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Abstract. We apply interval techniques for global optimization to several industrial applications
including Swiss Bank (currency trading), BancOne (portfolio management), MacNeal-Schwendler
(finite element), GE Medical Systems (Magnetic resonance imaging), Genome Theraputics (gene
prediction), inexact greatest common divisor computations from computer algebra, and signal
processing. We describe each of the applications, discuss the solutions computed by Kearfott’s
GlobSol software (see www.mscs.mu.edu/∼globsol), and tell of the lessons learned. In each of
these problems, GlobSol’s rigorous global optimization provided significant new insights to us and
to our industrial partners.
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1. Problem domain

Let f be a continuous, differentiable objective function X ⊂ Rn → R. Consider
the global optimization problem,

min
x∈X

f(x),

possibly with linear or nonlinear constraints. We seek validated, tight bounds for
the set of minimizers X∗ and/or the optimum value f∗. Linear systems Ax = b and
nonlinear systems G(x) = 0 for G : Rn → Rn, are also solved by components in
our tool box. The rigorous global optimization algorithm[10, 15] uses an exhaustive
branch and bound search. It discards regions where the solution is guaranteed not
to be, it attempts to validate the existence of a unique local minimum in a box, and
it makes the enclosing box tight. In contrast, conventional approximate algorithms
for global optimization include exhaustive search, simulated annealing [11], and
genetic algorithms [1].

The validated global optimization algorithm used by the GlobSol software package
is related to algorithms described by Hansen [10], Neumaier [18], Ratz [20, 21, 22],
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Jansson [13, 14], or van Iwaarden [12]. Details of the GlobSol algorithm appear
in [15], an overview appears in [5], and details of the applications described here
are available from the GlobSol web site: www.mscs.mu.edu/~globsol

Features contributing to the difficulty of a general global optimization problem
include

Feasibility: Is there a feasible solution? Interval techniques allow us safely to
discard regions where the solution cannot be and to enclose regions guaranteed
to be feasible.

Many local critical points: How can we tell whether the local minimum we have
found really is the global minimum? For an objective function with many
local minima, like an egg carton, interval arithmetic can guarantee that a local
minimum is indeed a true global minimum.

Singular or near-singular solutions: A nearly flat objective function, like the
top of an egg carton, exhibits singular (or nearly singular) behavior. Interval
techniques can bound the entire set of points X∗ at which the global minimum
is attained.

Uncertain parameters: Many models contain parameters whose value is not pre-
cisely known. Interval techniques automatically handle interval-valued param-
eters.

High dimensions: The algorithm is an exhaustive branch and bound search to
guarantee that the global optimum cannot be missed. The code tries to be
clever, but the worst-case complexity is O(2n) for a problem with n indepen-
dent variables. The complexity is also exponential in the requested tolerance.
For some problem classes, the observed complexity is O(n3) governed by the
linear algebra. The largest problem we have successfully handled so far is
n = 128 (a mildly nonlinear trayed tower model solved by Schnepper, a stu-
dent of Stadtherr, taking special account of sparsity). Work is in progress with
parallel architectures, better heuristics, and sparsity to handle larger problems.

The point of this paper is to outline briefly several actual industrial applications
that have been addressed using the GlobSol software. The intent is to convey the
wide domain of applicability of the rigorous global search methods. More details
about each application are available from technical reports cited here and may
appear in subsequent papers.

2. Swiss Bank (Currency Trading)

Swiss Bank’s portfolio is managed using a proprietary risk control system. This sys-
tem aggregates the currency trades and determines an overall value of the portfolio.
The total value of the portfolio is evaluated in the light of several risk factors. The
objective of the system is to determine the value at risk, or the maximum overnight
loss the bank may face on the portfolio of trades, assuming that the portfolio is
illiquid overnight.
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The maximum loss is determined for the portfolio closing position by allowing
the risk factors to change and calculating the price sensitivities of the trades to
these changes in the risk factors. As the risk factors are allowed to change within
specified ranges, the calculation of the maximum loss becomes quite difficult. The
theoretical shape of the portfolio frontier becomes more complex as the number of
currencies and risk factors increases. Therefore, it becomes important to guarantee
that a global maximum is found, as a local maximum may leave a great deal of risk
hidden.

Value at Risk (VaR) is a measure of the maximum loss in market value over a given
time interval within a given confidence interval. That is, the loss of market value
that is exceeded by a given probability. The Bank for International Settlements, in
determining adequate bank capital, suggests a 99 percent confidence interval and a
ten-day time interval. Given a 99% confidence interval, the VaR approach yields a
single estimate of potential loss that would be exceeded in value with only 1 percent
probability. As the VaR methodology has gained international acceptance, it has
become more important to banks as a risk management tool. Swiss Bank plans to
expand its use of the methodology and improve their current approaches. By being
able to accurately assess the maximum expected overnight loss exposure, the Bank
will be in a much better position to adjust its holdings to reduce that potential loss
and satisfy regulatory requirements.

GlobSol was tested using the Garman-Kohlhagen model for valuing foreign ex-
change options and for determining the VaR for portfolios containing calls and puts
on 2, 4, and 7 exchange rates. Initial experiments with the options model suggest
that the CPU time for these problems grows exponentially with the number of
instruments in the portfolio. In these models, market forces work to make the ob-
jective functions nearly flat, with many small relative local optima. The guarantee
of GlobSol’s solutions is that we are certain to have found the best of the local
optima.

For the Value at Risk model, we solve the problem of finding the VaR of a port-
folio. We claim that not only the maximum loss of the given portfolio containing
any finite number of instruments is found, but also guarantee that it is the global
maximum that is enclosed in tight bounds.

We used GlobSol to find the minimum variance portfolio for one two week period
in October, 1997, of a portfolio containing Swiss Franks, Mexican Pesos, South
Korean WONs, Australian Dollars, Netherlands’ Guilders, and Singapore Dollars.
The minimum variance portfolio had 74.7% Mexican Peso, 8.9% Australian Dollar,
8.4% Netherlands’ Guilder, and 8.0% Singapore Dollar. The minimum variance for
the two week period was 0.00055% of the portfolio value, while the variances of the
individual currencies ranged from 0.0013% to 0.049%.

The Swiss Bank application is joint work with Shirish Ranjit, Joe Daniels, and
Peter Toumanoff. Details appear in [6, 19] and at
www.mscs.mu.edu/~globsol/Marquette/apSwiss.html
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3. BancOne (Portfolio Management)

We consider the universal portfolio management problem: Given various invest-
ment constraints (cash flow, risk element, maturity structure, corporate investment
policies, etc.), what combination of securities will maximize return? This concept
can be most easily related to efficient frontier and security market line solutions of
classic finance. Although quite simple in theory, a solution is difficult to implement
for several reasons:

• Managers may be responsible for several portfolios, each with different invest-
ment policies and objectives. This renders the efficient frontier of investments
subordinate to investment policy.

• Selecting securities from the universe of acceptable investments, pricing options,
hedging strategies, even for the most basic fixed income portfolio, can require
substantial amounts of time.

• Statistics used to judge risk and return are often time consuming to calculate,
numerous, and of uncertain accuracy. Therefore, these statistics are often not
considered completely.

For these and other reasons, rule-of-thumb investment management often substi-
tutes for more theoretically sound investment portfolio management and asset tech-
niques. For instance, securities may be selected because they fall within the invest-
ment policy of the portfolio, or because the security matches the historical return
or average life of the portfolio.

The required software solution to the problem first involves selecting securities
from a large universe of fixed income securities which meet the required investment
parameters (i.e. the investment policy of the fund). Then, given these securities,
select the optimal mix (or asset allocation) to maximize the expected return of the
portfolio while meeting bank policy objectives regarding the duration to maturity,
cash flow, and risk. In addition, given the selected optimal portfolio(s), the software
solution demonstrates to the money manager the additional opportunities and risks
which exist by relaxing one or several of the policy constraints.

The solution requires flexibility to accommodate a wide range of investment styles.
For instance, risk may be defined in several ways: credit risk, interest rate risk,
variance in return, maturity, etc. Similarly, return may be defined as cash flow yield,
coupon yield, total return, capital appreciation, etc. Finally, the final solution also
addresses some of the usual portfolio constraints, including the following: tolerance
for duration and convexity; required cash flow timing; selected average life of the
portfolio; coupon yields or maturity dates; credit ratings; selected responsiveness
to changes in partial duration.

A sample fixed-income portfolio is divided into two different models for this anal-
ysis. First, we model a portfolio containing only 3-, 6-, and 12-month Treasury
bills. To simulate a real-world Treasury bill portfolio, we used actual spot price
data for each type of Treasury bill from a recent U.S. Treasury auction. Historical
spot price data for each bill was used to calculate the variances of each type of T-bill
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and covariances between bills. Using a typical set of constraints, GlobSol calculated
the optimal allocation to be about 10% in 3-month T-bills, 60% in 6-month T-bills,
and 30% in 12-month T-bills, for an average rate of return of 5.363% per year.

Second, we model a portfolio containing only 1-, 5-, 10-, and 30-year Treasury
bonds. The objective in each case is to maximize the portfolio’s rate of return, given
four investment constraints of average duration, cash flow, variance, and total value.
For the Treasury bond portfolio model, GlobSol computes the maximum portfolio
rate of return subject to four investment constraints. Treasury bond variances
and covariances between bonds were calculated using historical data. Hypothetical
values were chosen for spot prices, coupon payments, and face values. We computed
the rate of return for each bond. For a typical set of constraints, GlobSol determined
the optimal allocation to be about 4% in 1-year bonds, 65% in 5-year bonds, 4%
in 10-year bonds, and 26% in 30-year bonds. This allocation generated an optimal
rate of return of 7.388%.

The results generated by GlobSol guarantee that 1) All constraints are satisfied,
and 2) There is no allocation satisfying the investment constraints that offers a
higher yield. Guaranteeing that we have determined the optimal allocation is a
significant statement to make. This implies that we have assured that all constraints
are satisfied. From the perspective of the portfolio manager, this is a guarantee that
all portfolio objectives are being met. With financial market volatility constantly
changing the value, risk, and return of the portfolio, actual portfolio objectives may
not be being met even if the manager is active in trying to meet them. Therefore, the
manager may not be able to make this assertion on a consistent basis. The results
from GlobSol imply that we can say with 100% certainty that the constraints are
being satisfied. Most importantly, the generated allocation of securities contains
the optimal rate of return given the constraints. The manager can be assured
that potential returns are not being missed, and shareholders are benefitting from
optimal portfolio management.

The Banc One application is joint work with Paul Thalacker, Joe Daniels, Peter
Toumanoff, Kristie Julien, and Ken Myszka. Details appear in [23] and at
www.mscs.mu.edu/~globsol/Marquette/apBancOne.html

4. MacNeal-Schwendler (Finite Element Analysis)

A rocket engine exhaust nozzle’s primary function is to direct the outward flow of
high-pressure exhaust gas produced by the engine. In this manner, the thrust of the
engine is focused, thus achieving the jet propulsion necessary to drive the vehicle
forward.

While in operation, a rocket engine nozzle cone experiences an enormous internal
material stress due to the massive thrust pressure and temperature created by the
ignition of the rocket fuel within the engine. This material stress tends to act
on the nozzle cone in a circumferential direction, trying to blow the nozzle apart.
This type of material stress is exactly the same stress that causes a toy balloon to
rupture from excessive internal air pressure. The task of the rocket nozzle designer
is to design a nozzle cone that is strong enough to withstand the extreme forces and
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temperatures generated within the nozzle during engine operation, while obeying
all design specifications.

Design problems like the rocket engine nozzle stress pose incredible challenges to
aerospace and materials engineers. To reliably solve these difficult problems in very
complex shapes, engineers employ the help of several analysis tools to accurately
model the behavior of their designs on a computer before a prototype is actually
constructed. One of the most powerful numerical analysis tools utilized by designers
is the Finite Element Method.

We decided to pursue the first-principles finite element analysis, or the “all-
together” approach, in which the finite element equations are presented as con-
straints to the optimization problem. Only values satisfying the FEA equations are
considered feasible designs over which optimization can be performed. The method
takes its name from a technique proposed by John Dennis and Karen Williamson
for differential equation parameter identification problems. To gain experience with
the all-together finite element approach, we first attacked a VERY simple structural
analysis problem, minimizing the maximum stress an axially loaded elastic bar.

We have successfully modeled a 97 node axially loaded bar with the all-together
approach. The technique begins with a model consisting of four nodes and three
elements. GlobSol solves this problem and returns a solution consisting of four
tightly bound node intervals. The results of this model run are then used to build
a new model consisting of twice the number of elements. GlobSol now gets half of
the model nodes bounded tightly, and once again GlobSol solves the problem. This
procedure is repeated until we decide to stop at a model consisting of 96 elements
and 97 nodes. The total CPU time required by GlobSol to complete the entire
series was about 2.5 hours. This model run is significant because it demonstrates
that GlobSol can solve a problem based on the all-together technique. Our primary
concern is CPU time required.

The MacNeal-Schwendler application is joint work with Frank Fritz, Andy John-
son, Don Prohaska, and Bruce Wade. Details appear in [9, 8] and at
www.mscs.mu.edu/~globsol/Marquette/apMacNeal.html

5. GE Medical Systems (Magnetic Resonance Imaging)

MRI Imaging Instrument is one of the major sophisticated, state-of-the-art, and ex-
pensive medical imaging products manufactured by GE Medical Systems. Through
a clinical experiment, 3D medical images of a patient are generated by the principle
of Nuclear Magnetic Resonance (NMR). One of the key components in the MRI is
the MRI coil, which generates the electro-magnetic fields around the patient. The
coil is stimulated by current impulses of a certain shape, which are expected to
generate an electro-magnetic field of similar shape. However, due to principles of
physics, the current impulse is not uniformly distributed in the coil. The current
passing through the edge of the coil is greatly distorted. This is called the “Eddy
Current” effect, which causes the distortion of the corresponding electro-magnetic
fields, resulting a distorted medical image. Thus this eddy current effect must be
corrected or compensated using the pre-generated compensation current.



GLOBSOL APPLICATIONS 7

The problem is formulated as a sequence of parameter identification problems:

Linear Model
We have a set of inputs (experimental f(u, t)) and their associated outputs (ex-

perimental G(t)). Initially, we assume the model F to be described by a linear,
constant coefficient differential equation

x′′ + a1x′ + a2x = a3f(u, t).

Then the optimization problem is
Independents: a1, a2, a3
Objective: Sum over all samples |G(t)− x(t)|2

This is an example of a general parameter identification problem. We also consider
fitting in a uniform or weighted sense.

General Model
We do not expect the linear model to fit sufficiently well, so we will explore

nonlinear parameterized differential equations

x′ = F (x, t, f(u, t), a).

Then the optimization problem is
Independents: a
Objective: Sum over all samples |G(t)− x(t)|2.

Discover the Driving Function
Once we have an appropriate model F , we will proceed to determine an optimal

driving function f(u, t). For example, we may assume f can be expressed as sum
of exponential functions:

f(u, t) =
∑

αi exp(−t/τi),

and use optimization to find the best parameters. The optimization problem is
Independents: ai, τi

Objective: |G(t)− x(t)|2.
In each case of interest, we wish to determine parameters such that the solution

to a differential equation fits a target, so we consider the general dynamical systems
parameter identification problem. Given a set of data (ti, xi), or a target function
G(t), and a differential equation

x′ = f(t, x, a),

determine values for the parameters a such that x(t) best fits:

min |G(t)− x(t)|2.
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Independents:

a parameters in the DE,
cj coefficients of the basis functions bj , and
xi approximate solution at the nodes.

Objective: Sum over all samples |G(t)− x(t)|2
Constraints:

∑

cjb′j(ti) = f(t,
∑

cjbj(ti), a).
We have solved one example of the second order linear ODE parameter identifica-

tion problem with 20 nodes using the interval all-together approach, demonstrating
the promise of the approach. However, we have not yet been able to scale up
our initial success because the differential equation is moderately stiff, the param-
eters have widely different scales, and the system of constraint equations is poorly
conditioned.

The GE Medical Systems application is joint work with Xin Feng, Ruoli Yang,
Yunchuan Zhu, Yonghe Yan, and Robert Corless. Details appear in [7] and at
www.mscs.mu.edu/~globsol/Marquette/apGEMed.html

6. Genome Theraputics (Gene Prediction)

All mammalian genes discovered to date have revealed a pattern to how their in-
formation is transcribed and translated. This pattern of information or structure
of a gene can form a basis of an intelligent search of a similar DNA sequence or
collection of sequences. This premise forms the basis for the identification of a
gene by a process of pattern recognition using multiple genomic features from the
different regions of a gene (Promoter and Structural regions). Over the last fifteen
years, many molecular biologists, mathematicians, and computer scientists have
attempted to develop numerical and non-numerical programming methods to ana-
lyze, understand, and decode the genetic information within DNA. As methods in
molecular genetics expanded, the sequencing of DNA from a variety of species grew
dramatically, the structure and function of genes were discovered, and programs
and methods have evolved to discover the pattern of information in a gene.

Consider a researcher with a DNA sequence of interest. The sequence is submit-
ted to several gene search engines available on the Internet, and each returns an
indication of the genes it recognized and perhaps an indication of its confidence.
Usually, the results from different gene search engines are not in perfect agreement.
The researcher must reconcile the conflicting answers before beginning expensive
laboratory analysis.

Our goal is a meta-engine to

• Accept the researcher’s DNA sequence,

• Submit it to multiple Internet gene search engines,

• Gather the results,

• Reconcile the conflicting results, and
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• Report a “consensus” answer.

The Meta Gene Prediction Engine will use a neural network trained by the GlobSol
global optimization software. The goal is to extract more accurate gene information
on stretches of DNA from existing gene prediction systems.

The objective function for training a general neural network, whether we use an
L2 or an L∞ norm, is nearly flat or even singular. Since we do not know in advance
the architecture of a net with power sufficient for the problem at hand, we often try
a large network. The resulting optimization problem may be over-parameterized.
Conventional techniques search down-hill until they find a local minimum, but
starting at different points often yields wildly different parameter values for the
neural network.

Validated optimization techniques can reliably distinguish local from global min-
ima and can characterize sets of equally good parameter values. However, charac-
terization of sets of solutions is very CPU intensive, so we have only handled very
small neural networks. Work is continuing to improve the performance of Glob-
Sol for sets of solutions. A prototype of the Meta Gene engine is on the web at
ares.ifrc.mcw.edu/MetaGene. This prototype does not use GlobSol, but it does
use optimization techniques.

The Genome Theraputics application is joint work with Zhitao Wang and Peter
Tonellato. Details appear in [24] and at
www.mscs.mu.edu/~globsol/Marquette/apGeneome.html

7. Inexact Greatest Common Divisor

Given two polynomials p(x) and q(x) with inexact floating-point coefficients, how
can we compute their greatest common denominator d(x) (GCD)? The GCD is the
polynomial of highest degree that divides both p(x) and q(x) exactly. The GCD is
unique, up to multiplication by a constant.

If the polynomials are assumed to be known exactly, the GCD can be computed
exactly by the Euclidian algorithm, or a variant, as is done by any current computer
algebra (CA) system. However, if the coefficients are inexactly known (e.g. floating-
point numbers), the polynomials are almost surely relatively prime, and their GCD
is 1. This answer is true, but not helpful. Most CA users want a polynomial of as
high degree as possible that is the GCD of a pair of ‘nearby’ polynomials [4].

If p(x) and q(x) are two (or more) univariate polynomials with inexact floating-
point coefficients, then an ε ≥ 0 GCD of p and q is a polynomial d(x) of highest
possible degree such that d(x) exactly divides p(x) + ∆p(x) and q(x) + ∆q(x) for
some ∆p and ∆q with ||∆p(x)|| ≤ ε and ||∆q(x)|| ≤ ε. We use the 2-norm of the
vector of coefficients of a polynomial.

We have successfully applied GlobSol to several example problems from the lit-
erature, see [3]. For example, let

p(x) := x5 + 5.503x4 + 9.765x3 + 7.647x2 + 2.762x + 0.37725

q(x) := x5 − 2.993x4 − 0.7745x3 + 2.007x2 + 0.7605x
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from [4]. GlobSol found

d(x) ∈ x2 + [1.0069986925, 1.0069986978]x + [0.253494953, 0.253494961]

with ||∆p(x)||2 + ||∆q(x)||2 ≈ 8 × 10−7 in about 160 CPU seconds on a SPARC
10. For this example, giving GlobSol the correct answer as an initial guess made
no difference in execution time.

The inexact greatest common divisor application is joint work with Paulina Chin
and Robert M. Corless. Details appear in [2, 3] and at
www.mscs.mu.edu/~globsol/Marquette/apGCD.html

8. Signal Processing

Parameter estimation plays an important role in many areas of scientific and engi-
neering computation including system identification for the design of control sys-
tems, pattern recognition systems, equalization of communications channels, and
artificial neural networks. In each of these applications, parametric models are used
to either emulate an unknown system, perform a specific task within the system,
or mitigate anomalies caused by uncertainty. Conventional estimation methods are
often used to compute the parameters so that the mean-squared error between the
model output and the desired response is minimized.

Kelnhoffer [17] used interval global optimization techniques very similar to those
used by GlobSol to construct bounded response models. That is, he computed
intervals of parameter values that are consistent with model data. He applied
his technique to problems from system identification, pattern recognition, channel
equalization, and artificial neural networks.

One exciting aspect of Kelnhoffer’s work is his interpretation of the results as
model validation. If the interval optimization technique returns a solution (a set
of parameter values consistent with the data), it has validated the model. Often
more helpful, though disappointing, the technique often returns no solution. In
that case, we have validated that the model is inconsistent with the data. The
model builder must construct a new model. Interval techniques have this unique
property of helping the modeler stop trying to work with the wrong model.

The details of Kelnhoffer’s signal processing application appear in [17].

9. On GlobSol’s Algorithm

Here, a brief review of the principles of interval branch and bound algorithms is
given, as well as an overview of some unique aspects of the GlobSol package. De-
tailed descriptions appear in [15], [16], or from the World Wide Web page
www.mscs.mu.edu/~globsol/User_Guide/13WhatIs/. The GlobSol working note [5]
includes an elementary introduction to the techniques in interval branch and bound
algorithms for global optimization.
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9.1. Branch and Bound

With interval arithmetic to compute rigorous range bounds and automatic differ-
entiation to compute derivatives, the algorithm of GlobSol proceeds by branch and
bound. We maintain three lists of boxes:

L not fully analyzed;
R small boxes validated to enclose a unique local minimum

(in the unconstrained case), or a feasible point with small
objective function value (in the constrained case); and

U small boxes not validated either to enclose a minimum
or not to enclose a minimum.

Find enclosures for f∗ and X∗ such that f∗ = f(X∗) ≤ f(X), for all X ∈ X0 ⊂ Rn:

Initialize L = {X0} // List of pending boxes
f = +∞ // f∗ ≤ f
DO WHILE L is not empty

Get current box X(c) from L
IF f < f(X(c)) THEN

Discard X(c) // We can guarantee that there is no global minimum in X(c)

ELSE
Attempt to improve f

END IF
IF we can otherwise guarantee that there is no global minimum in X(c) THEN

Discard X(c)

ELSE IF we can validate the existence of a unique local minimum in X(c) THEN
Shrink X(c), and add it to R

ELSE IF X(c) is small THEN
Add X(c) to U

ELSE
Split X(c) into sub-boxes, and add them to L

END IF
END DO

The actual GlobSol code is much more sophisticated than the above suggests, but
the concepts are similar. See [15] or [16] for details.

9.2. The Unique Features of GlobSol

Some features of GlobSol that distinguish it from other interval global optimization
packages are briefly outlined here. See [15], [16], or more details at the World Wide
Web page www.mscs.mu.edu/~globsol/User_Guide/13WhatIs/

• The objective function and constraints are specified as Fortran 90 programs.
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• Globsol can be configured to use constraint propagation (substitution/iteration)
on the intermediate quantities in objective and constraint function evaluation.
For some objectives and constraints, this can result in significant speedup.

• GlobSol can be configured to use an overestimation-reducing “peeling” process
for bound-constraints.

• GlobSol uses a novel and effective point method to find approximate feasible
points. When an approximate feasible point is found, GlobSol verifies bounds
within which a true feasible point must exist, from which upper bounds for the
global optima may be obtained.

• GlobSol has a special augmented system mode for least squares problems.

• Globsol uses epsilon-inflation and set-complementation, with carefully controlled
tolerances, to avoid singularity problems, and to facilitate verification.

9.3. An Illustrative Example of GlobSol’s Use

This simple example (illustrative, not real-world) illustrates use of GlobSol. Sup-
pose the optimization problem is

minimize φ(X) = −2x2
1 − x2

2

subject to constraints

x2
1 + x2

2 − 1 ≤ 0

x2
1 − x2 ≤ 0

x2
1 − x2

2 = 0.

The following Fortran 90 program communicates this objective function and con-
straints to GlobSol.

PROGRAM SIMPLE_MIXED_CONSTRAINTS
USE CODELIST_CREATION

PARAMETER (NN=2)
PARAMETER (NSLACK=0)
TYPE(CDLVAR), DIMENSION(NN+NSLACK):: X
TYPE(CDLLHS), DIMENSION(1):: PHI
TYPE(CDLINEQ), DIMENSION(2):: G
TYPE(CDLEQ), DIMENSION(1) :: C

OUTPUT_FILE_NAME=’MIXED.CDL’
CALL INITIALIZE_CODELIST(X)

PHI(1) = -2*X(1)**2 - X(2)**2
G(1) = X(1)**2 + X(2)**2 - 1
G(2) = X(1)**2 - X(2)
C(1) = X(1)**2 - X(2)**2
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CALL FINISH_CODELIST
END PROGRAM SIMPLE_MIXED_CONSTRAINTS

A data file of the following form communicates the bounds [0, 1] × [0, 1] on the
search region to GlobSol.

1D-5 ! General domain tolerance
0 1 ! Bounds on the first variable
0 1 ! Bounds on the second variable
F F ! X(1) has no bound constraints
F F ! X(2) has no bound constraints

Separate configuration files supply algorithm options, such as which interval New-
ton method to use and how to precondition the linear systems.

Running the above program produces an internal representation, or code list. The
optimization code then interprets the code list at run time to produce floating point
and interval evaluations of the objective function, gradient, and Hessian matrix. An
output file of the following form is then produced.

Output from FIND_GLOBAL_MIN on 06/28/1998 at 16:28:09.
Version for the system is: June 15, 1998

Codelist file name is: MIXEDG.CDL
Box data file name is: MIXED.DT1

Initial box:
[ 0.000000000000000000E+00, 0.100000000000000000E+01 ]
[ 0.000000000000000000E+00, 0.100000000000000000E+01 ]

BOUND_CONSTRAINT:
F F F F

---------------------------------------
CONFIGURATION VALUES:

EPS_DOMAIN: 0.1000E-04 MAXITR: 60000
DO_INTERVAL_NEWTON: T QUADRATIC: T FULL_SPACE: F
VERY_GOOD_INITIAL_GUESS:F
USE_SUBSIT:T
OUTPUT UNIT:7 PRINT_LENGTH:1
Default point optimizer was used.

THERE WERE NO BOXES IN COMPLETED_LIST.

LIST OF BOXES CONTAINING VERIFIED FEASIBLE POINTS:

Box no.:1
Box coordinates:
[ 0.707106766730664638E+00, 0.707106795645393915E+00 ]
[ 0.707106766730642544E+00, 0.707106795645415898E+00 ]
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PHI:
[ -0.150000006134372299E+01, -0.149999993866885117E+01 ]
Level: 3
Box contains the following approximate root:
0.707106781188029276E+00 0.707106781188029165E+00

OBJECTIVE ENCLOSURE AT APPROXIMATE ROOT:
[ -0.150000000000628830E+01, -0.150000000000628431E+01 ]
Unknown = T Contains_root =T
U0:
[ 0.385164798606970116E+00, 0.385164815661114435E+00 ]
U:
[ 0.577747199465034389E+00, 0.577747221937741084E+00 ]
[ 0.000000000000000000E+00, 0.100000000000000000E+01 ]
V:

[ 0.192582392641276468E+00, 0.192582414496085957E+00 ]
INEQ_CERT_FEASIBLE:
F T

NIN_POSS_BINDING:1

ALGORITHM COMPLETED WITH LESS THAN THE MAXIMUM NUMBER,
60000 OF BOXES.

Number of bisections: 3
No. dense interval residual evaluations -- gradient code list: 83
Number of orig. system inverse midpoint preconditioner rows: 3
Number of orig. system C-LP preconditioner rows: 109
Number of Gauss--Seidel steps on the dense system: 112
Number of gradient evaluations from a gradient code list: 13
Total number of dense slope matrix evaluations: 55
Number of times the interval Newton method made a coordinate

interval smaller: 60
Number of times a box was rejected because the constraints were

not satisfied: 1
Total time spent doing linear algebra (preconditioners

and solution processes): 0.15018546581268311
Number of times the approximate solver was called: 2
Number Fritz-John matrix evaluations: 19
Number times SUBSIT decreased one or more

coordinate widths: 1
Number times a box was rejected due infeasible

inequality constraints: 2
BEST_ESTIMATE: -0.1500E+01
Total number of boxes processed in loop: 7
Overall CPU time: 0.2277E+00
CPU time in PEEL_BOUNDARY: 0.1365E-03
CPU time in REDUCED_INTERVAL_NEWTON: 0.1458E+00

This report says that GlobSol guarantees there is a minimizer satisfying the con-
straints in the box [0.707106766, 0.707106796] × [0.707106766, 0.707106796]. The
minimum feasible value of the objective is in the interval
[−1.500000062,−1.499999937]. The intervals computed by GlobSol enclose the true
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values X∗ = (1/
√

2, 1/
√

2) and f∗ = −3/2. GlobSol required 83 function, and 13
gradient evaluations, and 0.23 CPU seconds on a Sun SPARC Ultra 140.

10. Conclusions

We have applied validated global optimization techniques to several practical indus-
trial applications. For each application, we have successfully solved at least modest
prototypical problems and have identified modeling and algorithmic advances nec-
essary for success on problems whose size and complexity is of genuine industrial
importance. Work is continuing on several of these applications to improve our
models and to improve and parallelize the algorithms used by GlobSol.
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