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Abstract Linear program (LP) solvers sometimes fail to find a good approxima-
tion to the optimum value, without indicating possible failure. However, it may
be important to know how close the value such solvers return is to an actual op-
timum, or even to obtain mathematically rigorous bounds on the optimum. In a
seminal 2004 paper, Neumaier and Shcherbina, propose a method by which such
rigorous lower bounds can be computed; we now have significant experience with
this method. Here, we review the technique. We point out typographical errors in
two formulas in the original publication, and illustrate their impact.

Separately, implementers and practitioners can also easily make errors. To help
implementers avoid such problems, we cite a technical report where we explain
things to mind and where we present rigorous bounds corresponding to alternative
formulations of the linear program.

1 Introduction

Linear program solvers play an important role throughout scientific computa-
tion, operations research, and commercial computation. Although their quality
has steadily improved, they still may fail or even return non-optimal solutions,
without warning. Additionally, in various contexts, such as in branch-and-bound
or branch-and-cut algorithms for continuous global optimization or mixed integer
linear programs, it is important to have mathematically rigorous lower bounds on
the optimum. In [25], Neumaier et al propose a simple idea to obtain a mathe-
matically rigorous lower bound on the optimum of a linear program (posed as a
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minimization problem), given an approximation to the dual variables. This lower
bound becomes more accurate, the more accurate the dual variables are.

The paper [25] provides valuable observations and developments, enabling
mathematical rigor in constrained global optimization. However, there are minor
errors in a couple of the formulas used to compensate for roundoff error. These
errors are not apparent if the incorrect formulas are implemented, since the up-
per and lower bounds of intervals computed with these erroneous formulas will be
correct to within roundoff error. However, within branch and bound algorithms,
use of the formulas with the errors will lead to incorrect conclusions or contradic-
tions. In fact, we discovered the errors after observing such contradictory behavior
within our Globsol package [20], eliminating alternative sources for the error after
extensive study.

To illustrate the difficulty of finding this error, we observe that [25] has been
extensively cited, in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 22,
23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35], etc., and these works themselves have
significant citations, but the error has not been reported. These numerous refer-
ences both illustrate the importance of the basic ideas in [25] and the ease with
which the errors we have discovered can be overlooked. In all probability, these
papers have merit, despite their possible use of the erroneous formulas, although
readers of these papers may want to double-check purported mathematically rig-
orous conclusions based on use of the formulas in [25] in a branch-and-bound
algorithm.

Here, we review the ideas and arguments in [25], consider pitfalls, report errors,
and cite a technical report containing related formulas that are convenient to use
in the context of various LP software packages.

2 Errors and Their Impact

Formulas for safe lower bounds on the optimum were presented in [25] for two for-
mulations. We first point out errors that appeared in publication in those formulas,
then explain the desirability of utilizing the basic ideas behind these formulas to
present variations.

2.1 The Errors

The first formulation is

Primal:


minimize cT x, c and x ∈ Rn

subject to Aex = be, Ae ∈ Rme×n, be ∈ Rme ,

0 ≤ x.

Dual:

{
maximize bTe y,

subject to AT
e y ≤ c.

(1)

In [25], rigorous upper bounds x ≤ x are assumed (even though such bound
constraints are not assumed to be a part of the problem). It is then assumed that
an arbitrary approximation λ to the optimal value of the dual variables y has been
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computed, and an upper bound r, r ≥ AT
e y − c on the dual infeasibility has been

computed. A line of simple algebra then gives

cT x ≥ yT b−max{r, 0}T x, (2)

where the lower bound in (2) can be computed using either interval arithmetic
or by careful directed rounding1. In any case, without caution, use of the implicit
upper bounds x without including them as bound constraints in the optimization
problem can easily lead to an incorrect conclusion; see Section 2.3 and [16].

The second form in [25] is

Primal:

{
minimize cT x, c and x ∈ Rn

subject to b ≤ Ax ≤ b, A ∈ Rm×n, b, b ∈ Rm.

Dual:


maximize bT y − bT z,

subject to AT (y − z) = c,

y ≥ 0 and z ≥ 0.

(3)

In the formula in [25] for the rigorous lower bound for (3), rigorous two-sided
bounds x ≤ x ≤ x are assumed, even though such bound constraints do not occur
explicitly in the primal. As with the case of the one-sided implicit bounds for (1),
this can lead to an incorrect lower bound, as we show in §2.3.

In [25], there is an inconsistency in whether λ = y − z or λ = z − y. This
manifests itself as two small errors in the lower bound formulas in [25] that, if
implemented as is, would render the lower bounds computed with them incorrect.
First, in the line above [25, Formula (8)], an approximate multiplier λ ≈ z − y is
assumed to be returned by an approximate solver. Interval bounds on the optimal
objective value are then given in [25] as cT x ∈ λT b− rTx, where r = [r, r] consists
of interval bounds on the dual residual ATλ− c, x = [x, x], and b = [b, b]. However,
if the solver returns approximate Lagrange multipliers λb ≈ y and λb ≈ z, the
correct λ in these formulas would be λ ≈ λb − λb, not λb − λb; that is, it should be
λ ≈ y − z, not λ ≈ z − y.

The second error in the computational scheme for the lower bound on the
cT x objective in (3) over the feasible points is in the scheme for computing the
mathematically rigorous lower bound. The computational scheme (11) in [25] is

1 A scheme using directed rounding is given in [25, Equation (5)]. However, it may be simpler
to use interval arithmetic, now more widely available than when [25] appeared.
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given incorrectly in pseudo-code as

Incorrect scheme:



rounddown;

µ = λT+b;

r = ATλ+ c;
roundup;

r = max{−r,ATλ+ c};
µ = λT−b− µ+ rT max{−x, x};
µ = −µ;

Corrected scheme:



rounddown;

µ = λT+b;

r = ATλ− c;
roundup;

r = max{−r,ATλ− c};
µ = λT−b− µ+ rT max{−x, x};
µ = −µ;

(4)

(In (4), λ+ = max{λ, 0} and λ− = max{−λ, 0}.) Note that the errors occured on
lines 3 and 5 of the pseudo-code, where the incorrect ATλ + c should have been
ATλ− c.

In any case, within present computing environments, we recommend using the
interval arithmetic computation of the lower bound µ on cT x directly, namely,

µ = inf(λT b− rTx) (Formula (10) in [25]), (5)

since (5) is both simpler (and hence less error prone) and sharper, and since
high-quality packages for interval arithmetic are now widely available in various
environments.

Confusion over the algebraic signs of z, y, and λ can easily arise due to incon-
sistencies between how approximate dual variables are reported by software. For
instance, if the primal problem is simply to minimize cT x subject to Aex = be,
dual variables λ are sometimes viewed (that is, defined) as solving the equation
AT
e λ = c and in other cases are defined as solving c−AT

e λ = 0.

2.2 Impact

To investigate the impact of the errors we describe in §2.1, we implemented the
calculations in Matlab. We refer to these calculations as the safe bounds algorithm.
One test problem, an unpublished problem written by Anthony Holmes as a simple
example of minimizing risk in a stock portfolio, is given by

minϕ(x) = 10x1 + 3.5x2 + 4x3 + 3.2x4

such that
0 ≤ 100x1 + 50x2 + 80x3 + 40x4 ≤ 200000,
18000 ≤ 12x1 + 4x2 + 4.8x3 + 4x4 ≤ 36000,

0 ≤ 100x1 ≤ 100000,
0 ≤ 50x2 ≤ 100000,
0 ≤ 80x3 ≤ 100000,
0 ≤ 40x4 ≤ 100000.
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Matlab’s linear solver linprog was used, with default settings, to calculate the
dual variables. linprog returned an approximate optimum function value of ϕ(x) ≈
14, 666.67 almost the exact optimal value of 44,000

3 , while the safe bounds algo-
rithm offered a mathematically rigorous lower bound on that optimum of µ ≈
−30, 333.34. Intuition suggested this was a poor bound on such a simple problem.

For the related problem in which we replace 10x1 + 3.5x2 + 4x3 + 3.2x4 by
− (10x1 + 3.5x2 + 4x3 + 3.2x4), linprog gave an approximate optimum of −18, 000,
which is also the exact optimum. The safe bounds algorithm then offered a lower
bound of µ ≈ −3, 022.57, which is not compatible with the exact optimum.

The corrected version of the safe bounds algorithm was then implemented,
and returned lower bounds of µ = 14, 526.39 µ = −18, 962.81 for the original
and negative versions, respectively. These bounds agree with the exact optima
described above.

Next, we quantify the difference between the correct and incorrect schemes.
Begin with two observations: First, writing λ ≈ z − y instead of λ ≈ y − z means
the incorrect scheme actually uses −λ. Any appearance of λ, λ+, or λ− can be
replaced with −λ, λ−, and λ+, respectively.

Second,

max
{
− (AT (−λ) + c), AT (−λ) + c

}
= max

{
−
[
− (AT (λ)− c),−(AT (λ)− c))

]}
= max

{
(AT (λ)− c),−(AT (λ)− c)

}
Thus, if ui and uc represent the bound returned by the incorrect and correct
schemes, respectively, then the difference between the two, without accounting for
rounding error, is given by

|µi − µc| =
∣∣[− (λT+b− λT−b+ max{−(AT (−λ) + c), (AT (−λ) + c)}

]
−[

− (λT−b− λT+b+ max{−(AT ( λ)− c), (AT ( λ)− c)}
] ∣∣

= | − (λT+b− λT−b− λT−b+ λT+b)|

= | − (λT+ − λT−)(b+ b)|

= | − λT (b+ b)|

Calculating this term for the two problems above gives approximately 44,859.72
and 15,940.25, which agrees with the observed differences between the correct and
incorrect schemes.

2.3 Pitfalls

Linear programs can in principle be formulated in various equivalent ways; we re-
viewed the two such ways given in [25] in Section 2.1 of this note. However, depend-
ing on the actual problem being solved, certain formulations can be misleading, or
are more prone to errors when implemented. That is, although particular formu-
lations are general and mathematically correct, naive or inattentive practitioners
may incorrectly interpret the results of the computation or incorrectly reformulate
the problem. To make it easier for such practitioners, we expand on the seminal
work in [25] in a technical report [16], where we point out certain pitfalls and use
the ideas in [25] to give analogues to (5) for various reformulations.
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3 Summary

We have pointed out small, correctable, but hard-to-recognize errors in the formu-
las in [25]. These errors can have consequences in branch and bound algorithms
meant to provide mathematically rigorous bounds, and can result in puzzling but
difficult-to-pinpoint behavior in such algorithms.

We have also mentioned a separate issue, difficulties of implementing and us-
ing particular reformulations of linear programs for particular problems, when
the goal is obtaining mathematically rigorous bounds on solutions. To mitigate
these difficulties, we have cited our technical report [16], where we discuss pitfalls
and present formulas for mathematically rigorous bounds when using alternative
formulations.
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