ RD
does not vanish on b(P). Then one need only examine the usesble sim-
plexes produced from the sufficient refinement of b(P) in order to *
determine 4(F,P,8 ). The following theorem (our main cheracterization)

makes this fact explieit.

3.2.10 Theorem (The Parity Theorem). Suppose P is an n-

dimensionsl polygeon contalned in R? for some n > 2. BSuppose further

that & is & finite set of (n - 1)-simplexes such that U S = b(P),
e &
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the members of 8 have disjoint interiors, and the simplexes in 4 make

b(P) sufficiently refined reletive to Sgn(F). Then:

a(F,p,e ) = 2 Par(R(S,F)) .

Otherwise stated, d(F,P,8 ) equals the number of usesble simplexes from
menbers of &£ with positive perity minus the number of such useable

simplexes with negative parity.

3.2.11 Proof of Theorem 3.2.10. The proof will proceed by

Induetion on n. First assume thgt P is a 2-diménsional pelygon, that
= ?(f_l -‘fg): P+ R? ig continuous , and that & is & set of l-simplexes
whose union is b(P) such that 4 causes b(P) to be sufficiently refined
relative to Sgn(F). Then the conclusion of Theorem 3.l.4 holds with

(iy a(F:Pf@V)'= DX &(ﬁ.JEiEGJ
ogerr(n)y 2L

where the ﬂi are as in Definition 3.1.2 and J (1) is as in Definition

| i | . |
3.1.5. However, when n = 2 each El is a sum ©f 8§ j.1€ 4 where each
S 54 is @ line segment in R for i < J < m, and 1 e J(1). We write
Js

8, ;, = (A, ,,B, ,) hereafter. Hence, in vwiew of Formuls 2.2.7 we have
Jal JiZ J F

-(ii)- d(FE_:Bl.:_OD = j_qli[sgn(f( J i)) = Egn(f(ﬁ‘j i)
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Combining (i).anﬁ (11) now gives

(anh alme) = B Jﬂi [sen(2(3, ,)) - sanl(a, ,)]

It will be shown that each [Egﬂ(f{ﬁh sl = Egﬂ(f(ﬁd ;)] in (4i1) ecan
be replaced by Par(@® (SJ -
P

unless subscripts sre importent, S will be written for -ﬁj g+ First,
J

F)) without sffecting the sum. Hereafter,

it will be shown that without loss of generality 8 € ﬁi‘_ for some

£ & (1) if and only if the first column of R(S,F) is :('l,]'_)".T. Clean-
ly, i£ 8 & Eiri then the first column of &(S,F) is (1, 1)%. For the
converse, suppose that fhe first column of Eﬁfﬁ,Fj iE-(l,l)T but

s é?ﬁi-fmr any i e J+(1). Then by the sufficient refinement hypothesis,

f,>0on Sorf, <0on S8, sothet [sgn(£(B, ,)) - sen(£(4, ,)] =
: ¥ N F3

2
Par( R(S,F)) = 0. In this case, S may be included in the sum in
(i31).

There are four matices &(S,F) whose first column is

(l,llm. These are:

(e ) | -i (a) -l 1\
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These four cases are checked individually to prove the
theorem for n = 2.
Suppose row that the theorem is true with (n - 1) replacing
n, where n > 2; also let P c RA be an n-dimensional polygon, let
o= (000,008 = R be contimuous, and let b(P) = EE,& S be suf-
ficiently refined relative to Sgn(F). 'Then the 'nmnc'luﬁién of Theorem

3.1.4 again holds with n replacing p, so that

-. .- - L
(iv) F,P,0.)= =z @a(F 6" .,6 .)
n iEJ*(l) 17 ' n=]?"n-1L
where J +( 1) is as in Definition 3.1.9% and the "Ei_l are as in Defini-
tion 3.1.2.
But ; by the induction hypothesis, part (c) of the defini-
tion of sufficient refinment, end the definition of ¢(8), we have

(v) d(¥ B> .8 )= Par(R(TF)) = 5, ols).

g |
tch(B,_1) S =

for 1 e J.

It is first verified (imfra_; Lemma 3.2.10) that S need be
included in the right member of (v) if end only if R(S,F) is usesble.
Then we apply the fact that if R(S,F) is useable, o(8) = Par(R(8,F))
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(vi) =, o(8) = 2 Par(R(8,F)) = 5 Par(R(S,F))
-_Eg:&n_l 8 useable Sed

Combining (iv), (v), and (vi) now gives the result of the
theorem.///

3.2.12 Lemna. Suppose b(.8) is sufficiently refined rele-

tive to 8gn(F), 8 < b(L), and R&(S,F) is useable. Thern 8¢ ﬂ-f_;_l

for some i ¢ J(1). Also, suppose S S 1‘3;3;_ for some i e J° (1)

L
end &(S,F) is not usesble. Then o(8) = 0.

3.2.13 Proof of Lemma 3.2.12. If ®&(S,F) is usesble, then

the first column of &(8,F) is the only column which dces not contain
both 1's and ~1's. But, by the sufficlent refinement hypothesis, at
least one component of F does not vanish on 8. This forces

§ €@ ; for some 1 & J"(1).

Now suppose S Bi—-l for some 1 e I (1) and R(S,F) is not
useeble. Then there are zero, one, or more than one -1 in the second
column of ®R(8,F). If there are no -1's in the second column, then
g(8) = 0 by Lenma 5.2.8.

Finglly, if there are one or more zeros in the second
column of Q(S,F), end R(S,F) is not useable, then there is a
J el2, ,...,n} sueh that § e {25y.0+,2, ). In that case, -P_‘a‘;r_(ﬁﬂ‘k,ﬁ‘-i-):)

= 0 for every k ¢ {1,.v.,n] s0.a(8) = 0.

3.2.14 Lemma. Suppose R(S,F) is useable. Then o(8) =

Par( R(8,F)).
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3.2.15 Proof of Lemms 3.2.14. Suppose ®R(S,F) is useable,

and set b(s) = =" (?'-1).}"1Tk as in Definition 3.2.7. Then, since T,
k=1 |
wotild not heve any -1's in its first column, if PEr(a@(Tk,Flj).#-G,

PErC£Q(§R;Fi}) = 0 for all but one k, e.g., kﬁ' Let Piibe-ﬁhe permuta-

| _ th N
tion on the numbers 1,...,n required to put the kg row of &(S,F) =
R( {xfl, o ey X, ),F) into the first position (leavirg the other rows fixed

relative to each other) and let P, be thet permutation on 1,2,...,

e

k=1 k@ + 1,0, reguired to put tﬁ((ﬁi,... X& gees K Yy F’) into

form (&) of Definition 3.2.4. Similarly, let P he the permutstion

5
on 1,...,n required to put &(S,F) into form (a) of Definition 3.2.4.

Then, thinking of PE as & permutation on n objects which leaves the

Pirst object fixed, we have

. _'l’kb) is & kﬂ—cyﬂlei so its

parity is the parity of the integer~kﬂ,— 1. Hence:

Hoyever, ¥, = (1,200 s,k

B =dl
(12) (-1) © Par(®(T, ,F,)) = Par(R(8,F))
0

k-1 - |
However, since (-1) 0 Par(R(T ,Fl)) was the only nonzerc term in
0
the sum for o(8), the conclusion of the lemma follows from (ii).///
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3.3 A Characterizetion in Terms of
Volumes and Determinants, and
Anglysis of This Cheracterization

Stenger [30]- combines Theorem 3.l.4 with other considera-
tions %o produce the characterization in Theorem 3.3.1, presented

below.

3.3.1 Theorem. Suppose o8cR™ is an n-dimensicnal polygen,

and that F: o0-R" is continuous, with F(X) # 6 for any X e b(2).
Buppose further that 4= EE"}_SE_ r is a finite set of (n - 1)-simplexes
such that b(0) = £ 8 and that with &, b(.0) is sufficiently refined

. 8e8
relative to Sgn(F). Then the following formula is true:

ar, 3,8,) =gy 2 et (5,1)
Se.2

3.3.2 Remark. In [30], sgn(y) is defined by:

L x>0
san(y) = g =% {a"
=1 <0

As was merntioned earlier; however, cone can i?epl*ae.e this definition -by
Definition 3.2.1 without altering the truth of Theorem 3.3.Ll.
Caleulating the above determinants with Ggussisn eliminsg-

tion requires more compubations then declding whether a range simplex
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18 useable or not (Def. 3.2.4). Nonetheless, forn =2 and n = 3,
the difference in computstion times is not very large. Moreover, when
one divides by 2"n! s one knows that sufficlent refinement has mot been at-
tained if the result is not ah integer. Furthermore, the determinants
in Theorem 3.3.1 have magnitudes of at mﬂatuztﬂz_ﬂ}fz, so that this
device can be used to guess d(F;J&,Qﬁ);with.a-high,prchhhility'ﬂf

correctness, even where sufficient refinement has not been attained.

5.%.3 Theorem. Let n = 2. If‘ﬁh is an n-th order de~
terminant, the entries of whose matrix consist of only +1 end -1, then

B A
the meximum value of Lﬁhl is Eﬁn -HDXZ-

5 3.4 Proof of Theorem 3.3.3. Apply the Gaussian elimine-

tion process to the rows of the metrix to put it in triengular form.
Then no element of the mastrix after the k-th stage of the operation
has a megnitude larger than Ek. Sinece the first through k-th rows re-
main unchanged during the k-th operation, and since the process tri-
angularizes the matrix in (n - 1) steps, the diagonsl elemerit in the
k-th row of the triangularized metrix has & megnitude less thean or

K= _ ) _
equal to 2 1 for k = l,..s,0« Hence

| n-L B el
A, | i:é 2 = z§=@ k_ p(n"-n)/2



CHAPTER IV
ATGORTTHMS

In the previous chapter, it was seen ﬁhatﬂa(F,P;eh)-nmula
be caleculated in terms of simplexes comprising b(P), Provided the
dilameters of those simplexes were "small enough." In order %o
implement the theorens involved, one desires an i1terative method
of "subdividing" the (n-1)-simplexes of b(P) so that the digmeters of
the resulting (n-l)-simplexes become small.

One such procedure is a generalizastion of bisection of line
segmenta;im-ﬂl. 1o carry out this procedurs on an (n-1)-simplex S,
we Find the longest line segment to be formed by taking the vertices
of 8 two at a time. The midpoint of' ’ckiis line segment is then used
to form two ney (m-1)-simplexes. An illustratiocn for (n - 1) =2
8ppears in Fig, 4.1. There the longest gide of (A,B,C) 1s (A,C),
which heg midpoint, M. The two new trienglés (A,B,M) end (M,B,C)
ére formed by replacing E-hy'Miéﬂdcﬂ'by:M, respectively.

When bisectiotis are carried out, too many fn—l)-ﬁimpLexes
may be produced to bBe stored effectively in the machine. Further-
more, a casusl approach easily results in repeated evaluation of F at
the gatie pointsg finfra}, and mey also result in extrs work %o produce
& uniformly fine subdivisgion of bfP),"emenfﬁhﬂugh'ﬁnly'sﬂme of the

simplexes in the subdivision need have small diemeters to assure



FIGURE 4.1
A SIMPLE ILLUSTRATION OF BISECTION WHEN (n-1)=2
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sufficient refinement. For these ressons we will introduce an ad-
dress scheme for labeling simplexes in subdivisions of b(P) produced
by bisection. This address scheme depends on a one-to-one correspon-
dencebetween the simplexes in the subdivisions and the nodes in a
binary search tree, whe$e each node iﬁvlahelad by an ordered pair of
integers.

Necessary concepts aboul binary trees and the address
scheme are given in Section 4.2.

The remainder of the chapter is devoted to presentation
and illustration of machine algorithms to compute ﬂ(F,P}EﬂI. In
Section 4.3, a simple algorithm [30] not requiring use of the address
scheme is given. In Sectieon 4.4, modification using the addness
scheme is explained., In Bection 4.5, the action of the algorithm
in Section 4.4 is illustrated on a two-dimensionsl example. In
Section 4.8, further modificetions of the slgorithm in Section 4.4 are
given. These modifications will improve the efficiency inm special
cdses, such as when the dimerision of the space is 2 6r 3, or when the
computationsl results sre not going to be used in a generalized method
of bisection in Rn. (Thia generalized method of bisection, used to
caleculate roots of F(X) = 8 , will be explained in Chapter V; the
generalized method of bisection in R™ 1s not to be confused with the
bisection of the (n-1)-simplexes in order to subdivide b(P), although

the two procedures ere related.)
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4.1 Subdivisions of b(R)

4.1.1 Definition. Suppose 8= (X, .,%) is en (n-1)-

gimplex in R®.  fThen a simple subdivision of g is sny peir of simpleXxes

[ 535, | such that, for some k and m between 1 and n and some A €

(Xk, Xm):
Sl = (xl’ w8 ,x.-h!_-l’ﬁ-, Xk-{-l, o e ’Xm" . .,.x.n> and'

s, = (%, ey By ...,xm_l,,h,xmﬂ, .

4.1.2 Remark. I follows from Definition 4.1l thet 8= '5;14. Sz

if [S":L’ 323 s & simple subdivision of S.

4.1.3 Definition. Suppose thet 4= (8,1, 4p 855028

are sets of simplexXes siich Lthet for esch simplex T € ,E"j.with J< K,

either T e & or there is & pair of simplexes (u,v} & ‘S,j 41 such

g+l
tnet (U,V) is a gimple subdivision of T« Then 334-1 16 celled a sub-
division Of .5.1, for 1 < 3 + 1. Any process OF generating gubdivi-

gions of 4 is also termed subdivision of S.

4.1.4 Definition. If P =£?E_i is a polygon, +hen sub-
divisions of P are defined 1n the natursl way &8 unions of subdivi-

sions of the component simplexes of P.
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4.1.5 Definition. IFf {_51,52] is a simple subdivision of

(8) = K%y, .045%) ], then (8, 52] is termed a bisection of (8], or

for brevity, a bise;ti@nfof'53 1f and only if the point A of Definition
4.1.1 is the midpoint (X_+ X )/2 of the longest one-dimensionel side
(¥ %) Tormed from the vertices of S {here length of (Xﬁyxj> cen be

taken to be the square of the £, distence ”Xi - }{_j [[g) Subdivisions

2
in which the component simple subdivisions are only bisections will
glso’ be called bisections.

Tt is falrly easy to compute the vertices of the component
simplexes of a bisection of 8. Due to the following theorem and the
fact that bisections are easy to ge:rfarm. , the algorithms developed
in this work use bisection processes.

4.1.6 Theorem. Let 8 be an (n-1)-simplex. ILet .[ﬁl = (8]
and for j > 1, let .%'be=the_set of (n-1)-simplexes forming bisections

of elements of ﬁj-l" Then, as j » », the dismeters of the elements

of j,j tend to 0.

J

The proof of Theorem 4,1.8 will appesr later.

4.2 Trees

Here, a special type of binary tree is défined, and the
eddress scheme for nodes in such trees and simplexes in a subdivision

is presented.
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4.2.1 Definition. & simplex tree (binary tree) J is =

Finite, partially-ordered set of points (or nodes) with the following
properties:

(a) Esch point of I either precedes no points or is the
Immediate predecessor of precigely two points. If A precedes B, we
write A < B.

(b)- There is a unigque point EG. € J , called the original
point (at which the tree is rooted) P su.eh that no point of T precedes

SU’ gnd all obher points of I follow ‘sﬁ-'
(e} 1f S-l and 'SE follow & point S and there are no pc;i-nts

T.'L or Tg such that 8 (T'l < S.:L or 8 < ng < 3'2,

is lineerly ordered. The first element of the pair will be ecalled

then the psir [Sl" SB}

the lower point Ffrom 3 and the Second element will be called the

upper point from S.

(d) Each point of I other than the origingl point is

preceded by precisely one point.

4.2.2 Definition. Points of J which do not precede any

‘other points of o are called the leaves of ¥ .

If points are drawa in columns in R® and contected by lines,
and if the order is specified by letting points to the left precede
points to the right, then one can draw simplex trees. Examples are

given in Fig. 4.2 and Fig. 4.3.



eaves

ﬂriginal
Point

FIGURE 4.2
A 9-POINT TREE

~~Upper point
from Sy

-L.ower point
from Sg

FIGURE 4.3
A 5-POINT TREE

41
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; Definition. A bough of a simplex tree is eny ma yimal
linesrly-ordered subset of that tree.
With thege definitions we can explore convenient methods of
lsbeling the nodes of simpleXx trees.

£ I= [8,, ves,8, ) is a simplex tree, Then the location of

each S, € ¥ with respect to the originel point of J can be labeled by

J

en ordered peir of integers (nl!“g) as follows: Let n, be the number

2
of ‘p@ints in the linearly-ordered set @ = (8 ey, 8<8 J}’ i.e., let n,

be the number of points of ¥ which precede S 3" Observe that @ U (S .j:]
consists of all points on the path in between the originsl point and

S ¥ reindex the elements of &U '(E;j ] so thet S, is the originel point

in this path, -Sl 1s the first point to the right of the original point,

Si is the it'h point to the right of the original point, and EI—'I

is the
z
point previously called S 5 Then, for i € (1,.. ._'.,-na_] y Sy 1is either an
ypper point or lower pﬂint.ﬂn>§2 Let us form the unique integer-nl
fyom this informetion by setting the ith digit in the binery expansion
of g (e.g., counting from the right) equel to 1 if Si is 'an upper sim-
plex and otherwise setling the ith:digit in the binery expsnsion af’nl
equel to zero. {It-is asﬂﬂmeﬁ-thaﬁ-ni haa-mnly'nz digits in its binary
expangion, thus assuring the uniquemEEs'uf”nit)

With the above definitions of ny and Bs ) each point in I
is uniquely lebeled by the ordered pair (nl,na}. Fig. 4.4 on the
next page illustretes this lebeling scheme, and igtber examples will

further clarify the concept (cf. Figs. 4.5-4.8 gnd Sec. 4.4).



(0,0) X

o (6,3)
{2,2)-1
e (2,3)
(0,1) X
(4,3)
(0,2) &
(0,3)
FIGURE 4.4

THE LABELING SCHEME
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4.2.4 Definition. 'The numbers l::li and '1:1_2 above will be

called location numbers, and the pair (-nl:"i:lz]' will be called a

location pair.

If {4,]]_, is & sequence of sets of simplexes such that

£E+l is & subdivision of é&_fnr I <k and Ei_= [Sﬁ}# We can order

the elements of Uﬁiéﬁi in a simplex tree ss indicated in the fol-
=1

lowing definition.

4.2.5 Definition. Let k, m; &, §, 8,

definition of simple subdivision. We will say 8 < 8

and Saiﬁe as in the
, end 8 < 8.3
we will furthermore distinguish El amﬁ_ﬁz;hy cailiﬂg-ﬁl the lower

simplex and calling SE the upper simplex of the auhdivisiunc[ﬂl,sg}

Figs. 4.5, 4.6 end 4.7 show EUCEEEEiW&'biﬁﬁﬂtquﬁgqf.Eﬂ =

(A,B,C), and Fig. 4.8 shows the corresponding simplex tree. Note

The indices of the vertices of these simpleXes are written next to

= {A-:-E: D)'.-: Eg = '{E:B:G}J 55 = {D::B:E)l;: and 54 = (D’: EJG)'

the vertex inside the simplex., For example, the index of B in 52

is 2, while the iIndex of C in 52 is 3; thus, 83 is the upper simplex

and 8 4 is the lower simplex following 52 .

In Fig. 4.8, the loeation numbers of the points in the
simplex tree are also gilven, illustrating the method of labeling

the simplexes in subdivision ﬁf-ﬁga

44
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FIGURE 4.5 FIGURE 4.6
THE ORIGINAL SIMPLEX THE FIRST SUBDIVISION

FIGURE 4.7 FIGURE 4.8
THE SECOND SUBDIVISION THE TREE
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4.3 A Simple Bisection Algorithm

stenger ([30] p. 29) presents the following outline for
bisection of the (n-l1)-simplexes comprising b(P) end csleulation of
d(®;p, E‘n Il

4.3.1 Algonithm. (1) Let p be s Tixed positive integer.

(2) Read in 8, = (v xl},..., 3 = e, 1

l"" , TGhe

component simplexes of b(P).
(3) Iocate the longest segmett (Yﬂ,!ﬂn Y to Be formed From

the vertices of S 3 for j = 1L to q, and calculate each midpoint

= (Hi + Y'i)fz

(4) Replsce esch §

. by the two simplexes:

(ﬁj . A, v l,...,Ii,...,EJ} and

177772 Tke127 et

ooy Ay Ly

IJ---J_._ k’l‘.-’."'mnl",-" ’m{*l"’ ﬂ-J

thus storing 2q simplexes.

(5) Replace g by 2q.

(8) Caleulate the sum appesring 1n Theorem 3.3.1; call this
sum 8.

(7) If & equals the previous sum, e, which moreover is en
integer, then to go step 8. Otherwise, set e+ &, and return to

step 3.
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(8) p« » - 1. Ifp =0, then print q end & and stop.

The principal drawback of the sbove algorithm for higher
dimensions 1s that after i iterstions, q=zi'ﬁimplexes must be stored.
To illustrate the ﬂifficulty invelved, take n = 5. Here, one may
need to do 20 of nmore iterations, depending on F. If P were a simplex,
then b(Pﬂ would consist of six 4-simplexes, so theat ﬁhzgml=leﬂs?,lﬁa:
simplexes would be in storsge after 20 f}t:?;-raﬂé_itﬁ.ﬂs._ Since each simplex
has 5 vertices, this amounts to 10,485,780 words of storsge. (Many
large machines at present have only 50,000 to 200,000 words of fast
mEmnry.cmre.j Furthermore, the number of iterstions required in-
creases as n incresses Ffor functions whose components have tHe sane
degree of smoothness.,

THere are seversl avenues for modification of the above.

Cne is to not bisect each simplex each time, but to choouse a single
simplex at each iteretion, so that no more then one bough of the
simplex tree (in the example shove, a bolgh would have 21 simplexes
in itj is ever in storage at one time. With such methods, redundancy
in the functionsl evaluations to get successive R(S,F) can also be
elimineted.

Another possible modification is to @llow the lengths of
the bough in the simplex tree to very (heve, the length of a2 bough is
the number of points in that bough).

Algorithm 4.4.1, in the néxt section, both keeps only one

bough in storsge &nd gllows the bough length to vary.



48

4.4 Mpdificetions nf.ﬂlgarithm:é.ﬁll

As was mentioned, to modify Algorithm 4.3.1 it is con-
venient to produce @ tree for only one facet of b(P) at & time. From
there, one would do eslculations fﬂr=uné'bﬂpgﬁwﬁf the tree for that
facet at @ time, but keep track of which boughs heve slready been
done. Suech & method should proceed so that information from the
current bough which will be in common with the next bough considered
is stored, but thst the quantity of such stored information will not
exceed that for one bough.

The bough informetion consists of three arrays of matrices,
to be labeled SA, RA, and MA. The erray SA contains the simplexes
corresponding to points in the bough currently being considered,
the array RA contains the corresponding renge simplexes, and the
array MA contains informstion used to decide when the leaf of the bough
hes been obtained ﬁi.E.}'When the bough is of & sufficient size tog
determine sufficient refinement).

Basieslly, & single iteration of the algorithm will consist
of the following steps:

(1) Bisect the current simplex S inte two simplexes S,

and SE.
(2) Decide whether the lower simplex S, has alresdy been

examined. If it has not, then S+« S Otherwise, S+ 8

1° o
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(3) Celculste R(S,F) = "(ri J) , end compare each r 3 to
; Ly 3

i

the previous r, ,,1 <1i, J <£n. Updaste the "agreement matrix"

i,'j.'l‘.

)by m, .+ m, , + 1 if the two ». .

m, 3 “ O otherwise. Roughly, the informetion in the i-th ecolumn of
e

M= (m, "s coincide, and

the metrix M gives how many iterstions (i.e. ; how meny subdivisions)
have been carried out since & sign change in the 1-th component of F
has been discovered.

(4) Determine whether the leaf has been obteined; simul-
taneously determine the perity of @®(S,F) by examining both the
entries of M and the entries of &(S,F).

The informetion indiceting whether the lower simplex has
already been examined is stored in an integer, n,,

simplexes from the original

in the following

sense: If the simplex S of step (1) is n,

simplex (i.e., if n, simplexes precede S) then the first Ly binary
digits of 113’_ gre the first location number for 8 i# the tree. (The
second location number, of course, is n, itself.) Hence, S‘l of step

(2) will already have been exsmined if the q._jz-th digit of -n]’_' in L,

On the first iterstion x 1’1]'_ ls set equal to 0, causing the
bough containing only lower simplexes to be considered.

After a finite number of bilsections, e leaf is slways ob-
teined. The loeetion pair __(--n_l 1y ) is then stored in conjunction with
the parity of &(S ,F') . After this , the algorithm backtracks one unit

(i.e., By < My = 1), sets the na-itﬂ binary digit of n]'_ equsl te 1, and
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sets subsequent digits of ni equel to 0. The.naetﬁ entries of the
arrays SA, MA, and RA are retrieved and stored in S, M, and the
eurrent @(S,F) matrix, respectively. Iteration of the slgorithm is
then continued.

After the first bough (ﬁhe one consisting only of lower
gimplexes) Has already been considered, it may be necessary to back-
track more then one step when & leaf is obtained. If ﬁhe~n2—th

digit of n] is equal to 1, then after n - 1, the parities of

2 z
the lower and upper simplexes following the n,=th simplex are esdded

5y €l

together and stored slong with the locstion psir of the simplex in
question. This "backbtrack" procedure (this is rot & Backtrack
algorithm as deseribed in [6], p. 7 ) is then repeated until s diglt
of ﬂi is found vhich is equel to 0. The eppropriete matrices from €A,
MA, end RA are then retrieved, and bisection iterations are continued.

The algorithm ends when it backtracks to n, = 0 (this

2
corregponds t@_th& original facet) and finds thet both the upper
and lower simpleXes from this Ffacet have been considered. ‘This

heppens when the first digit of n! is 1. Then, the sum of the perity

1
contributions of Both the upper and lower point are added, giving
the total perity contribution to the sum in Theorem 3.2.10 (the
Perity Theorer).

The following elgorithm formzlizes the procedures deseribed

gbove.
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4,4.1 Algorithm, (1) Let P be & fixed positive iInteger,

let max be The maximum allowed bough length, and let ns be the meximum
number of points allowed in the tree.

(2) Read in the original simplex and store it in B,

(3} Set 8ll of the extries of the metrix M = [m J]n g=1
J_.

equal to zero.

i4) ni* 0, n, “ 0, Ke 1.

(5) _U;a.leuil“aﬂce. 'ﬂ.(-s ;F) and store in R, (&(Sl,Eﬂ cah be
stored in a vector with only n words in it byiﬁtﬂring:ﬁhﬂ I-th row
of :ﬂfsl,Fj in the i-th word; set the j-th bit of the i-th word equal

= 41. )

to 0 1f » -1, snd set this bit equsl to 1 if ry ; '
B

13

(5) Rﬂl“— HE“' Sﬁul L Bl, Mﬂl'- [0]

{7) 112"' nz + Ia

(8) If n, >max, then stop.

back in 'SIL’ and ‘store the upper simplex in Sy

]
i, .j=l ]

Btore the lower simplex
store k and m, where

{Xk X ) wes the longest side of ‘the old El

fl::_: ) Examine the ng~th binary digit of [‘-‘Ii. If this digit

equels zero, then go directly to step (11). Otherwise, :S-T “ B,

8, « 8‘2’ ‘SE' Smy 1t < m, m« k, k< mb.

() R, # R,

(12) Calculste &(8,,F) and store in R,.
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(13) Compare the (1,j)-th emtry of R, with the (1,3)-th

entry of Rz If they are the same, then m, , < m, .+l. Otherwise
= i,_'j i.h]'

m, .* 0. Do this step for i,j =1,...,n.

Lyd )
(14) Determine whether a leaf has been obtalned and if so,

determine the parity of Rz If 8 lenf has indeed been obtained then

go to step (17). Otherwise, continue to step (15).

(15) RAHZ 417 Ry Sﬂnﬁéﬂ—l*— 5, I-’I‘.é_ﬁzd;l'!- M,

(lEjﬂGﬂ:bﬁck to step (7).

A

({first n, binary digits of n!}, n,) in L0C, (the arrey D has length

ns, @s does the arrsy of pairs of numbers LOC; the values in LOC are

(17) Store the parity of R ; LN Dki gtore the location pair

used to identify which points of the tree the values in D belong to).
(18) K« K 4+ 1.

(19) If the m,-th binery digit of ni is 0, then go to

step (24). Otherwise, continue to step (20).

(20) », < m, - 1.

(21) If n, = 0 then go to step (28).

2

(22) Search through Ioc,

tion numbers for the upper end lower simplexes from the simplex at

£ =1% k -1, until the loca-

({first n, digits of n; )}, n,) ave found, sey in the j,~st and J,-nd

positions. Then add D, &nd D, ,

L digits of n,}, n,)

and store the sum in DK Store

({the first n in LOC,, then K« K + 1.

2
(23) If the ﬂ.g-"th' digit of .n]'_ is 1, then return to step

(20). Otherwise, continue to step (24).
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(24) Set the '-ﬁg—th digit of ri:'L equal to 1, and set all
subsequent digits of n; equal to zero.

(26) 0y« m, - 1.

(27) Return to step (7).

(28) Find the locetion peirs (0,1), and (1,1), =nd add
the corresponding D's together. This sum is the total contribution
of the original facet to the sum of thHe parities of the simplexes
comprising b(P).

The sbove algorithm is repeated until sll of the facets
of b(P) heve been considered. The total contributions are thern sdded
to get a(F,P,6 ).

A Tlowchart for Algorithm 4.4.1 will eppear in some addi-
tional work.

Determining whether a leaf has been obtained and determining
the value of Par( ®(8,F)) are important parts of Algorithm 4.4.1.
Determining when & leaf i1s abﬁained.End"dat&rmininngar(dﬁ{ﬁ,F)j cEn
be done simultanecusly by examining in sequence either the rows or
columns of M and ®(S,F). Since the columns of A(S,F) represent the
behavior of the individual components of F, examining the columns
may lead to & more efficient version of ‘Algorithm é.é,l, but,
examining the rows is simpler. The following algorithm accomplighes

the task by exeminetion of rows.
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4.4.2 Mpgorithm. (1) Choose, & priori, a paremeter p.

(8) 1= 1, 3« L.

If m,

(8) Examine m

wE < p, do step (4). Otherwise,
do step (5)-
(4) Return to Algorithm 4.4.1 with instructions to conbinue
bisection.
(5) Check ri,j' It ri,J = -1, then go to step (E). Other-
wise go to step (7).
(8) o ® e
(7} 3 =8 # 1.
(EJ If J £ 1, return to step (53. Otherwise, go to step (9}.
(B §* L; 3¢ 14 1L,
(lﬂ) If i < n, return to step (3). Gﬁherwisej go to E$Ep:(ll).
(11) Attempt to put the k,'s in order of iticreasing magni-
tude. If two k,'s ere equsl, then Par(®(S,F)) = 0. Otherwise
Par( ®@(8,F)) = -1 if the permutetion of the k,"s was odd, and

Par( ®(S,F))

il

1 if that permutation was even.

4.5 An Exemple

The following example illustrates the working of Algorithm

4.‘4Iil



4.5.1 Exaniple. Suppose that F(X) = (fl{X), fgfﬁﬂjj where
X=(x), £(X) =" - % - 1, and £,(X) =% + y% - 2. Suppose
also that P is the rectengle |0 £ x < 2; 0 <y <2). Then compute

d(F_,_P,-e_n} via Algorithm 4.4.1.

4.5.2 Computations for Exemple 4.5.1. The polygon P is

drawn in Fig. 4.9. To begin the computations we write b(P) =s the su:

b(P) = (A,B) + (B,C) + {C,D) + (D,A)

where A = (0,0), B =(2,0), €=(2,2), and D= (0,2). The number
a(F,P,6 ) will then be the sum of the perities of the rsnge simplexes
fermed from the sbove four simplexes, provided thast each is subdivided
g0 that b(P) is sufficiently refined relative to F.

Places vhere all but one of the components of F vanish on
the boundary are in this case simply the points on b(P) where
fi(x,Y) = Q0 or fgixwy) = 0. [These are marked in Fig. 4.9 for clarity.
One immediately sees that (B,C), {CIE); aﬁd-(D;A) need no further
subdivisions to satisfy the definition of sufficient refinement,
Furthermore, the zeros of fl and f2 on {A,B) are simple; hence it
is easy to check Sgn(F(X)) for X ¢ (4,B).

The value p = 1 will be used to demotstrate the action of
Algorithm 4.4.1 on (A,B). TFor each iteration, the following will be

given: n, the binary end decimal representation of the current ni,



(1,0) (vZ,0)

FIGURE 4.9
THE REGION IN THE COMPUTATIONAL EXAMPLE
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the lower and upper simplexes 81 and Eé} whether either Sl or~$a
is chosen to be bisected further, R(8,F) and M. It will be assumed
that ni hes five binery digits. When the f-th binary digit of ny
is referenced, it will refer to the f-th binary digit from the right.

After each leaf is obtained, a table of the parity con-
tributions which have already been stored , '@ figure of the pertien of
the tree which has already been examined, and & figure showing the
correspondence between the points in that portion of the tree and
segments of (A,B) will be given.

Simplexes will be listed in matrix form, with the i-th row
containing the coordinates of the i-th point of the simplex.

To begin the process, set

80

Also,

By =0, 0] < '.(-@_s}om'n);g =0,M =




and

Now for the first iteration:

Iteration 1.

e S L SN
a, © m, + 1= 1, n; = (00000), =0

Since the first digit ﬂf’ni is 0, SﬂgP-Si. Now

1 - /0 1
F) = , SO M= |
L L R
Since m, , =0, 1t is determined that & leaf has not beeén obtained.

2

fonce, Mh.« M, SA « 8, Ri_ « R . and iteratiof Brocesds.
Hence, mz M, BA, < By RA, 32, and iteratiofl proceeds

58
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Iteration 2.

,<mn,+1=2, n

Az By

Le5 i 0

1.5 01

Since the m,-th (second) digit of ni is 0, § + B

o

and the new 32 is:

R, = @(8,,F) = | .
R

Cam@aringqnl an&-RB again gives

It is determined that s leaf hes not yet been obtained (one encounters

My 5 =0 in the check for the parity of R,) so bisection is continued.
2

Iterastion 3.

: - = n! = (o =10.
= m,w 1=, m (sgaamla 0

L.75 1.5 Q)




60

Now R, < P& agein, and

gince the third digit of ng is Oy Eﬂ - So .
1Ly
1 1

Another comparison OF R'z gives:

T+ is now determined thet the parity of R, is zexo, without

oh ig less then P~ 1; hence, the leaf

encountering an entry of M whi
r and the parity, (zero) in

has been obtained. Store the locetion pai

the k-th (1-st) position of the errays:

roc(x) « (0,3)
pEG(K,1) « ©

Also

K+ K+ 1=2.

The finished p.ar-’d of the tree gppears in Fig. 4.10.
Tn Fig. 4.11, the sotual subdivision of (A,B) is shown

and lsbeled with thelr corresponding location peirs.



(0,3)

FIGURE 4.10
THE TREE AFTER THREE ITERATIONS
(The Parity Contribution of the point at (0.3) has been stored.)

(0,2)
A . ? — - % g
0,3)
Kl < i

FIGURE 4.1]
SUBDIVISION OF (A,B) AFTER THE THIRD ITERATION
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In Fig. 4.12, the matrix srreys 8A, RA, snd MA are given.
The third digit of 111 is now 0. Hence; the third digit of
n, 1s set equal to 1, and 8ll subsequent digits are reset to zero,

giving:

n; = (00100}, = &

Now ny B, < 1= 2, and the n_z_ diglt of n, is 0. 8o,
Ry« BA . = RA(3), 8, « SA(3), add M+ MA(3). Iterstion then con-
3 n2=+l L

tinues.

Tteration 4.

H,* By + 1=8, n = _(.ocme)z 4; B =B,

1.75 1 1.5 0y

2 0 1.75 ol
S|
Since the third digit of b! is mow 1, S « 8, so R + , end
_ | 1 o "2’ -
2 1 |

Mis . Hence, it is determined that the parity of Rz is zero ehd
3 5 a

8 leal has sgein been obtained. 'G;;n_segu_&nﬁly, as before: IOC(K) «

(ny,5,) = (#,3)

DEG(X) « 0

K+~ K+ 1L =3,
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i 0 1 1 2 2/
4 N.D,* L\ s & N. D.

5 N'. B- Hr Di- HI- ;D-

*#The letters N.D. mean that the corresponding element has not been
defilned yet.

FIGURE 4.12

THE MATRIX ARRAYS AFTER THE THIRD ITERATION
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The third digit of ni is now 1, S0 B * o, - 1; the points
in the table of LOC(K) end DEG(K) cﬂ‘rr&ﬁﬁﬁﬂdiﬁg to the point at (0,2)
(0 is the number represented by the first two digits of n{) are added
tmg&thﬂﬂ-(th&ae-ﬁﬂppeh te be the only two points previously stored in

this case) and stored:

Loe(s) « (0,2)

DEG(3) « DEG(2) 4+ DEG(1) =

The teble for the current tree informstion sppesrs in Fig.
4.13, and the corresponding portion of the tree and subdivision of
(A,B) appear in Fig. 4.14 and Fig. 4.15, respectively. The current
metrix arrays are still the same as those in Fig. 4.12.

Now n, < n, - 1 =23 and the second digit of n.

2 2 L

digit 1s set equal te 1. All subsequent digits of ni are set equal to

18 0, so that

0 so thet n) = (00010), =

So, R, « RA(2), 8« 8A(2), M~ MA(2), and n, <« ny + 1;

iteration is then continued.

Iteration 5.

n, <= m, +1L=2 , I.‘l

o { = (ooolo), , B <R,

1.5 0 - 0
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Lo¢ (x) DEG (K)

{0,3) 0
{4:5) Q

(Q,E)- §]

FIGURE 4.13

TABLE OF TREE INFORMATION AFTER ITERATION 4



FIGURE 4.14
THE TREE AFTER ITERATION 4

(The points are numbered according to how the tree

information appears in the table.)

FIGURE 4.15
SUBDIVISION OF (A,B) AFTER ITERATION 4
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and R +| . Com=

Since the second digit of n, is 1, 3;'“'52; 5

L 0

pering R,, Bi and the previous M now gives

1 2\

It isnow coneluded that & lesf has been obtained and thaet the

roc(4) « {(n.,n.) = (2,2)

¥
DEG(4) « 1 .

K«K+1l=5

The second digit of n) is now 1, so n, < n

1 2 2
in the table whieh follow Gﬂjlj in the partiel order sre added to-

= 1 and the points

gether. These are points numbers 3 and 4 in ﬁhe table (the points

to be added together are not necessarily the last two points in the
teble; in faet, they very often gre not if p > 1), with loecation num-
vers (0,2) snd (4,2). (The location numbers of the two points ini-
mediastely following the point fnl}nz) can be ecslculated by the follow-

ing rule: their common second locstion number isanz + 1, while the

location number of the lower point is equsal tﬂ-ﬂlé arid the loecation
n
number of the upper point is equsl to n, + 2 B.) From this, the total

parity contribution of the point at (0,l) is stored:
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Loc(s) < (0,1)
DEG(5) « DEG(4) + DEG(3) = 1 .

KeK+1=6

The teble for the tree information thus formed appears in Fig. 4.16,
and the corresponding tree and subdivision asppear in Fig. 4.17 and
‘Fig. 4.18, respectively.

The matriX srrays remain unchanged.

Now n, < n, = 1 =1 &again, and the ngh (first) digit of ni

2 2
is agein checked, but found to equal 0. Set this digit equsl to 1 and

set all subsequent digits equsl to 0, so ni = (0&9@1)2 = 1. Now

<~ 8A(1), M« M(1), n,+« n

’ - 1, end iters-

R, « RA(n,) = RA(1), 8,

tiori is continued.

5

Iteration 8.

i, + f

5« #, + 1L =1, nj =(0000L) =1, R « R..

2 e 2

fL O (0] 0O

\z2 o 10

2ince the 'n_g.t."h digit of n; is 1, 8

1 = 8

F:ﬂm this,

0 2

-1 -1y 1 1
Rz - and M+ .
1 -1 1 0
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Loc (K)

DEG (K)

(0,3)
(4,3)
(0,2)
(2,2)

(0,1)

FIGURE 4.16

TABLE OF TREE INFORMATION AFTER ITERATION 5



"
FIGURE 4.17
THE TREE AFTER ITERATION 5
4 3
D G
> 3
w _ S
e
5

FIGURE 4.18
SUBDIVISION OF (A,B) AFTER ITERATION 5
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It is concluded thst the leaf hag been obtained, and the parity of
Hence:

1oc(e) « (ny,n.) = (1,1)
DEG(8) « 0

The backtreck-search scheme is initisted, but it is found
that.né = 1 and the first digit of ni is 1. This implies that all
leaves in the tree have been obtained. The total parity contribu-
tion of the side (A,B) is found by adding the contributions of the
points with location pairs (0,1) and (1,1); this total contribution
is found to be 1.

The ‘completed tree informetion asppears in Fig. 4.19. The
completed tree and subdivision appear in Fig. 4.20 and Fig. 4.21,
respectively. The roots on (A,B) of’fl = 0 and £, = 0 are marked by
X's.

The trees for the othier three sides of b(.8) are even
simpler. The total contributions the these are all O, so-b(F,aﬁ;ez)
= e

In this case, it is easy to solve the system explicitly

for the root within the region, and ascertain that J(F) >0 gt that
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K LOC (X) DEG ()

1 (0,3) 0

4 (252) 1

Total 1

FIGURE 4.19
THE COMPLETED TABLE OF TREE INFORMATION



 FIGURE 4.20
THE COMPLETED TREE
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P yay k_..z,_f \—v—/
- _ X —— V
5

FIGURE 4,21
FINAL SUBDIVISION OF (A,B)

T4



root. From Remark 2.2.5, doing so verifies that the caleulated degree

18 correct.

4.6 Further Modifieations

Additional efficiency can often be gained by further
modifying Algorithm 4.4.1 to handle specisl cases. For example,
one may not wish to find a root of F(X) = ﬁﬂ by using informstion
gained from caleulating D(Fﬁﬁ&,Eﬂlg A modification eliminsting un-
necessary storage and complexity to be applied in this case is ex-
plained. Also, modificetions to eliminste redundancy in evaluastions
hf-Ffﬂﬂ, better tests of sufficient refinement, modifications to
reduce the amount of memory reguired, and Special considerations
when n is smell sre discussed below.

Many of these modifications should be routinely built into
any program, and numerical results obtained by inecluding them will

appear in later works.,

4;5.1-Calculaﬁing;ﬂ@F,A&;EHI:ﬂﬂlr. When no generalized

bisection of the n-simplex is to be ecarried out as in Chaptﬂr-vj_ga
labels need be attached to any of the elements of DEG (i.e., ICC

need not exist). Recall that DEG was the array containing parities
or sums of parities, and IOC was the array of addresses of simplexes
corresponding to these parities. Also, according to this modifice-

tion the only elements of DEG to be stored are those corresponding
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to the actual parities. When all leaves have been obtained, then gll
of the elements of DEG are added together to get the total contri-
bution.

With this modification, the amount of memory used is cut by
a factor of approximetely two, and the routine to search through the
elements of the arrgys IOC and DEG after completion of a branch is
totelly elimineted. This can congtitute a significent saving of time,

especially in higher dimensions where the trees must be large.

4.86.2 Removel of Redundancy. Another modification of

Algorithm 4.4.1 is, instead of storing the simplex which was chosen
for further bisection in.EﬂnE, to always store the upper simplex.
Also, if (X ,X ) were the longest one-dimensional segment formed
from the points stored in Sl and A were the midpoint ﬂf'(Xk,Xﬁ},
theh.nnly“ﬁgnﬁF(ﬂ)} need be evaluated in order to produce the range
simplexes for both the upper and lower Eimplexas'frﬂm'ﬂl. To get
the range simplex corresponding to the lower simplex, replace .
the kth rﬂWfafeﬁ(Sl}E) by Sgn(F(A)), and to get the range simplex
corresponding to the upper simplex, replace zhe“mﬁh-rhw-af
RS, ,F) by sgn(F(a)).

Let us @gsume thal, using the sbove mode of caleulation,
the upper simplex formed from each bisection has been stored in the

array SA, the range simplexes for the upper simplexes have been stored

in the array RA, and the matrix M haes been computed for each upper
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simplex and stored in the array MA (ef. Fig. 4.22). We ‘then do not

need to backtrack as far as before, and step (25) (the information

retrieval step) of Algorithm 4.4.1 becomes:

'RE - mh2.+l’- By % jSAL-I';IE-J-.3.‘#“ A mng-iil'

Step (26) is then eliminated, and we return to Step (14) (determin-
ing if leaf hes been obtained) instead of Step (7) (beginning of the
bisection process). Also we must reverse the order of Step (14) and
Step (15) (determining obtainment of the leaf and storing bough
information). In Modification 4.6.5, a modification for the test for
sufficient refinement is given for which the matrix M gotten from
considering the upper simplex is the same as the corresponding matrix
for the lower simplex, so fthgt additiongl computetions are not re-
quired.

With the above modification, there is no redundancy in the
celculations of bisections or in the functional evaluations; i.e.,
F(X) is evaluasted at most ohee for each point ¥X. It is seen by
eXamining the possible trees that this modification removes more than
lfﬁ of the functionsl evaluations previously required without

sacrificing anything other than @ slight inerease in complexity.

4.6.3 Use of Determin

nts. The Algorithm 4.4.1 can also

be modified so that Theorem 3.3.1 is used instead of Theorem 3.2.10x



SAy

SA

P SA

FIGURE 4.22
A POSSIBLE FIRST ITERATION OF ALGORITHM 4.4.1
WITH THE MODIFICATION DESCRIBED IN MODIFICATION 4.6.2

(A branch end was reached when n, = 4)

s SA
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As was mentioned, use of Theorem 3.2.10 requires less computations
per iterstion then Theorem 3.3.1. There is an addifionsl test of the
correectness of the result however, when Theorem 3.3,1, requiring
calculation of determinants, is used.

To implement Thearem 5.5.l, the determinents corresponding
to both .@(S‘l,Fl and JQQ_(SE ,-F-) (see Theorem 3’.5.1:) dre evelusted after
step (12). The matrix M and the array MA are replaced by an integer
m end an array of integers ma. It mey now be said that there has
been an "sgreement’ with the previous iterstion if either det (R(S,F))
= 0 or det(®(S,,F)) = 0. Again, & paremeter p is specified, a
priorl, and it is decided that a leaf is obtained when there have
been p successive agreements.

When the leaf hes been obtzined according to this new
eriterion, det(&(ﬁl,F)}) and fdet;(&'(-ﬂz ,F)) are immedistely added
together to get the contribution of their predecessor in the simplex
tree. This contribution is stored along with the location pair
corresponding to the predecessor., The rest of the algorithm proceeds
g8 before.

After the totsl contributions of the verious facets of b(P)
are found and added up, however, the result is divided by zﬁn: to get
-d(F,P,Bn]1 If?d(E;P,Bh) is not en integer, then it 1s not correct.
In that case one may wish to do the calculations over again with a

larger value of P.
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If the computer has & sufficient amount of storage space,
one can store the simplexes and range simplexes corresponding to
leaves. In The event an incorrect degree has beetn calculated, the
boughs ean then be lengthened without redurdency in functional
evaluations, although a totally new table of DEG and LOC must be
computed. Though reguiring much memory, this scheme might still be
better than Algorithm 4.5.1, since it sllows for nonuniform sub-

divisions.

4.6.4 Reducing the Amount of Memory Reguired. Bisecting

the simplex may be relatively essy compared to evaluating Sgn(F).

One may then wish to store only the renge simplexes and M, and cal-
culate the sppropriate S after each backtrack instead of retrieving
1t from memory. Since the range simplexes can be stored Iin n words;
deleting SA and keeping only RA and MA reduces the total storage by

g factor of approximstely 2, for high dimensions.

4.6.5 Various Test for Sufficient Refinement. There are

various ways of testing for suffiecient refinement: the definition of
the entries of each matrix M can be altered, and (as was seen in
Modification 4.6.3), it is not necessary to use s matrix, M. Twe
additional methods of testing will be mentioned here.

First, suppose (¥ ,X ) is the longest side of the (n-1)-

simplex 8, and P = (X_+ X )/2. Thenm<« m 1 if Sgn(P) = San(X,)
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or Sgn(P) - BEEI(K,E ) j, otherwise m<« 0. A leaf would then be obteined
when m > p. It ig easy to show that m« m + 1 after each step after
sufficient refinement. With this method , ho matrix grray MA need
be stored.

Another test for sufficient refinement involves a change in
when we advance the entries of M. We would sdvance each entry
L (1.'9’.., mi,d = Eii,;j + L for 1,3 = l,...,{-ﬂ-,) after g given iteration.
Then, 1f {Kk,xf5'waa the side whose midpoint had been found, we would

set 2 4 «~ 0 only if the ( K, )t'h entry of Rl equals neither the
F B

(k,3)*" entry of R, nor the (£,3)*" entry of R, for § =1,...,n.

If n = 2, this procedure corresponds to setting ml 5 = o
L E

o + B
sgn T :{ 6_2—)

differs from both sgn f,j (&) and sgn f,j (-Ej_,_ for j = 1,2. This case

if

is illustrated in F’:‘_g*s_. 4.25-4.26+ Since it is assumed f_l is posi-

tive in all cases considered, the first column of Rl and ;H'E will be

Ll,l}T in all cases; hence, neither m, , nor m, , would be set to

) 2,2
0. Similarly,

sgn [fz (&_;—B)J = sgn [fé_'(E_)-l

in Fig. 4.24, and neither m, 1 nor -mE 5 would be set to 0. In
b ¥t
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A B B
FIGURE 4.23 FIGURE 4.24
f5 CHANGES SIGN f, CHANGES SIGN
\ _/
| ‘F2 < 0 =
R A B by B
2.
FIGURE 4.25 FIGURE 4.26
f2 DOES NOT CHANGE SIGN fz CHANGES SIGN TWICE

These figures illustrate the second test for sufficient refinement
described in Section 4.2. It is assumed fo > 0 on (A,B) in all four
figures.
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+ B
- 4]

equals both sgn f_(A) and sgn f_(B), and neither moo noY m_

2,2 wguld

be set to 0. In Fig. 4.286

~ A 4 BY o
sgn far ( 5 B) = 41,

. : ALY = spn f = =], He = O = \i.e.
while sgn £,(A) = sgn £,(B) = -1. Here, m ,<O0if k=1 (i.e., 1f

<A+B

2 » Bl

will be considered in the next iterstion), smd mp ,+ 0 if k =2 (if

4, A ; B y
will be considered).
This last test seems to be the best to use in most cases.
The test reduces to the question: Does f_i have the same sign at the
midpoint of (A,B) as either f i(.a;-) or fi(E_)‘E If the answer is no,
this means that a sign change of £ i has beer detiected by including

the point (A- + B)/ 2, but which would not have been known if only



A GENERALIZED METHOD OF BISECTION

The purpose of this chapter is to introduce and anelyze an
algorithm for obtaining approximate solutions to F(X) = 6, where
PP c R"h"’ +RP is eontinuous. This algorithm will be based on repested
use of Algordithm 4.4.1. In the first section of the chapter, "bisee-
tion" of n-simplexes is defined in & menner analogous to bisection of
(n - 1)-simplexes. In the second section, Section 5.2, & relationship
between bisection of an n-simplex snd bisection of the (n.- 1)-simplexes
on its boundary is Investigeted. In Bection 5.3, this relationship is
used in an algorithm to compute epproximate fixed points of F by re-
peated bisections of a simplex S for which ﬂ{Fﬁﬁ,éﬁ} # 0. Some pos-

sible occurrences when using this algorithm are enalyszed with examples

in Section 5.4.

5.1 Bisecting the n-dimensional Region

Suppose that § = {Eﬁ,31,...,xﬁ}_is an n—simplgx;inllﬁ and
F:S -+ R". Suppose further that a(F,8,0, ) # 0 has been computed by
Algorithm 4.4.1. Then by Kronecker's Thecrem (Theﬁrem &.2.4), there
exists a solution of F(X) =©, in the interior of §. With this situs-
tion, one can think of the entire region S a&s being an spproximate so-
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Such en epproximaste solution mey be estimated more accurately
by "bisection" of 8. The n-simplex 8 is bisected in the same manner
as described in Section 4.1 for (n - 1)-simplexes (cf. Fig. 5.1).

This is formalized in the following definitions.

_:_(Xk,xm'} be the longest segment to be formed from the vertices of S and
let A = (-xk + -}tm)j/:z. be the midpoint of 'Gﬁt-’-}'{m} (ef. Sec. 4.1). Then

if:

sl = qxﬂ"}{l’ x B3 J'jﬁﬁ-‘ljﬁ"&ﬂ-'l’ s ow ,_'J{m,;, aia ,Xn)

and

o
[

5 = (XX ppere K, X AX oeee,X )
one has:

One says that the n simplex S has been bisected, and that [El’EE} 1%

isection of 8. One further refers to the n-simplex S; &s the lower

simplex and to the ﬂ~aim§lex-ﬁé ag the upper simplex corresponding to

the n-simplex 5.



FIGURE 5.1
BISECTION OF n-SIMPLEXES WHEN n = 3
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Suppose that the n-simplex 8 is bisected and that there are

no solutiens of F(X) = 8, on b(8,) or b(5,). Then one has:
a(¥,s,8,) = a(F,s,,8,) + &(F,8,,6,) (see [26] p. 158 and [5].

Hence, d(F,Si,e )JF#Ofori=1ori=32o0rbothi=1gndl=g2., If
a(F,s i,ﬁ ) is determined to be nonzero, there is a root of F(X) =
-en in El The dismeter of S_--i, however, is likely to be smaller than
the diasmeter of S. The process thus steted can now be continued with
8, replacing 5.

If 4(F,s i,e ) were found without using results of previous
computations once d(F,S ,-Gﬁ ) i calculated, there would be computational
redundaney. The following section explains where the redundancy would

oceur and how it is avoided.

5.2 Using the Previous Tree Informsticn

In this 'section, Theotrem 5.2.1 and Theorem 5.2.3 set up &
relationship between tree informetion for b(s) , Where 8 is the origingl

n-simplex, and h(sl) and b(sg), where [51152] is the bisection of §.

S.2.1 Theorem. Suppose that 5 (75(3, Xm_:}, A, Sl’ and S are 'as in
Definition 5.1.1. Then if i #k end i # m, the 1% focet (Der. Be1ieB)
of Sl is the lower simplex for the ith' facet of 5. Likewise, the :Lt'h

facet of S, 1s the upper simplex for the 1*® saset. of 8.
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Let T, Ti, and Tﬁ'aﬁnmna

the ith facets of B, El, and EE* respectively. Then:

5.2.2 Proof of Theorem

L, = (—1)iﬁxb?...lﬁk,...,%i,...,Kf Xy,

jmj.-.."n

e

o ( -I‘) {:}EG: e ;ﬁ-lx-ﬂ&)_‘kﬂ: - J&ij : =) Xm,,-- = -IKH_:}: »
and

..,}{R}_...% o & b AX s vagk §

e Y "m=-17 Y mel?

It 1s seen th&t.Ti ils gﬁﬁteu from Ti by replacing the vertex Kk of Ti

by A, end than=T§ 1s gotten similarly by replacing the vertex szaf

T; by A. However, since the vertices of Ti are ‘all vertices of 8 and

(X, ,X.) wes the longest one-dimensionsl segment of 8, a-fortiori,
(X, X ) is the largest one-dimensionsl segment of T,. This shows that

the bisection of Ti

same order in the list of vertices for T as they did in the list of

pt mei e T R e .
iﬁ.[Ti,Ti]. Furthermore, X and X appear in the

vertices for 8, so Ti is indeed the lower simplex and TE is the upper

T
simplex.///
The next theorem pinpoints how much new informetion is needed

to ealculate a(F, 81,8, ) and 4(F,S ﬂh}, given the~trﬁas=fﬂr'd(FiSiBmJ.



5.2.5 Theorem. If §, 8., §,, and (X, ,X ) are &s in Defini-
tion 5.1.1, then the'kth facet af'ﬁi is equal to the kth facet of S,
whereas the mﬁh facet of S is equal to the m h facet of 8. The mth;
facet of 51 has no interior points infcmmMEn*With;any facets of 8. How-
ever, the mt Tacel of S is ‘equal to =( l) times the Eth facet of

1,2) then Ui==+ui.

Theorem 5.2.3 is illustrated in Fig. 5.1 withn =3, k = 1,

Hence, iﬁlui =:'—1J1TJJ'mhﬂrE B(s,) = =°(-1) Ti ﬂUg (1 =
- 3 4= 1=0

and m = %. There, Sl;= {Hﬁ i 3,X ) lies to the right and rear, and

= (x.jxisziﬂ):lieE'tﬂ the lLeft and front. The k facet of 8, is
(Xﬂx E’K ), which Eﬁuﬂls'thak#h facet of 8. The mth facet of 8, is

ﬁﬁb,ﬁlxz}j which equals the Etnlfacet'nf Sz. ThE'm facet of SE is

IXG}Xi,Ié}i ﬁhiﬂhgegu&lﬁutﬁﬁ'Mth facet of 8. One sees in the figure

SE-

that (X,,A,X,) is, indeed, a "new" face. This new face "euts" all
but the old kth énd.mth facets into bisections.

Thus, only the mt facet of Sl or the kﬁh facet ﬂfng-need
be dealt with, once the trees for S have been calculsted.

5.2.4 Proof of Theorem 5.2.3. The Rth facet of & is:

k o
(-1) (L TERRR SRR SRR

wherees the k' facet of S, is siuply:

k. . y :
(=L)X RTPL LT HEPERTPL APTPRRE SO
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Since the only differerice between 'S and Sl was their i bh vertex the
above two facets are ldentical. A similar argument shows that the_mth
facet of 8 equels the ﬁth Tacet ﬂf'ﬁé.
Tbnprﬂﬁe the remaining asﬂéfﬁiﬂns of the theorem, congider
the m'" facet of 8, ;

il - A
T = E e | X : - | :
m ( 0? Jxk..l.!ﬁ'.! ﬁ;_*,l! L2E A5 Jxm_ll }{ml}{m__'_l} e I'xn}

vhere ﬁ'ﬁ'@ﬁgfﬁm}/z; Since the vertices of S are linearly independent,
it follows that the interior points of Ti.are interior points of 8 and
hence, not on any face of S.

To complete the proof observe that

Il
il

U = (1) = ~(-1)"-1)" %2

m

"("l)mf'l)m“k(’l)*kUE

Il

1l

)
T,
.
o

-

L)
S

Il

This proves the last assertion in Theoren 5.2.3.///



5.3 An Economicsl Bigsection Algorithm

The slgorithm in this section is based upon results from See-
tions 5.1 end 5.2 which relate the faﬁetslnf-ﬂi(i = 1,2) to the Pacets
of 8. The algorithm proceeds roughly gs follows: once d(F,E,Eﬁ) has
been ctlculated for the original simplex S, the parity contributions of
the / R facets of the lower simplex excluding f = m are retrieved from
the stored information, while Algorithm 4.4.1 is then applied only to
tﬁﬂ.hﬁh'fhﬂet of 8. This gives all of fthe information necessary to
aéterminerﬂ(F,S,Eﬁ)- (Tc:ﬂetermine-d(F,Sl,%jL the parity contributions
for the B facets of the upper simplex are retrieved from storage.)

 dg bigected, Yhe wew w0 (4 1= 1) ov X tyes (g L = p) pe=

1
places the old m "~ or k' tree, while the other existing trees combinue

When S

to be used in subsequent iterstions.

The following problem can arise with the shove scheme. Under
certain conditions, more subdivisions of the Eth facet are performed
in the bisection process then are carried out when Algorithm 4.4.1
was applied to the fth side of ‘the original simplex. This occurrence
is illustrated in R® in Fig. 5.2. There, the tree for the second side
of (X,,%;,%;} mey not contain information for the segment (A,B), i.e.,
possibly no location pair CE,%} or parity contribution was stored for
the segment (A,B). In such cases, the parity of the range simplex for
the £th facet must be caleulsted direetly and stored..

The bisection algorithm is formalized below as Algorithm

5.5.1. Here, N1(i) denotes the value of the first location numbers of
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S W G
(20) Retirn to step (5).
The following remark simplifies execution of Step (17) of

Algorithm 5.3.1.

5.3.2 Remark. The last stetement in Theorem 5.2.3 can be

used for Step (17) of Algorithm 5.3.1, so that the k" tree for §,

can be caleulated from the mth'trEE'for'Si without resorting to Algo-
rithm 4.4.1 again. To get the tree fﬁr'the-ﬁth facet of BE’ we simply
interchange upper and lower points, and then change the sign of gll

of the parity contributions. Interchanging the upper snd lower points
emounts to taking the binary complement of the first nz digits of By in
-each,lacation-ﬁair*(ﬂi,ﬂal. |

There are various modifications which can be carried out on

Algorithm 5.3.1. The following remerk hints st the nature of some of

thesge.

+5.3 Remarik. Although not included in Algorithm §.3%.1, if
a value of O is réturned for a(F,Bﬁsﬁ), then it is clear that p must
be larger. The parameter, p, can then be made larger and the parity
contribution of the new side can then be recéleulabted with this larger
value for p.

Flowcharts corresponding to Algorithm 5.3.1 will eppear

elsewhere.,
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the 1" facet of the cirrent n-simplex in the 1'° tree presently in

storage; N2(1i) denotes the corresponding second location number.

(1) Bead in the original simplex, §,, the maximum number of
iterations, MAXITR, the square of the error tolerance, E, and the
selected parameters for Algorithm 4.4.1.

(3) Initialize: N2(j)+ 0, NI(J) < 0, for j =1 to n + L.
Alge, I+ 1.

(3) Calculate d(F,8;,6 ) vie Algorithm 4.4.1.

(4) If’ﬁ(F,ﬁlfeﬁ) = 0, then stop. Otherwise continue to
step (5).

(B8) T+ Lt L

(8) If I > MAXITR, then stop. Otherwise continue to step
(7).

(7)531ﬁﬂﬂt.ﬁl- Store k and m 1f (xk;xm} is the longest one-
dimensional segment. If the length of (X ,X ) squared is less than
EE, then print S, and stop.

(8) Store the resulting lower simplex from (7) in 81 5 and
the upper simplex in 52.

(9) Fird the moh facet of B; and store in the nxn-matrix,
BS. .

(10) Do Algorithm 4.4.1 for BS, b dbtadn & nen BoL bable

of tree informastion.
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(11) Put the new tree informastion in the m > tree, and store

the old ﬁth tree in temporary storasge 1n case d(E;Ei,

(12) Mz2(q) « N2(q) + 1 for g = 1 %o (n + 1) except q=k

eﬂ) = Q.

and g = m.

(13) Set the N2(q)*" digit of Wl(q) equel to zero unless
Ne(q) =0, for ¢ =1 ton + 1. This will ensble the algorithm to take
information from the lower simplexes from the trees, which is appro-
priate fﬁr-hfﬂl).

(14) WeT <« N2(m), Nz2(m) < O.

(15) For ¢ = 1 to (n + 1), look in the table of tree infor-
mation for the q P facet to Find the contribution of the o'f facet
to the sum in Theorem 3.2.10 or 3.3.1. The location psir for this
facet is ({first N2(q) digits of Nl(q)}, N2(a)). If there is no such
location peir, then the number of bisections has exceeded the length of
the branch previously calculated. In this case, find the qth'fﬁﬂet
and ealculate the parity of its renge simplex dimectly. 4s the con-
tributions of the ﬂ#h facet are being locked up or calculated, add
then together to gﬁt-d(F;al,aﬁJ.

(18) 1f ﬂ<F¥Siﬁeﬁ) = 0, then return the old tree informstion
for the mﬁh facet to the permanent storsge, and HELE)J*-HET} Nz2(k) = o.

(17) Caleulste & new tree for the kﬁh Tacéﬁ.&f'&z.

(18) Set the N2(q)®® aigit of Ni(q) equal %o 1 unless
N2(q) = 0, for ¢ = 1 to (n + 1). (This indicates that the upper

simplex was chosen in this iterastion.)
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5.4 Applicsbility of the Method snd
Amount of Computation Reguired

If moduli of continuity or similar information is not given,
nothing cen be said gbout choosing the parasmeter p for Algorithm 4.4.1
(which computes contributions of facets). Furthermore, when the dieme-
ter of 8; in Algorithm 5.3.1 is very small; it mey take more work
to compute the parity contribution of the mthlfacetaﬁf'ﬂl (step (10)
of Algorithm 5.3.1) then it would if the diemeter of El'were relatively
lerge. For this reason, Algorithm 5.3.1 mey converge slowly, but will
still be guite sultable as @ starting method for other procedures.

The action of the algorithm depends wvery much not only on the
funetion, but also on the shape of 51 and the relative locsetion of the
roots of Fl in 3, Hutwithstanding?,aﬂranﬂlyﬁis;fmr the algorithm can
often be made in specific cases. Emhm@léﬂ_in.ﬁg are illustrated in
Figures 5.3, 5.4, and 5.5. In all three figures, the same level curves,
fl(K}f='ﬁ and fg{2)1=-ﬂj gre drawn.

In order to sssure g correct result, Algorithm 4.4.1 must sub-
divide b(S) so that &n endpoint of a l-simplex lies between each (-set.
On (X5, X ) {(XX,)) in Fig. 5.3, the ratio of the distance between
O-sets to the length of (Hﬁ?xi}C(XﬂJKz})-iﬁ very small. When this hap-
pens, meny subdivisions will possibly be required in KKGiﬁlj(QKD,gg));

l.e., @ branch may need to be very long.
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of nonzerc measure where J(F) = O in the interior of S, but a value for
d(¥,8,8,) can still be compubed. Moreover, this value may be given &
useful interpretation gs in Fig. 5.8. There is a large ares within
5 = (¥g; IL-L,XE) where J(F)(X) vanishes. However, Algorithm 4.4.1 will
calculate d(¥,S _,_En_:_')" = 1; this indicates that there is a nonempty set

A< 8 such that F(A) = [(F(X): X e &) = {e_].
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CHAPTER VI

RELATTIONSHIP' TO OTHER TOPOLOGICAL METHODS AND ALGORITHMS

As mentioned earlier (Sec. 1.2), meny problems require solu-
tion of systems of equations for which Newton's Method and the related
class of algorithms (see [26], Ch. 7) fail due to nonexistence of
derivatives or poorly behaved partial derivatives. Also, Newton's
method often converges to a EﬂluﬁimnﬁgtufiF(X)“= ﬁﬁ almost indepen-
dently of the initiai:guasa, while F(HJ”=-éh may have dSeveral solu-
tions, all of which are desired for the application [ 3]. Because of
this, various approaches based upon topplogical fixed-point theorems,
and, in particular, methods for finding "Sperner simplexes' (contain-
ing approximate fixed points) have been investigated.

As was mentioned in Chapter I, an importent contribution to
this type of method came from Scarf [27]. The algorithm in [27] is
effieient in terms of memory and computations, desirsble in that it
often detects approximate fixed points (not merely true fixed pﬂints),
and esthetic in s§0 far that it mimics the famous Simplex Method for

linear programming (Dﬁntng) in the sense of being an exchange algo-

rithm. Nonetheless, to enlarge the variety of problems that can be
solved, yeriations and other algorithms were developed. Allgower and

Keller [é] worked with another method of subdivision, applicsble cn
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the unit n-cube, and @ way of labeling vertices of simplexes; Jeppson
[18] extensively tested the method from [4].

B. C. Eaves [l0]also investigated the subjeet. Onece an &p-
proximate fixed Ppoint hes been found via the method iﬂ.[lﬂ],th& effort
expended could be used to obtain a better approximation; the methed in
[10] was also extended to work for unbounded regions.

Interestingly, all of the above are closely related to
Theorem 3.2.10 gnd Algorithm 4.4.1: A range simplex, R(8,F), is
useable if and only if S has g "complete set of labels" (see [18] and
Sec. 6.1 of this chapter).

This chapter is devoted to a brief discussion of the algo-
rithms mentioned sbove and the relationships existing between them.
Background snd e definition of Sperner simplexes are presented in
Section 6.1, while an elementary discussion of methods appears in
Section 6.2. In Beection 6.3, the relatlonship betweeh such methods
and Algorithm 4.4.1 is discussed. In Section 6.4, yet another algo-
rithm combining ideas from Section 4.2 and Section 6.1 is set down.
Section 8.5 is devoted to comparisons.

6.1l ©Sperner Simplexes and
Sperner's Lemms

This section introduces necessary background for subsequent

discussions of slgorithms.
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6.1.1 Definition. Suppose that F'= (F ,...,F )W >R ig
continuous on the closed, bounded domain D ﬂn:, so that G=F - I is
continuous on D, where I is the identity map in R™.  Now ; letting
3-=:(KU,...
-Eﬁn_fﬂﬁﬁi)l¢ where Sgn(°*) is as in Definition 3.1.4.

,X ) be a sinplex in .8 define a vector L(}Iij, by L(}Ei_)_ =

6.1.2 Definition. ([8], pp. 122-123 or [3 ], p. 2, ete.).

Asslgn a label £_i to }{i by letting 1 4 be the number of ones encoun-
tered in the vector -L('J'Ei)' to the left of the first -1. This label will

be called the lsbel of Ki induced by F.

B.1.5 Assumption. Suppose 8 1s an n-simplex, F:8 = RH , and

31is a subdivision of S. Suppose J.("}JEE g niee ,Xk) is any k-dimensional
o 1s contained in A; suppose

facet of SG, where some subdivision of 8
Ae .'{3{@_, ...,Hk}. Then assume L(A) = L‘(xj) for some J € [0, ... k).

Properties of the labeling induced by F needed Lo define

Sperner simplexes and state Sperner's Lemms are now defined.

6.1.4 Definition. If § is an n-simplex in R", .8 is & sub-

division of S ard F:S5 = Fif'n,_ then the lebeling of the vertices of ele-
ments of 4 induced by F is proper if and only if the points, A, form-

ing vertices of elements of & follow assumption 6.1.3.

The set of lsbels of the vertices of 8 is

said to be complete if and only if [..i'ﬂ, v .,,a:n_] = {0, vesg)s
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6.1.6 Definition. Simplexes with complete sets of labels are

called Sperner simplexes.

It has been proven that Sperner simplexes will contain approx-
imations to fixed points (infra Theorem 6.2.2 and corresponding ref-
erences) .

The following theorem underlies the working of Sperner sim-

_pl-ex algorithms.

6.1.7 Theorem (Sperner's Lenma [6]). Suppose that 8 is an

n-gimplex in R" ; thet -4 is a subdivision of § and that the vertices
of 5 and elements of §sere labeled with & proper lebeling. Suppose
further that S bears a complete set of labels. Ther cne of the ele-
ments of 4 also has & complete get of labels.

Sperner's Lemme is proven in [8].

6.2 Methods Derived from Sperner's Lemma

The methods described in this sectioh are based upcn the
fact thet Sperner simplexes can be considered approximations to fixed
points X, such that F(X) = X, of maps F:8c R” =&, The problems are
frequently set up in one of two anologous settings, depending upon
whether the region 8 i &n n- simplex or an n-cube. These two settings
will be considered in the theorems to follow.

Suppose first that B =8 = (Xl, v+e,X ) 18 an n-simplex in

R™ , S0 that F:8 = 8. Then points in S and the comporients of F can be
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given in terms of barycentric coordinates ([lﬁ]! Yo. 36-37): P e S=

B =i @ s sy n )y T X, =2, BPm =Ly @ 200 TR L= Ly,

b :L; .E: fi(P} = l;_

1=0
£,(P) >0 for i =1,...n. Then:

6.2.1 Remark ([27], pp. 1328-1%29). Suppose F:8 * 8 is given

as gbove, and that the lgbeling of the components of F is given as in
Definition 6.1.2. Then S has a complete set of labels.

In this setting the hypotheses of Sperner's Lemma (Theorem
6.1.6) are satisfied. Coupled with the following theorem, this pro-

vides & basls for algorithms to find fixed points.

6.2.2 Theorem. Let F and S be as sbove. Then, given € > O,

there is an N such that if S' is an element of some subdivision of 8
with the dismeter of 8' less than 1/N, and §' is a Sperner simplex,
then |[F(X) - X|| <& for all X e §',

Scarf [27] developed an algorithm from this setting. I
that algorithm, e clever way to test the points corresponding to ver-
tices of simplexes in the subdivision in order to locate & Sperner sim-
plex was worked out.

A second important setting For Sperner's Lemta 1§ when
u3=rﬂn, the unit n-cube. The n-cube is "trisngulated" in some stendard
way ([*], p. 159), and the labels corresponding to the resulting sim-

plexes are anslyzed. In this setting, the conclusion of Theorem 6.l.5
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must hold for the hypotheses of Sperner's Lemme to be satisfied. How-

ever, under mild assumptions, the existence of a Sperner simplex is

'Thﬂnrem.ﬁji

In each of the sbove settings, algorithms were developed
whereby successive simplexes or -component simplexes of a subdivision
were checked for & complete set of labels.

The next section deals with a relationshilip between such
methods and Algorithm 4.4.1.

6.3 Relationship between Sperner's
Lemma and Usesble Simplexes

We first establish & relationship between Par( R(S,F)) snd
labelings for Sperner simplexes. Take the n-simplex X =-(K.,Ell...,xhj
t:ﬁn, and let F = (fl,...,fhﬂrs - R" be continuous. Consider any facet
T of §, and suppose that f1(11}§~0 for X € T. Then for X =

'(xl, T ,xn} ¢ T, define f‘l:T 5 pErl by ’Fl (X) = (fE(K) ; ,fﬂi(if): ) +

(x

| Er-~~;HﬂJ- Then the following theorem holds.

6.3.1 Theoren. &(T,Fl) is usesble if and only if the label-
ing of T indiced by F; is cowplete, i.e., if end only if T is a Sperner

simplex for ¥.. Furthermore, if T = { X, 5oe-X, ), then the label, ¢
1 '

1.!
I
corresponding te Hﬁ , 18 equal to the number ki.frﬂm;&lgurithm 4.4.2.
i
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6.3.2 Proof of Theorem 6.3.1. Theorem 8.3.1 follows directly
from Definition 3.2.2 and the definition of the ki in Algorithm 4.4.2.

Theorem 6.3.1 provides another way of looking at Theorem
3.2.10. Take the Sperner simplexes T to be approximstions to Ffixed
points of ¥; this is equivalent to teking them to be spproximations to
points X where Fl(‘.'i{} =8 - Hence, the Sperner simplexes in Theorem
6.3.1 correspond to approximations to points at which F/|F| =
(1,8, cassl)s

It is evident that usesble simplexes with positive parities
correspond to coverings of (1,0,...,0) € 8 by F/|F|| with a positive
orientation (cf. Def. :E.E-l_)'_, whereas useable simplexes with negstive
parities correspond to coverings of (1 30y 0n ,-G;D with a negative orien-

tation. In particular, we have:

6.3.3 Theorem. Let F:fc R® o R™ be as before. Let W be

the only point in b(o8) with F(w)/|[F(W)| = (1,0,...,0). BSBuppose
(1,0,...,0) is covered with a positive (negstive) orientation. Sup-
pose that b(.B) is sufficiently refined relative to F, with & subdi-
vision, &. Let ¥ be the number of AR(S,F), B € §, with Par(R(S,F)) =
1(-1). Then v = 1 mod 2.

Theorem 6.3.3 is a direct consequence of Definition 2.2.1
and Theorem 3.2.10.

Although Theorem 6.3.1 gnd Theorem 6.3.3 point to a cor-

respondence between Spernmer simplexes for f‘l and useasble simp lexes, it
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should be noted that Theorem 3.2.10 would not follow directly from argu-
ments involving Sperner's Lemma. In particular there 18 no guarartee
that there are no more Sperner simplexes than Tixed points. Further-
more, the hypotheses of sufficient refinement show from a different
angle what is needed for fixed points to exist.

6.4 A Sperner Binplex Search
Using Binsry Trees

Idess previously outlined in this chepter suggest that we
can search for Sperner simplexes by teking bisections of & n-simplex.
A tree can be produced ds in Algorithm 4.4.1 to keep track of where
Sperner simplexes are locasted, but no points need be stored. Checking
to see if a simplex is a Sperner simplex is similer to determining

the useability of a8 range simplex. The following slgorithm results.

(1) Input the maximum branch length, MAX.

(2) Input the original m-simplex in S, -
(3) Input the diemeter tolerarnce, EPS.
{4) n; <0, n,« 0

(SJ.nEi--nE + 1

(8) Bisect 8, and store the lower simplex in 's.i and the

upper simplex in Sﬁ. Store the diameter of Sl in DIAM.

(7) If the nzth digit of By is 1, then switeh the values in

the arreys 8, and S,.
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(8) sa(ng) < 8

(9) If DIAM > EPS &nd n_ < MAX, return to step (5).

2

(10) Print the integer represented by first binary digits

B

of nl and ng.

(11) Check to see if S, is & Sperner simplex. If it is,

then print Sl.
(12) If n2:>'MﬁX, print out a message.

(13) If ﬂzﬁh of n

(14) n, «

; 18 0, go to step (16).

5 ~ L.

(15) If n. = 0 then stop: Otherwise, return to step (13).

2

(18) Set the n,

zth digitfnf-nl equal to 1 gnd all subseguent

digits equal to zero.
(17) 8, < salny)
(18] o+ m, ~ 1
(19) Return to step (5).
The aboye salgorithm can be modified further; d(F,ﬁl,en) can

be celculated at certain steges, etc.

All of the methods mentioned in this chapter require that F
be evaluated only to sufficient accuracy to determine Sgn(F(X)) or
Sgn(F(X) - %), but demand verying emounts of memory and are applicable

to different types of problems. Except for ﬂlgorithmzs,ﬁ.l, the
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differences oceur mainly in the method of subdivision or formetion of
the simplexes or the method of carrying out the search.

The algorithm [27] requires en a priori selection of a set
of points to be vertices. Essentially, only those points need be stored
as the algorithm progresses, yet no twn simpleXes are ever considered
twice. The algorithm terminates when a Sperner simplex § is found.

The dismeter of such S can be made small by choosing the initisl points
cloge together so that S is & Sperner simplex = T X € S (ibid.), such
that [[F(X) - X|| < ¢ (Theorem 6.2.2). In the aslgorithm as first stated
(ibid.), however, S may not contain & true fixed point; finding an X
with |[F(X) - X|| < e would involve choosing & new set of initial
points and completely repeating the algorithm.

The algorithm [4] is set up to find &n epproximste fixed
point in the unit n-cube. Only the 'mesh size" need be specified at
the start, for the algorithm systemetically subdivides the n-cube into
srialler cubes of the specified size. The algorithm can be set up to
check all cubes for Tixed points, so more than one spproximste fixed
point may be found. Since the algorithm proceeds according to & fixed
pattern, little memory is required. If the mesh width is not smell
enough etc., however, wsome fixed points mey not correspond to Sperner
gsimplexes, and some Sperner simplexes may not correspond to fixed
points. One would then specify a smaller mesh size and carry oubt the

algorithm again.
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Other approaches (in partieular [10]) have alsc been tried.

In the method of bisection, neither an initisl grid of points
nor a mesh width ig specified. Instesd, the parameter p (Algorithm
4.4.1) 15 chosen in en attempt to vary the "tesh width' according to
how smooth F is. Informetion from previous calculetions is stored in a
binery tree. The diameters of S, and §, (Algorithm 5.3.1) may become
small very slowly if n is large, so that p must be large (it is recom-
merded that p > n for most spplications); and, hence, the amount of
informetion in the tree must be large. It was found that for the §-
dimensional exsmple in Appendix A,1l, one of the trees needed approxi-
mately 400 points. (albeit a rudimentery test for sufficient refinement
was used). If biséction is carried out, n + 1 trees must be stored.
However, if d(Fluﬁ,aﬁ)-only is desired, storage for less than one tree
is needed (cf, Section 4.6). WAL present, no rigorous way of determin-
ing p or finding when a correct result has been cbtained has been em-
ployed; we have experimented by varying p esnd varying the vertices of
the initial simplex slightly.

One does not' gssume thet F meps the initial region into it-
self in order to apply Algorithm 5.3.1. Furthermore, Algorithm 5.3.1
can be applied directly to any simplex contained in the domein of F,

At the writing of this work, there seems to be an explosion
in the activity of development snd testing of such glgorithms and the

comparisons in this paper barely hint at the results which have been
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obtained. Results of further testing and comparison will be indeed

interesting.



CHAPTER VII

FURTHER APPLICATIONS AND EXAMPLES

The problems described below can be solved via Algorithm

7.l Minimization Prebleins

Suppose that 8 €R® is an n-simplex, and F:5 - R is con-
tinuous: Then knowledge of points in 8 at which F takes on maximal
or minimel velues is often desired.

A standard method of obtalning this kriowledge 18 to compute
the stationary points of F in 8, then test them to detemmine whether
they sre local maximae or local minimae.

Two alternative cases immedlastely come to mind for computing
suech stationary points via degree theory:

(i) F' hes continuous derivatives, and these derivatives can

be caleculated formelly. In this csse, one obtains F' = (F., ... th}g -

2

R& ig continuous, where F, is the e partigl of F. One could then
apply Algorithms 4.4.1 and 5.3.1 directly to F'.

(1i) It is inconvenient to formally differentiste F. Finite
differences of F zre then used for Algorithms 4.4.l1 end 5.3.1. This
second glternative is explained below.

Note that oniy'ﬂgn(F'} is required to be correct in Algo-

rithm 4.4.1, Hence it should not be too difficult to obtain
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sufficiently accurate approximations (less than one significant digit
is required) to derivatives via centrel differences. In addition,
average rates of change may thus be computed and used even when F' is
not continuous.

The following algorithm is suggested to replace evaluation of
-Egp(aﬁ/axij, It uses & scheme similar to the one in Algorithm 4.3.1
which determined whern te stop bisection.

In Algorithm 7.1.1, the notation E; = (0,0,...,0,1,0,...,0)

t

€ R? where the "1" oceurs in the i'h-pgsitiﬁn, will be used.

(1) Choose, & priori, an integer parameter g, a small number,
®; and a large number, N,

(2) Input 1 end the point X = (xq,000,% ) ¢ R® at which
s@a(3F/3x, )(X) will be approximated.

(3) g« 0

(4) 9, < san(F(X + 8B,) - F(X - &E,))

(8] 3y = J,

(8) 5+« /M

(7) 9, « Ben(F(X + 8E,) - B(X - 3E,))

2
(9) If §j > q, then return the value of J

(8) If J, = J,, then § < § + 1. Qthervise, j+ O.
i

p Tor sgn(HFfaxi){x)_

Otherwise go back to step (5).
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In the sbove algorithm, when X is a vertex of § =
§-}'Eﬂ_;,_, : ..,Xﬂ};, it is assumed thet ¥ 1s defined in = neighborhood of BS.
If this assumption is inconvenient, then, for each fixed vertex X
teke directional derivatives along the directions, Vo folt == vn,k’
of the l-dimensional sides, (X _,xk),(xl,xk) ST ’<K.L£-l’}S&>’ {lﬁi +l-"x_k-'>’
e ,.(j{n_,_xk}, A method of doing this is explained below. First,

however, a property which these directions must have is discussed.

7.1.2 Remark. Consider the linear transformations,

Lys =51y, defining n(n + 1) direction vectors (V " Jl' J = 0,ive,n,
i=1,...,n, in terns of B,...,B at egch of the points Xy e -,_}Iﬁ by
V4= Lj_-(-Ei)" Then it will be assumed that there is & contintiously
perametrized femily of lineer trensformetions L, such that L, =

for L =0,...,n, and such that -L-}E- is nonsingulsr for X e BS.

For, otherwise,
[ Fvl--('ﬂ(x)\ /F 1(}{}

Il
=

Il
@

()| T

\Fvn :(x)_m/ \Fg (%) |

n
might have a solution in S for which not all of the partisls, Fp @re
i
Zero.

A scheme for producing a set of direction vectors with this

property 1is set forth below.
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1.1.5 Definition. Choose V, , = V; (%) by:

When 8 1s then bisected by substituting, e.g., the point
A= (3k+ Xﬁ)ﬁz for, e.g., ¥_‘then only the direction vectors involving
Xklare chﬂmgﬁd, excepting Hﬁ.- 3k-(aasuming m > k) or Kk_- Km (ag-
suming k >m). Now, X+ A, and direction vectors for the changed

directions are then recaslculasted via the same formulea.

7.1.4 Remark. The conditions in Remark 7.1.2 are satis-

n
=1

for all j. It is easy to show that the gbove scheme for choosing

fied if and only 1f {V,(X,))]_, defines the same orientation of R

Vi(xj) gives this condition snd that the orientations at the points
of either component simplex in any bisection are equal to the ‘common

original o¥ientation.

7.1.5 Remark. It can be shown that the degree of the

mepping F :Rn > Rﬂ with partisl derivatives teken in the coordinate

directions is plus or minus the degree of the mapping represented by
the left member of (i) in Remark 7.1.2. This is becsause LK is homo-
topic to either the identity matrix or minus the iﬁaﬂtity matrix in

GIhCR)’ so that G(X) = F (X) apd H(X) = Ly (X) are homotopic via a

homotopgy whose range does not ineclude §ﬁ (Eee [26], p. 156, Theorem

6.22). Furthermore, d(GEEEEﬁ}'= ﬁdfﬁjs,ahﬁl'whera 1 =-EEﬂ"ﬂEthXi)

[15]. '
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7.1.6_Remark. It should be noted that, under sdditional

agssumptions on F, it may be possible to find the critical points of
F in a more direct menner. For example, if Fis@'=> F(s8) maps b(=8)
into b(F(e)), F has & critical point within & if a(F,@8 ) # 1.
This results from the fact that mappings of the n.-- disk, D, %o
D" wnich map the surfsce of D" to the surface of DO must have at

least one critical point if n > 2([3],

7.2 The Hidden Line Problem

For various applications, one often wishes to know whether
a given line or curve in R passes through & surfsce, or whether &
given point A € R3 Lies inside or outside of & closed surface (Eu:ch
as the surface of & sgphere) iﬁ.ﬂﬁ; These problems, just as their
generalizetions to Fin_, (8ee [1], pp. 497-498) can sometimes be solved
with Algorithm 4.4.1.

If the region B enclosed by the surface is an n-simplex or
& polygor, then the second problem can be solved by simply calculating
a(I - A;,0 ), where I is the identity map on «@. The case in which
the surface enclosed a curved region & (an n-manifold) can also be
done simply (curved regions are considered ir Section 7.3).

To congider the problem of the intersecting line and sur-

face, suppose that the line or curve is parameterized by:



X = f‘l('t)_ )

~
i

:E'a(t._) a<t<h)

7 = £.(t)
anid that thHe surface has the parametrization:

(3 = gl(u,v-) 0

A

v = gy(u,v) B >.

Then define a function F:P = [a,blx[e, ,d, Ix[c,,d,] > by
Ft,u,v) = (6) ~ g (uv), £,(6) - g,(u,v), £2(t) = g5lu,v))
In this case, the results can be checked by solving the

system directly. Equating each of the three components of F to zero

gives:

0o
ct
i
for
1
<
il
O

where ¢ >

120
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whetice 4(u - 2) = 0. Hence, (2,2,0) is a solution. Since
J(E}t,u,v) = 2(1 - v), 7(®)(2,2,0) = -2 < 0,

Comparison shows that the degree caleulations were corredt.

The curve so parameterized now passes through the surface
if and only if there is & point (& oYy _,v_ﬂ_) € P such that F-(.tﬁ , q.ﬁ?yﬂ_j
= §_ ,
3
-d(E,P,Eg} to ascertain the existence of such a solution.

The following example will illustrate the caleulstion of

xample. Show that the line L given by:

X =%

=
Il
(&)

B

I
)

A\ EF

>
Il
=

;'4
[
.
g

for some t: 1<t < 4.
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FIGURE 7.1
THE LINE AND THE SURFACE IN EXAMPLE 7.2.1
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.2.1. Set F(t,u,v) =

(t - u,~v,2t - u* - v%), and apply Algorithm 4.4.1 to F. To do this,

one must choose, & priori, s simplex § = (Xl, X } i = b= w

27 %5
space. If care is taken that the determinant &4(.(:1,)(1)', (:L,-a{;: )y %)
(1 ,:1{4:)') 1s not small, the volume of 8 will be large, and there will

be less cheance thet a solution of F lies outside S. Ohe may choose
8 = ({5,0,0),(4,4,0),(1,3,-1),;(2,3,2))-

It can be verified (see Figs. 7.2 and 7.3) that this S contains &
considerable portion of the surface: ((t,u,v):1 <t < 4} end that,
for all (t,u,v) €8, 1<t < 4.

The paremeter p of Algorithm 4.4.1 was chosen to be 2. The
resulbting trees produced sre drawn in Appendix A.2. The degree of F
wes found to be -1.

7.3 The Degree with Respect to Regions
Other than Polyezons

Reniark 2.2.8 introduces the fact that d(F,D, Bn) is defined
for straight-line regions other than polygons. To calculate

a(F,&,8 ), simply find all of the facets of:

B(L) = -b(Pl} PR h-’(Pn.).
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FIGURE 7.2
THE PARAMETER SPACE

>
- ff'i(_'.l-"g)
# \
J.«" \
” 2 \
7 \
\
(310) \
V
t (4,4)
FIGURE 7.3

PROJECTION OF THE SIMPLEX IN FIGURE 7.2 ONTO THE t-u PLANE
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&= Z'P,.
i=1

Then spply Algorithm 4.4.1 to each of these facets. The sums of the
parity contributions of these are then added to get d(¥, .a.,-.an}' ;
There are two approaches for handling curved regions in RY,

as indiceted below.

7.3.1 Approximetion Approach. Replace b(.8) by a sum J

of (n-1)-simplexes each of whose vertices lie on b(&). If F:.0-> R°
is eontinuous, then, for gll guch X whose gimplexes Have small
diameters, the sum of the parities of the range simplexes associsted
with ¥ gnd elements of J is constant. From this, one can define
d(F, 0,6 ) to be this sum of parities. The Kronecker existence

theorem still holds when one defines &(F,.8,6 ) in this menner [1].

.?.3I L

A Change of Varisble Approach. Parasmetrize & go

that the parameter space P is & polygon or union of polygons in R™,
Suppose X(U) denotes the mapping from P to &, and let F(U) = F(X(U)).
Then, provided thet X is one-to-one, F = -E-ﬁ will have @ solution in <&
1f and only if F = en has & solution in P. Algorithm 4.4.1 could

then he applied to ¥ on P.

7.3.5 Remark., Approach 7.3.2 indicstes that & often need

only be an n-dimensional menifeld with boundary (ef. [23]).
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71-3.4 Remark. Note that, with Approach 7.3.2, curvilitear
regions (i.e., n-menifolds of smoothness CO) can be "bisected" into

unions of curvilinesr regions.

7.3.5 Remark. When composing meps of regions, one should

keep in mind product theorems concerning the degree of compogitions
of maps (ef. [23], p. 52, problem 1 and [8], p. 38).

For sn example of Approach 7.3.2, consider the following:

7.3.6 Example. Let & be the region in FfE defined by:

gs shown in Fig. 7.4, and let F be the function in Exemple 4.5.1.
Then calculate d(F,8,0,).

7.53.7 Solution o +3.6. Parametrize & by setting

x= 4%, v = 2u(l - v2), where 0 <t <1 &nd 0 < u < 1. Then:
le,u) = (166% ~ (1 - VB)® - 1,
16t% + au®(1 - vE)? - Z) 5

and the new region (in terms of t and u) is the rectangle:
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P = (G:G) ' (l,._{}j_}} + ((1,0),(1,1)) + ((1,1),(0,1)) + {(0,1),(0,0)}.

In this example, the parametrization is not one-to-one on
P, and F(t,u) is constant on ((1,0),(1,1)). Inclusion of this side
does not affect the computations, however.

An orientetion is assigned to 8 through the orientation
of P and the parametrization. The induced orientstions of h(.,&) and
b(P} are shown in Fig. 7.4.

Algorittm 4.4.1 was spplied to ¥ over P, asnd correctly

gave d(F,s8,6,) = 1. The computations are listed in Appendix A.3.

7.4 Computing the Linking Number

7.4.1 Definition. [19] Suppose that C is & utiion of k-

dimensional polygons in RFT (or the imaege of such g union as in
Approach 7.3.2). Then C is called a k-cycle (or & cycle of dimension
k) if and only if B(C) = 0.

Consider two cycles C, end C, in R™, the sum of whose dimen-
sions ny and ﬁz 8 ny +n; =n = 1. Also assume that the first cycle
€, is the boundary of some (nl+l)-palygpn (or sum of polygons)in R™,

In this setting one can deal with the conecept of whether C. and EE

il

"pass through” each other, illustrated in Fig. 7.5-Fig. 7.8. If C. and

1

GE_PEEE through each other as links in & chain, then one says that Cy

and C, are "Linked" (cf: Figs. 7.5-7.7, and elso [1] ch: XI, §1, #6),
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Y o S o)
C
t-u space
| WV d b N
5
(0,0) a (1,0) |
>__ }
-+ .
d\/ :‘1 e
b
X
] 2 a 3 4
FIGURE 7.4

THE ROOT OF F(x,y) = (0,0) OCCURS AT A = (1.224, .707), AND
J(F)(A) > O
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The smount of "linkage" is expressed by the linking tumber
(Verschlingungszahl; ibid.), which here will be denﬂted'vfﬂl,ez).
The geometrie interpretation of wvarious values of Y(Gifﬂz) is dl~
lustrated in Figs. 7.5-7.8.
The following statements give a formal definition of

7.4.2 Definition. (ef [1], Pp. 493-495) Suppose that K

is sny region whose boundary iﬂ-cl. Then parametrize K and CE with
parameter varisble U?=:(ul,gzj..-,uﬂj so that, if X ¢ K then X =
f(ull...;uhl+l), and 1f ¥ € C, then Y = Eiunl+2""’uhj’ for gone
eontinuous one-to-one mappings f and g. Let the space of parameter

varigbles for the perametrizations £ and g be 0. Then v(ClJEé)

is defined by:
e ikl |
v(e;,0,) = (=a)™alg = £, 2,0, )

As is illustrated in Figs. 7.5-7.8, the interpretation of V(Cllcﬁj
from Definition 7.4.2 corresponds to the gﬂﬁMetriﬂ concept for

;s = L and 'm = 3

Ne = T.'l
2

L
Since & is a product region, calculation of v(Ci,CEJ

can be simplified (ibid.). The domain & is the Cartesisn product

of the regions:
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Cy

K \ KCZ \

Gy C
1 il
FIGURE 7.5 v(Cy,C,) = 1 FIGURE 7.6 v(Cq,Cp) = -1

FIGURE 7.7 v(Cy,Cp) = 2 FIGURE 7.8 v(C,,C,) =0
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"&3_ = { (ulx" % "uﬁl.-l'.l) ( ul’ e S u::nl) € & }:: and
2, = { C'“hl+z-a""“;:;3"'(“1;’”-'-**“‘_.:;') e BJ,

so that: b(«8) = b( o@i @oﬂz) = B dﬂl}"® o&z + o%_ ® bl a&E) However,
sinee C, is a eyele, b(<8,) = 0, eo that:

b:(d@): = b( agl). @ ‘az

Also, B o&l} i1s the inverse iImage under I of the cycle C This fact

la
can be used to obtain e simple representation for b(e&) (ibid.).
The above analysis can bercarried out directly from a

glence st the Gauss integral ([1] p. 497).

7.4.3 Approach. To compute v_(’ﬂl, G-z ), parsmetrize Cl over

an nl-dimensional region Pl., parametrize (_'32. over an n,-dimensional

2
region P,, and apply Algorithm 4.4.1 to each of the simplexes com-

prising P-l @'-PE .

7.4.4 Example. Determine whether the circles in R‘s given by

¢ = ((x,y,2); ¥+ 5% =1; 2 =0) and

gre linked.
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7.4.5 Computations for Example 7.4.4.

1t is c¢lear from
visuelization that the sbove two eirecles are linked (ef. Fig. 7.9).

To test this faet with Algorithm 4.4.1, we will set By =l = [D,3].

We will riow parametrize Cl by

(y(t) = sin 2xt) A

I
o

b (o)

and parametrize C2 by:

'Er.(u} = 0 b

|

y(a)

il

cos 2mu + 1% u€P

sin 2mu

Il

Lhz.-(. )

Then £(t) = (cos 2nt,sin 2xt,0), and g(u) = (0,cos 2mu + 1,sin 2xu),

501

glu) - £{t) = (-cos 2nt, cos 2ntu + 1 - sin 2at, sin 2ma)
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FIGURE 7.9

THE CYCLES Gy AND 02
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In this example P'l ® Pz can be written ess the sum:
{ CG#@}: (l:@): (111) )+ (D:G); (1-; 1) ,(@', 1) )

We will apply Acgorithm 4.4.1 to each of the gbove simplexes, treating
them as boundaries of 3-simplexes. The computstional results are
listed in Appendix A.4., It was found that '*FE'C_.L 0y ) = 3.,

For further spplication of Algorithm 4.4.1 and Algorithm
5.3.1, see [3], ete.



COMPUTER OUTPUT FOR SEILECTED EXAMPLES

Computer oubtput for selected examples from the text 1s
listed in this eppendix. Binary trees corresponding to some of this
output are also drawn. Centrel processing unit times are listed
efter the output. Unless otherwise stated, the programs were run
on g Univec 1108 with & cycle time of 750 nanoseconds. These programs

were not fully optimized, and the best stopping tests were not used.

A1 A Fiv&éﬂigegaimﬂal Exsnmple

The following example was used to test the feasibility of
calculating d(F,aﬁ}BH) in & dimensions. Here, X = (xl,xE,xa,x&,xsﬁ,

and F(X) = (£,(X)),£,(X),£,(X),£,(X),£.(X)) where:

r}lw) N ’L,L2 ) xz\
£5%) = x§' " %3

{2 (%) = x; = x, )
f’-é-(]'{) = xf - X

50 =% -y
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The domain o0 wes chosen to be:
S = -.((1,0-,r0,d,o)'-_,:.(m,1,0,0,0),i.(o_,-a,l,a.,u),:‘(-.0,-0,a,l,ej) ,(0,0,0,0,1),
=Ly =25 -1, 1)) = (xg_:'xllxz:xg,:xqﬁxﬁ)'

Now:

{1 2 0o 06 0 O 1 10 0 0 O
1 01 0 0 O 1 0 L 0 0 O
1 0 0 1L 00 . 1 0 01 00| -_gx<o
1 0 0 06 1L O 1 0 6 0 1L O ’
1 00 0 @ 1 1 0 0 o 0 1
1 =1, =1 -1 =k <k '6 00 6§ 0O

so the points of S are 1inearly independent, and the orientation of S

is negetive. Now, F(0,0 ,G,._Cl:,ﬂ-:) = B.-'E_, and:
6 = i/6(0,0,0,0,0) + lfs(o,i,o,e-,'ﬂ-) + (1/6(0,0,1,0,0)
+ 1/8(0,0,0,L,0) # 1/6(0,0,0,0,1) + 1/'6.(-1,—1,-1,-1,'-1),

so (0,0,0,0,0) € 8. Note also chat (1,1,1,1,1) £ 8. BAlso:
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sEx)=|ex, -+ o 0 O
0 2x =1 0 0 - -
2 | = 32 xlxaxzxéxﬁ 1
_ = -1 at (0,0,0,0,0),
4
=1, 0 0 0 215

50 ﬁ(F,S,eS)
The perameter P was teken to be 3 in the celculations.

There were 243 points in the tree for the facet:
({1,o,o,o,ﬂ),(9;3,1,0,0},(o;ﬁ;b,i,o),(0,0,0,3,1),(-1,—1,-1,-1,-1)).

The sum of the parity contributions of the facets was cal-
culated to be +1. Since the simplex had a negative orientation, this
gives a correct velue for d(F,S,es).

The tables of tree information for the six fecets are listed
on the following pages: These tsbles are listed in 'order, with the

one for:

(Xgr ¥y s ¥ %m Xy SR = (-'o.,l,o,o,o),(:o.:,u,l,-"o,o).,(.0,-0-10-.1,0).,

(0,0,ﬂaﬁ,lJ,(—l,*l,-L,*l,-l))



egppearing first, then the one for:

(x 3 Xl ’ Xz 2 XE-: -X,_g&.! X‘S} ; ete.

It should be noted thaet two or more iterations of the bi-

section process would take much less than double the amount of time

for the computetion of the six trees.

A.2 Computation for the Hidden Line Proble

Graphs of the trees produced for the problem of Example
7.2.1 sre given here. If the sum of the parity contributions at s
glven polnt 1n the tree is nonhzero, this sum is given next to the
point. The totgl execution time wes 2.861 seconds.

It should be recalled that the originsl simplex was:
8 = ((3,0,0); {4:41635(1554#1)5(5:5:2)):
and that the function was given by:

Fét,u?ﬁ)¢= (t = u,=v,2t - a® - ),

A.3 The Degree with Respect to
a Curved Region

Computations for Exafﬁtpl—e- 7:.3.6 are giv"eri' in this section

it the form of tebles of tree information.

138
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TABLE A.1.1
TREE INFORMATION FOR
#0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0), (0,0,0;0,1); (=ly~L,=1;-1,~1) )

(Total Parity Contribution: O0; Execution Time: .217 seconds)

Nimber iy No Parity

10 1. o 0
1L fol 3 0
12 7 3 0

L3 3 2 8]

14 a L ' 9]
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TAELE A.1.2
TREE INFORMATION FOR
(1,0,0,0,0), (0,0,1,0,0), (0,0,0,1,0), (9,0,0,0,1), (-1,-1,-1,-1,-1))

(Total Parity Contribution: -1, Execution Time: 1.304 seconds)

—————————————— e -

Number ny ng Parity Number ny np Parity
1 O 4 0 52 181 B 0
2 8 4 0 53 53 7 Q
3 8 3 0 94 117 8 ]
4 &4 4 0 855 245 q. 0
5 12 4 0 36 SOL g9 o]
& 4 3 0 57 245 8 0
7 6] 2 0 58 117 7 Q
8 2 4 o} 29 53 6 0
9 10 4 0 60 21 5. Q

10 2 3 0 61 s 4 0
11 6 4 0 62 13 & Q
12 14 4 0 63 45 10 0
14 6 3 0 64 557 10 0
14 P 2 0 65 45 g 0
15 0 1 0 66 301 10 0
16 1 3 -1 87 813 10 0
17 5 7 0 ‘68 301 9 0
18 69 7 0 69 45 8 )
L9 2 6 0 70 173 13 Q
20 37 13 0 71 4,269 13 0
21 4,133 13 o) 72 173 12 0
22 37 12 0 73 2,221 13 0
23 2,085 13 0 74 6,317 13 fa)
24 6,181 13 o 75 2,221 12 Q
25 2,085 12 6] 76 173 11 9]
26 37 11 0 77 1,197 13 o)
27 1,061 11 0 78 5 293 13 0
28 37 10 0 79 1,197 12 el
29 549 10 o) BO 3,245 15 o]
30 37 9 0 Bl 19,629 15 Q
31 293 10 0 82 3,245 14 a
32 805 11 0 B3 11,437 15 0
23 1,829 11 o) 84 27,821 15 0
34 805 10 0 85 11,437 14 o}
35 293 g 0 86 3 245 13 o)
36 37 8 0 87 7,341 13 Q
37 165 Q 0 88 3,245 12 Q
38 421 ' Q 89 l 197 11 0]
39 165 8 0 90 ‘173 10 o}
40 37 7 0 a1 685 10 (o]
4] 101 7 0 a2 173 9 0
42 37 6 0 93 429 10 o]
43 5 5] 0 94 G941 10 Q
44 21 7 6 95 429 9 0
45 85 7 0 96 173 8 6]
46 21 & 0 a7 45 7 0
47 53 Q 0 98 109 14 0
48 3&9 Q 0 98 §,301 14 0]
50 181 g 0 101 4 Eﬂﬁ- 14 0
51 437 g 0 102 12,397 14 0
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TABLE A.1.2 con't

Number ny s Parity Number ny i Parity
103 4,205 i 5 0 155 1,565 12 0
104 109 12 0 156 3,613 12 0
105 2,157 14 0 157 1,565 11 o
106 10,349 14 0 158 541 10 0
107 2,157 13 0 159 29 9 0
108 6,253 14 Q 160 285 q 0
108 14,445 14 0 161 29 8 0
110 6,253 13 0 16z 157 9 Q
111 2,197 iz 0 163 413 9 o}
112 109 1% 0 164 157 B 0
113 1,133 12 0 165 29 7 (o)
114 3,151 12 6] 166 a3 Q o)
115 1,133 11 0 167 349 9 o)
116 '109 10 Q 168 93 B @)
117 621 12 6] 169 221 14 0
118 2,669 12 0 170 8,413 14 0
119 621 11 0 171 ‘281 13 6]
120 1,645 1l 0 172 4,317 14 0
121 621 10 0 178 12,509 14 0
122 109 9 0 174 4,317 13 o
123 365 9 0 175 221 12 0
124 109 B8 0 176 2,268 14 0
125 237 12 0 177 10, 461 14 0]
126 2,285 12 0 178 2,269 13 0
127 237 i} 0 179 5,365 14 a
128 3,260 12 0 180 14,557 14 Q
129 3,309 12 0 181 6,365 13 0
130 1.261 11 0 182 E,Eﬁﬂ- 12 Q
131 '23? 10 0 183 221 11 o
132 749 12 0 184 1,245 12 0
133 2,797 12 0 185 3,923 12 0
134 749 11 0 186 1,245 11 (0]
135 1,773 12 0 187 EEl 10 ]
136 3,821 12 0 188 733 14 Q
137 1,773 11 0 189 8,925 14 0
138 7489 10 Q 190 733 13 o}
139 237 g (o 191 4,829 14 0
140 493 q aQ 192 13 021 14 9]
141 237 8 0 193 4. 829 13 0
142 109 7 0 194 733 12 0
143 45 6 (o 195 2,781 14 0
144 13 5 0 196 10,973 14 0
145 29 12 0 197 E 781 13 @)
146 2,077 12 8] 198 6,877 14 0
147 29 11 0 169 15;@&9: 14 0
148 1,053 12 Lo} 200 6,877 13 o
149 3,101 12 0 201 2,781 12 0
150 1,053 11 (o) 202 733 T o]
151 29 10 @ 203 1,757 12 0
152 541 12 lo} 204 3,805 12 0
153 2,581 12 (o) 205 1,757 11 o]
154 541 11 0
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TABLE A.1.3
TREE INFORMATION FOR
<( X 18 ?-IG-" 0 2 D‘j 3 ('E!l! 0 L Q, E}) 3 (Q:GFG# ljg} -] (I:E?P.'Iﬁ: 0,0, l): 5 {'l: 'ls_ = .1-':!" 1-: "l.) }

(Total Parity Contribution: 0; Execution Time: .218 seconds)

Nipdoer ) o Parity

10 L 2 0

0, 3 3 0

14 1 1 0
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TABLE A.l.4
TREE INFORMATION FOR
((1,0;0,0,0), (0,1,0,0,0), (0,0,1,0,0)5 (0,0,0,0,1), (-1,-1,-1,-1,-1))

Total Parity Contribution: 0; Execution Time: .242 seconds)

Number hi By Parity

(N
O
o

(6] 93
LUBN S
3% &
Cr &) (o]

_ﬂ
o
-
O

10 1 2 0
11 > 3 0
12 7 3 o
13 5 e 0

14 1 s O




TABLE A.1l.5

TREE INFORMATION FOR
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((1 §050,, @j_’. (0 o o 1A ﬂ.’:_ﬂ_) 3 '(_ﬂ:, 0,1,0, o), {0,0,0;L ,_ﬂ}: 5 [= 1,~Lly=Llyndy~- 1) }

(Total Parity Contribution: 0

Execution Time:

.216 seconds)

Number

Parity

10
A
12
13

14

\ -
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TABLE A.l.6
TREE INFORMATICN FOR
((1,0,0,0,0), (0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0), (0,0,0,0,1)}

(Potal Parity Contribution: 0; Execution Time: .28l seconds)

Number Parity

-
l—.‘l
s
g

o llle it e IS RRT & i e
o
O mo

I—J

|.—.-|
e

=
| T
1_1
slelogoeclriolelsilofeiogrclolelsReReNol oo

03 0 8 DO O DO G W b G DN s
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FIGURE A.2.1
TREE PRODUCED FOR ((4,4,0), (1,3,-1), (3,3,2))

/ points

(This is the minimal tree for p = 2.)
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FIGURE A.2.2

TREE PRODUCED FOR {(3,0,0), (1,3,-1), (3,3,2))
Pp=2;n=3
25 points



FIGURE A.2.3
TREE PRODUCED FOR {(3,0,0), (4,4,0), (3,3,2))
p=2in=3
41 points

148

5 4
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PIGURE A.2.4
TREE PRODUCED FOR {(3,0,0); (4,4,0), (1,3,-1))
p=2;n=3

7 points

(This is the minimal tree for p = 2.)
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The parsmeter p in Algorithm 4.4.1 was chosen to be ¢ in
all cases. Execution times are given separately with each table.
The tables for ((1,0),(1,1)) and ((1,1),(0,1)} were identical
to the above. Execution time corresponding to ((1,0),(1,1)) was
077 seconds while execution time for ((1,1),(0,1)) wes .079 seconds.

The table for ((0,1),(0,0)) follows.

Tables of tree informetion for Example 7.4.4 are given
Here. Note that there are only two tables, that for ((0,0),(1,0),(1,1))
and thet for ({0,0),(1,1),(0,1)). Note thet since F is independent
of the third coordinant this coordinant cen be chosen arbitrarily,
€.g., 1t can be chosen to be 0. With this choice, Algorithm 4.4.1 will
work on ((0,0,0),(1,0,0),(1,1,0)) end {(0,0,0),(1,1,0),(0,1,0)Y with
n = 3.

The parameter p of Algorithm 4.4.1 was teken to be 2 for

each simplex. Execution times are given separastely with each table.

A.5 A More Efficient Search Routine

A considersble fraction of the execution time for the degree
caleulation program is due to overhead in the routine which searches
through the table of tree information and adds together the appropriste
perity contributions. An improved method of search would mske the

algorithm considerably more efficient.
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TABIE A.3.1
TREE INFORMATION FOR ¢(0,0), (1,0))

(Total Parity Contribution: 0; Execution Time: .075 seconds)

Number ny ng Parity




(Total Parity Contribution:

TREE INFORMATION FOR {(0,0), (1,0), (1,1))

TABLE A.4.1

03 Execubion Time:

.474 seconds)

Number

n

I_.'.I

e

Parity

Number

I

Ds

Parity

OO OU A WD

O 8o

3

- . _ = ol
MHEOHODOMOPLONDEODNDODNO =B

s

™

Ba

B

OO T OO0 O U D0 S O D00 i

sRegoletclci>ReRelolelclilefollcRollclel=lell=NolsRoleNe

27
28
29
30
31
32
35
34
38
36
a7
38
39
40
41
4z
42
44
45
48
47
48
49
50
S
52

3.

Th

11
45

107

43
L

27
I

23

15
47
15
5%
65
31
L5

FHU@URUUoooo B OO ON9<90 =33k 0w

COO0OO0ODDTOO0O000CADBL0000ODB OO0

152
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TAELE A.4.2
TREE' INFORMATION For ((0,0), (1,1), (0,1))

(Total Parity Contribution: 1, Execution Time: .75]1 secords)

Number Parity Number By By Parity

g
N

53 89
54 345
a8 B9
36 el7
37 47
56 217

i

; . b . . T
HOHONORONONORANMMODO

i W0 W
~J H L~ W)

& -
O~ =

113

MO PG MO NPT PO NI DY = 5= 2 s ) s B
ONOORAWUNHFOOENOU AW OW MG UELW N
cn

e
Hﬂ%

9
137

)
'ﬁﬁﬁﬁﬂﬁ

(ad
(87
na
(@]
ot

ohE88648
ch
el

(6] 15 0 G S O
B@mﬂmap
Dnmn A
O WU

21 183
52 25

0000000000000 0DD0OD000DO000O0CLOC0OOODDODOOD
]
o
[
8]
A W BT OV O T OV O SN O S W S UIOVOY TG O W A TGOV 1O OV W s UTOY VA @ 0 (G D 00

NODOCODOAONDDIDDO DO~ @O DU O ~Id U O g~ O ~d ol A ) N oW s S Ws S
HOOO0O0OECO0ODOODOODOORELOOOD0COOHODODOODDOOHHFHHODOOO0OOO0
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It is seen that, when the tgble of tree informetion is rather
long, the parity contributions to be added together sppear nesr the
end of the table. Indeed, very often, the points to be sdded together
are the last two points in the table. Here, it is better to check
the lest points first, and search backwards. The search algorithm
should then aglsc stop if both perity contributions sre formed.

The flowehart below tekes this consideration irto account.
It .glso contains several cther modificetions which should also

increase its efficiency.



Input D, LOC, and k. Also input ny and
ny for the point whose parity contribu-
tions are to be added.

Find the first location numbers for the

lower point and upper point for (n1,n2).

Store in nl,] and n1i2.

IF1 = 05 IF2+« 0

FIGURE A.5.1
AN EFFICIENT SEARCH ROUTINE

1585
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FIGURE A.5.2

AN EFFICIENT SEARCH ROUTINE (Continued)

Please note that LOC(1,j) is the first Ihcatinn number and LOC(2,3)
is the second location number for the jth point in storage.
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