
Test Results for an Interval Branch and Bound
Algorithm for Equality-Constrained
Optimization*

R. BAKER KEARFOTT rbk@usl.edu
Department of Mathematics
University of Southwestern Louisiana
U.S.L. Box 4-1010, Lafayette, Louisiana 70504-1010

Editor:

Abstract. Various techniques have been proposed for incorporating constraints in interval branch
and bound algorithms for global optimization. However, few reports of practical experience with
these techniques have appeared to date. Such experimental results appear here. The underly-
ing implementation includes use of an approximate optimizer combined with a careful tesselation
process and rigorous verification of feasibility. The experiments include comparison of methods
of handling bound constraints and comparison of two methods for normalizing Lagrange mul-
tipliers. Selected test problems from the Floudas / Pardalos monograph are used, as well as
selected unconstrained test problems appearing in reports of interval branch and bound methods
for unconstrained global optimization.

Keywords: constrained global optimization, verified computations, interval computations,
bound constraints, experimental results

1. Introduction

We consider the constrained global optimization problem

minimize φ(X)
subject to ci(X) = 0, i = 1, . . . , m (1)

aij ≤ xij ≤ bij , j = 1, . . . , q,

where X = (x1, . . . , xn)T , and where one of each pair aij and bij may be infinite. A
general constrained optimization problem, including inequality constraints g(X) ≤
0 is put into this form by introducing slack variables s, replacing by s + g(X) = 0,
and appending the bound constraint 0 ≤ s < ∞. Here, solving problem 1 will mean
finding all minimizers and verifying bounds on the local minimum.

In contrast to the actual bound constraints in problem 1, we also have a search
region

X0 =
[

[x1,0, x1,0], . . . [xn,0, xn,0]
]

.

* This work was supported in part by National Science Foundation grant CCR-9203730.

Below, coordinate bounds xi,0 or xi,0 of the overall search region corresponding
to finite bound constraints ai or bi equal the bound constraint; however, bound
constraints and limits of the search region are not to be confused.

The search region is also termed an “interval vector” or a “box.”
Interval branch and bound methods for global optimization began with work of

R. L. Moore and E. R. Hansen in the 1960’s. Results such as [28] have shown the
promise of such algorithms. The monographs [24] and [8] give complete introduc-
tions and numerous suggestions for techniques to incorporate. Recently, a number
of researchers have developed computer codes. These codes are reviewed in [19].

Various suggestions for handling both inequality and equality constraints, as well
as citations to the original literature such as [9], appear in [24] and [8]. However,
except for perhaps [29], few reports of experiences with interval branch and bound
methods for constrained optimization have appeared.

In [19], the main constraint-handling techniques of [24] and [8], etc., as well as cer-
tain relevant techniques in common with unconstrained optimization codes, were
put into perspective, and several new techniques were proposed. Salient among
these was transformation of inequality constraints into a combination of equality
constraints and bound constraints, as in [3], combined with a process of handling
bound constraints with reduced gradients and the “peeling” process that first ap-
peared in [17].

It has recently become apparent that branch and bound methods for nonlinear
equations and for nonlinear optimization benefit from use of a floating-point code to
obtain approximate optimizers. This has been explored for nonlinear equations, first
in the context of handling singular roots in [13], then more generally and thoroughly
in [18]. There, a tesselation process was given for explicitly verifying uniqueness
and removing regions around roots that had been quickly found by a local, floating
point algorithm. The analogous technique for unconstrained optimization, using a
floating-point local optimizer, has perhaps been most studied by Caprani, Godthaab
and Madsen [1], although it was also employed in [11] and for bound-constrained
optimization in [17]; see [19].

An important use of a local approximate optimum in an interval branch and bound
code is to obtain a rigorous upper bound on global minima. In particular, if X̃ is an
approximate optimum to the unconstrained problem: minimize φ(X), and [φ, φ] is
obtained from evaluating φ(X̃) using outwardly rounded interval arithmetic, then
φ is a rigorous upper bound on the global minimum; φ can be used to eliminate
subregions (usually sub-boxes, i.e. interval vectors) of X0 from further search.

Computation of a rigorous upper bound is less straightforward for equality-
constrained problems, since an interval evaluation of φ at X̃ can be used only
provided it has been rigorously verified that X̃ is feasible. This was noted in [8],
§12.3–12.5. In [20], techniques of [8] and other proposed techniques for verifying
feasibility were examined computationally on a number of test problems. Also in
[20], it was observed that, typically, the number of coordinates not corresponding
to active bound constraints was less than the number of equality constraints; since
verification that a point satisfies all equality constraints (with an interval Newton

method) requires a square system of equations (over a region with non-empty inte-
rior), verification cannot proceed directly. In [20], several perturbation techniques
to address this difficulty were proposed and tested, leading to a workable algorithm
for obtaining rigorous upper bounds φ.

Interval Newton methods are important in branch and bound algorithms for con-
strained optimization. An interval Newton method is an operator N(X̂, F), oper-
ating on a box X̂ ∈ Rp, for some p, and a function F : Rp → Rp defined over X̂,
such that N(X̂, F) is an interval vector containing the solution set to

A(X − X̌) = −F (X̌) (2)

for some1 X̌ ∈ X̂, and where A is either a Lipschitz matrix [23], p. 174 or a slope
matrix [23], p. 202. (The set of Lipschitz matrices is contained in the set of slope
matrices.) For example, an interval extension to the Jacobi matrix is a Lipschitz
matrix, while the preconditioned interval Gauss–Seidel method, interval Gaussian
elimination, or the Krawczyk method can bound the solution set to Equation (2).
Interval Newton methods have the following properties:

• All roots of F in X̂ are also in N(X̂, F).

• If X̂ ∩N(X̂, F) = ∅, then there are no solutions of F (X) = 0 in X̂.

• Depending on how A is computed, how the solution set to Equation (2) is
bounded, and subject to certain non-singularity conditions and an initial X̂
with sufficiently small widths, iteration of X̂ ← N(X̂, F) results in quadratic
convergence of the widths of the coordinate intervals of X̂ to zero.

• Depending on whether A Lipschitz matrix or just a slope matrix2, N(X̂, F)
is contained in the interior of X̂, we may conclude either (1) F (X) = 0 has a
unique solution within X̂, or (2) F (X) = 0 has at least one solution within X̂.

Proofs of these facts are known, and appear in specific form e.g. in [23].
For example, an interval Newton method is used in [20] to verify that there is at least
one feasible point X̂ ∈ X̂. In [9], interval Newton methods applied to the Fritz–
John equations are discussed; the Fritz–John equations can be used in iterations
X̂ ← N(X̂, F) to reduce the size of subregions of X0 without bisection or other
tesselation. See [19] for a perspective on interval Newton methods in constrained
optimization, and see [24] or [8] for introductions.

We have developed a constrained global optimization code employing the feasi-
bility verification process described in [20], the boundary tesselation process of [17]
and [19] and other techniques of [19], [8] and [24], and using the Fortran 90 proto-
typing environment described in [22]. The purpose of this paper is to present test
results for this code. Various alternatives are compared, and the code is compared
to similar codes for unconstrained or bound-constrained optimization. The overall
algorithm appears in §3, while alternative techniques and issues appear in §4. Our
test set appears in §5.1, and the actual results appear in §6.

It is noted here that exact feasibility of equality constraints is verified with the
projection and perturbation process explained in [20]. An alternative is to verify
that the equality constraints are approximately satisfied, thus solving a perturbed
problem. Such a procedure is advocated in [29] and by Ratschek and Rokne in
[10], pp. 803–804. The approach in [20], and underlying the computations in this
paper, is similar to that on [10], pp. 805–806 and [8], §12.3–§12.4: boxes are found
within which it can be verified that there exists at least one feasible point. The
existence and uniqueness verification process is explained in [20]; an overall branch
and bound algorithm is studied in this paper.

2. Notation and Background

Throughout, boldface will be used to denote intervals, lower case to denote scalar
quantities, and upper case to denote vectors and matrices. Underscores will denote
lower bounds of intervals and overscores will denote upper bounds of intervals. For
components of vectors, corresponding lower case letters will be used. For example,
we may have:

X = [x1,x2, . . . ,xn]T ,

where xi = [xi, xi].
Calligraphic symbols such as L, U and C will denote lists of boxes.
The notation x̌ will denote a representative point3 of the interval x, while X̌ will

denote a corresponding representative vector in the interval vector or “box” X. The
The magnitude of an interval is defined as |x| = max {|x|, |x|}.

The width of an interval x will be denoted by w(x) = x− x.
The interval hull of two interval vectors X and X̃, that is, the smallest interval

vector that contains both X and X̃, will be denoted by X∪X̃. If L is a list of boxes
and X is a box, then L \X will denote a list the union of whose elements is the
complement of X in the union of elements of L. Algorithms 7 and 8, and Figure 2
in [18] describe how to create L \X.

The symbols φ(X) = [φ(X), φ(X)] will denote an interval extension of φ over X.
Consistent with the above, C(X) = (c1(X), . . . cm(X))T = 0, C : Rn → Rm, will
denote the set of equality constraints, C(X) will denote the set of interval residuals
of the equality constraints over X, and ∇C will denote a componentwise interval
extension of the Jacobi matrix of the constraints C.

Brackets [·] will be used to delimit intervals, matrices and vectors. Occasionally,
parentheses (·) will denote points in Rp.

This paper contains minimal background, since the reader may consult the recent
review [19], containing many of the underlying ideas, or [10], pp. 751–829. The
somewhat earlier books [8] and [24] contain thorough introduction and explanation
of interval branch and bound algorithms in global optimization.

3. The Overall Algorithm

The code follows this general pattern.

Algorithm 1 (Overall branch and bound pattern)

INPUT: (1) the initial box X0, (2) an internal symbolic representation for φ, (3) a
domain tolerance εd, and (4) the maximum number of boxes to be processed M

OUTPUT: (1) list C of boxes containing approximate optimizers, each of which
has been verified to contain at least one feasible point and a list U of boxes with
approximate optimizers and approximate feasible points, for which feasibility has
not been verified, such that all global optima are contained in the union of the
boxes in C and U and such that the largest relative coordinate width in any box
in C or U is εd; (2) a rigorous upper bound φ on the global optimum, as well as a
rigorous lower bound φ

1. Attempt to compute an approximate optimum using a floating-point optimizer.

IF an approximate optimum X̂ could be computed and a box X̂ could be
constructed around it in which a feasible point is proven to exist, THEN

(A) φ ← φ(X̂)
(B) Construct a box Xa about X̂ according to Algorithm 2.
(C) Insert Xa in U .

END IF

2. (“peeling” the boundary; this step varies according to configuration, as ex-
plained in §4)

IF the algorithm works with reduced gradients and subspaces

THEN

Generate boundary boxes X̂ of X0 corresponding to bound constraints, plac-
ing those for which φ(X̂) < φ in the list L in order of increasing φ(X̂); also
place X0, representing the interior, in L.

ELSE

Place X0 into L.

END IF

3. IF φ was found in step 1 or step 2 THEN form the set-complement of Xa in L.

4. Overall loop DO for NBOX = 1 to M

(A) Remove the first box from L and place it in X.

(B) (Check scaled diameter) IF max1≤i≤n w(xi)/ max{|xi|, 1} ≤ εd THEN

i. Execute Algorithm 3.
ii. CYCLE Overall loop

(C) Perform an interval Newton method to eliminate X or reduce its size.

(D) IF step 4C proved that there could be no optimum in X THEN CYCLE
Overall loop.

(E) (Check scaled diameter) IF max1≤i≤n w(xi)/max{|xi|, 1} ≤ εd THEN

i. Execute Algorithm 3.
ii. CYCLE Overall loop

(F) (Bisection)

i. Compute i = arg max1≤j≤n | ∂φ
∂xj

(X)|w(xj).

ii. Form two new boxes X(1) and X(2) from X by setting

x(1)
i ← (xi + xi)/2

x(1)
i ← xi

x(2)
i ← xi

x(2)
i ← (xi + xi)/2,

and x(1)
j = xj, x(2)

j = xj for 1 ≤ j ≤ n, j 6= i.

iii. Place the two new boxes in L in order of increasing φ, provided φ ≤ φ.

END DO Overall loop

The approximate optimizer in step 1 and elsewhere is the routine DAUGLG from
the Lancelot package [2].

Step 2 of Algorithm 1 is explained in detail as Algorithm 4 of [19]. For example,
suppose X0 = [[−1, 1], [−1, 1]] and x1 = −1 and x2 = 1 were bound constraints.
Then, upon exit from step 2, L will contain the boxes X̂1 = [[−1, 1], [−1, 1]], X̂2 =
[[−1,−1], [−1, 1]], X̂3 = [[−1, 1], [1, 1]] and X̂4 = [[−1,−1], [1, 1]], not necessarily
in that order, assuming that none of the boxes was eliminated due to φ(X̂i) > φ.
During step 2, an attempt is made to compute a value of φ, provided it has not
already been obtained in step 1.

The complementation process in step 3 is Algorithm 8 of [18].
The interval Newton method in step 4C consists of interval Gaussian elimination,

interval Gauss–Seidel iteration, or a combination, as explained in §4. Also, as in
§4, the system of equations could be in the whole space or in a subspace, and could
vary according to a certain normalization equation. Finally, checks for feasibility
and checks on the function value are made by computing interval values C(X) and
φ(X) during iteration of the actual interval Newton method.

The bisection variable selection in step 4(F) i is the maximal smear introduced
for nonlinear systems4 in [15], and also recommended as Rule C in [4] and in [25].
Essentially, the direction i is, approximately, the direction over which there is the

most change in the function φ over the box X. Results of careful experiments in
[4] indicate that this direction usually, but not always, results in a smaller number
of total boxes, in a simplified branch and bound algorithm that does not involve
interval Newton methods. The technique in step 4(F) i is used exclusively in the
experiments in §6 below. However, alternate techniques may result in success in
some situations where failure was reported here.

Algorithm 2 (Construct a well-sized box about approximate optima.)

INPUT: An approximate optimum Xa, an expansion factor F, and the domain
tolerance εd
OUTPUT: A box Xa containing Xa

DO for i = 1 to n

1. σ ← Fmax {|Xa,i|, 1}
√εd

2. xa,i ← [Xa,i − σ,Xa,i + σ] ∩ x0,i

END DO

In the experiments reported in §6, F = 10. This factor makes it likely that Xa

contains appropriate portions of the boundary of X0 when Xa corresponds to a
solution, with active bound constraints, that has been perturbed off the bounds
with techniques in [20]. The factor √εd assures that Algorithm 1 does not generate
and store large clusters of boxes centered at minimizers: Boxes X with largest
relative side width εd are easily rejected by φ(X) > φ when they lie at least √εd
away from the point at which φ is attained.

Algorithm 3, called in steps 4(B) i and 4(E) i of Algorithm 1, involves construct-
ing sufficiently large boxes around tiny regions (approximate optimizers) that could
not be eliminated in step 4 of Algorithm 1. Once constructed, such small boxes are
removed from the search region by taking the set complement of the box in each of
the lists U , C and L, identifying each list U , C and L with the union of the boxes
in it. Such complementation operations appear in steps 4(C) ii, 4(C) iv, 4(C) iA,
4(C) iC, 4(C) i, 4(C) iii, and 4(C) v. The actual process can be done relatively
efficiently, and is described in detail in Algorithm 7, Algorithm 8 and Figure 2 of
[18]; also see §2 here for an explanation of the notation L ← L \Xa.

Algorithm 3 (Handle small boxes with approximate optimizers)

INPUT: (from Algorithm 1): the small, approximately-optimizing box X, φ (if
previously computed), U , C and L

OUTPUT: possibly altered U , C and L and φ

1. Set Xa to the center of X.

2. Apply Algorithm 2 to Xa to obtain Xa.

3. Starting with Xa as an initial guess, attempt to compute an approximate opti-
mum.

4. IF an approximate optimum (within Xa or not) could be found in step 3, and
feasibility verified within Xf , THEN

(A) φ ← min{φ, φ(Xf)}.
(B) Remove boxes X for which φ(X) > φ from U , C and L.

(C) IF Xf ∩Xa 6= ∅ THEN (Insert the interval hull of Xa and Xf .)

i. Xa ← Xa∪Xf .

ii. U ← U \Xa.

iii. Insert Xa into U .

iv. L ← L \Xa and C ← C \Xa.

ELSE (Insert both Xa and Xf .)

i. IF φ(Xa) ≤ φ THEN

A. C ← C \Xa.

B. Insert Xa into C.
C. L ← L \Xa and U ← U \Xa.

ELSE

L ← L \Xa, U ← U \Xa, and C ←
completedlist \Xa.

END IF

ii. Apply Algorithm 2 to the midpoint of Xf to obtain a new Xa

iii. U ← U \Xa.

iv. Insert Xa into U .

v. L ← L \Xa and C ← C \Xa.

END IF

ELSE (an approximate optimum could not be found at all)

(A) C ← C \Xa.

(B) Insert Xa into C.
(C) L ← L \Xa and U ← U \Xa.

END IF

The details of Algorithm 3 are important to the efficiency of the overall code.
Fortran 90 source corresponding to the experiments in this paper is available from
the author.

4. Issues

There is significant documented computational experience in interval branch and
bound techniques for unconstrained optimization. Thus, many of the remaining
questions deal with how constraints are handled. In [9] (and reviewed in [8]),
Hansen and Walster presented a general Fritz–John system for interval Newton
iteration when there are both equality and inequality constraints. The system is of
the form F = 0, where

F (W) =





























u0∇φ(X) +
∑m

i=1 vi∇ci(X)
c1(X)

...
cm(X)
u1g1(x)

...
uqgq(x)
N(U, V)





























= 0, (3)

The variables are X = (x1, . . . , xn), V = (v1, . . . , vm), and U = (u0, u1, . . . , uq), for
a total of n+m+q+1 variables, written W = (X, U, V). The vi represent Lagrange
multipliers for the equality constraints ci = 0, while the ui represent Lagrange
multipliers for the objective function (u0) and for the q inequality constraints. The
last equation N(U, V) = 0 is a normalization condition.

Bound constraints can be included as inequality constraints; e.g. xi ≤ b can be
written as g(X) = b − xi ≤ 0, or xi ≥ a can be written as a − xi ≤ 0. However,
this increases the size of the system 3. Because of this, we have advocated in [19]
and [20] not including any inequality constraints in Equation (3), but converting
all inequality constraints to bound constraints with slack variables, then applying
Equation (3) in subspaces, using reduced gradients corresponding to active con-
straints. As mentioned in [20], this method not only reduces the dimension, but
also avoids singularities: The system 3, with bound constraints included, is singu-
lar, in theory and practice, at points where moderate numbers of bound constraints
are active.

On the other hand, the algorithm variant that works in the reduced space involves
executing step 2 of Algorithm 1. As explained in [19], §2.3, it is possible that 3p

boxes are stored, where p is the number of bound constraints5. Furthermore, even
though the version of Equation (3) can be expected to have singular Jacobi matrix
at solutions, use of preconditioners of the forms in [14] and [16] allows the interval
Gauss–Seidel method to reduce the widths of some of the coordinates of boxes X
even if the Jacobi matrix of F has singularities in X.

We have tested the following variants of Algorithm 1:

Variant LF in which a large version of the Fritz–John equations is used (including
bound constraints, but in which inequality constraints are rewritten in terms of
bound constraints), and the boundaries are not “peeled.”

Variant SF in which bound constraints are not included in the Fritz–John equa-
tions, but boxes corresponding to active bound constraints are generated in
step 2 of Algorithm 1.

In addition to how the bound constraints are included, the form of the normal-
ization equation N(U, V) = 0 is at issue. Hansen and Walster [9] suggest a linear
interval condition

N1(U, V) =

{ q
∑

i=0

ui +
m

∑

i=1

vi[1, 1 + ε]

}

− 1 = 0, (4)

where ε is on the order of the computational precision, or a quadratic condition

N2(U, V) =

{ q
∑

i=0

ui +
m

∑

i=1

v2
i

}

− 1 = 0. (5)

If N1 is used, then initial bounds on U and V are not needed, but can, in principle,
be computed with preconditioned interval Gaussian elimination. In practice, we
have found this option of very limited use in conjunction with Variant LF, since the
interval Jacobi matrix is then often singular. If variant N2 is used, then ui ∈ [0, 1],
0 ≤ i ≤ q and vj ∈ [−1, 1], 1 ≤ j ≤ m, but interval values of ui and vj must
explicitly enter into the entries of the derivative matrix for the system 3.

Thus, we have tested four possible algorithms: choosing Variant LF or Variant
SF and choosing normalization N1 or normalization N2. In the corresponding
interval Newton methods, various combinations of preconditioners are used, and
interval Gaussian elimination is followed by interval Gauss–Seidel iteration for N1.
At various points, interval slope matrices computed with the technique of [27],
combined with Hansen’s technique of [7] and [8], §6.4 (combined as explained in
[19], §3.3). We do not take advantage of splittings as in [26]. For brevity, we do
not present all details of these interval Newton methods, but the Fortran 90 source
code is available from the author.

A final set of issues impacts both constrained and unconstrained optimization.
These issues deal with the size of the box constructed by Algorithm 2, when com-
putation of an approximate optimizer is attempted, or when Algorithm 2 is applied
in Algorithm 1 and Algorithm 3. Such issues surface in the works [1], [11], [13], [17]
and possibly elsewhere. Our experience indicates that these details are crucial for
the practicality of interval branch and bound for some problems. We believe the
expansion size in Algorithm 2 to be good from the point of view of computational ef-
fort. Note, however, that we expand each approximate-optimum-containing box by
the same amount, without attempting to determine a box size in which uniqueness
of critical points can be verified. See the discussion in [18].

5. The Test Problems and Testing Environment

5.1. The Test Problems

We have chosen the standard problems from [5], as well as more challenging prob-
lems from [6], and salient problems used to test other recent interval branch and
bound codes for global optimization. We have included unconstrained problems
among these, for comparison of our general techniques (including those in Algo-
rithm 2 and Algorithm 3) with other current optimization codes. Our test set is
taken from the following four sources.

• The three problems from [5], pp. 12–14 with parameter values as in [12].

• The selected constrained optimization problems from [6] that appear in the
feasibility verification study [20].

• The constrained optimization problems used to test the methods in [29].

• A selection of the unconstrained optimization problems from [12].

• An unconstrained test problem from [4]. (See Formula 6 and Table 1 below.)

We identify the test problems from [5] as follows.

shekel is the Shekel function with n = 4 and five data points6, also Example 36
in [12]. We interpret the search region limits as bound constraints, so m = 0
and there are eight bound constraints.

hartmn is the Hartman function7 with n = 3 and four data points, also Example
37 in [12]. Interpreting the search region limits as bound constraints, there are
six bound constraints.

branin is Branin’s function (RCOS), also Example 34 in [12]. We interpret the
search region limits as bound constraints, so n = 2, m = 0, and there are four
bound constraints.

The test problems from [6] were chosen to give a variety of realistic problems.
Since they are described in [6] and [20], we do not present them here. We identify
them with the same labels as in [20]: fpnlp3, fpqp3, fpnlp6, fppb1, and fphe1.
Similarly, the problems from [29] appear in [20], and are labeled gould, bracken,
and wolfe3.

The remaining test problems from [12] are as follows.

levya is Example 9 from [12], Levy No. 11. In it, n = 8, m = 0, and we interpret
the constraints in [12] as bound constraints, for a total of 16 bound constraints.

levyb is Example 15 from [12], Levy No. 18. In it, n = 7, m = 0 and there are 14
bound constraints.

Table 1. The f ’s for problem csendes

i 1 2 3 4 5 6
f∗,1 5.0 3.0 2.0 1.5 1.2 1.1
f∗,2 −5.0 −2.0 −1.0 −0.5 −0.2 −0.1

schwfa is Example 16 from [12], Schwefel No. 1.2. In it, n = 4, m = 0 and there
are 8 bound constraints.

kowlk is Example 22 from [12], the Kowalik Problem. In it, n = 4, m = 0 and
there are 8 bound constraints.

griew is Example 31 from [12], the Griewank Function. In it, n = 2, m = 0 and
there are 4 bound constraints.

The problem from [4], labeled csendes, is a pulmonary impedance model. Ver-
ification of the global optimum was first obtained with the codes described in [4].
The function is:

φ(X) =
6

∑

i=1

{

[

fi,1 −
(

x1 +
x2

ω3
i

)]2

+
[

fi,2 −
(

ωix4 −
x5

ω3
i

)]2
}

, (6)

where ωi = πi/20, 1 ≤ i ≤ 6 and the f ’s are as in table 1. The initial box (as in
[4]) is

(

[0, 2], [0, 1], [1.1, 3.0], [0, 1], [0, 1]
)

, and we interpret none of the bounds to be
bound constraints. The single optimum is at approximately

(0.6063, 0.5568, 1.132, 0.7502, 0.6219).

If there are questions about details, the Fortran 90 source and data files are
available from the author.

5.2. The Implementation Environment

The experiments were run on a Sparc 20 model 51 with a floating point accelerator,
as with the experiments in [18]. The code was implemented in the system described
in [22], with interval arithmetic of [21], modified to do true directed roundings on
the particular hardware used. All times are given in terms of Standard Time Units
(STU’s), defined in [5], pp. 12–14. On the system used, an STU is approximately
0.056 CPU seconds. Also, there is an overhead factor of approximately 8 in floating
point computations when functions are evaluated interpretively using the internal
representation of [22], rather than being programmed as subroutines; the interval
arithmetic using the internal representation is a factor of 17.6 times slower than
floating point arithmetic programmed as subroutines; see [18]. There is an addi-
tional time penalty due to the fact that a list of all intermediate variables, including
those for φ, ∇φ, C and ∇C is evaluated each time one of these quantities is needed,
and not all quantities are needed at each point.

To concentrate on the issues at hand (global search and verification), we did not
attempt to tune the approximate optimizer (Lancelot). However, to reduce the
amount of work on the initial call to this optimizer, we provided the option of
inputting a good initial guess. Initial guesses were used whenever it would reduce
the amount of time spent in the initial call to the approximate optimizer. This did
not affect the number of boxes processed or the execution times excluding the time
for the approximate optimizer.

In all cases, the domain tolerance εd was set to 10−6.

6. Experimental Results

Preliminary experiments seemed to indicate that the fastest overall method was
variant SF of §4 combined with the quadratic normalization. However, when we at-
tempted to run the entire problem set with that scheme, we experienced difficulties
with fpqp3, fphe1, and fppb1. The problem fpqp3, a quadratic programming prob-
lem with many bound constraints, generated too large a list L to fit into electronic
memory (32 megabytes), while problems fppb1 and fphe1 had boxes remaining in
L after M = 20000 boxes had been processed. For this reason, we temporarily
excluded these problems from the test set, but ran them separately to determine if
the linear normalization or variant LF could solve them.

It immediately became apparent that, for most problems, variant SF was far more
efficient. Most CPU time for variant LF seemed to be spent in the LP solver8,
and there were many failures to compute preconditioners. This is consistent with
multiple singularities in the Fritz–John matrix. It may be possible to make our LP
solver more robust9; however, we were unable at present to run the entire test set
for variant LF.

Problem wolfe3 could not complete after considering 20000 boxes, with variant SF
and linear normalization, so it is not included in the totals at the bottom. Results
for the test problems, excluding fpqp3, fphe1 fppb1, and wolfe3, for variant SF and
both quadratic and linear normalizations, appear in table 2. The columns of this
table are as follows.

NBOX is the total number of boxes processed (in the loop of step 4 of Algo-
rithm 1).

NBIS is the total number of bisections (in step 4F of Algorithm 1).

Ttot is the total execution time, in STU’s, excluding the initial call to the approx-
imate optimizer, for the algorithm.

TiN is the total execution time spent in the interval Newton routine (including
function, gradient and matrix evaluations, step 4C of Algorithm 1).

Tpeel is the total execution time spent in the boundary separation process of [19],
§2.3 (step 2 of Algorithm 1).

Table 2. Results for the algorithm with the “peeling” process

Prob. normalization NBOX NBIS Ttot TiN Tpeel NV NNV

shekel quadratic 77 34 49.9 42.5 0.5 1 0
shekel linear 77 34 47.9 41.5 0.4 1 0

hartmn quadratic 100 46 60.5 51.2 0.7 1 0
hartmn linear 100 46 59.4 50.1 0.5 1 0

branin quadratic 15 8 3.8 2.9 0.2 3 0
branin linear 15 8 4.1 3.4 0.2 3 0

fpnlp3 quadratic 63 1 151.9 140.6 5.7 1 0
fpnlp3 linear 7903 3921 13251.0 11862.0 5.9 1 0

fpnlp6 quadratic 1043 510 479.0 454.2 0.4 1 0
fpnlp6 linear 4849 2413 3181.1 3065.1 0.2 1 0

gould quadratic 19 1 6.3 5.6 0.4 1 0
gould linear 8753 4368 1411.5 1247.2 0.2 1 0

brackn quadratic 4 0 0.9 0.7 0.0 1 0
brackn linear 106 51 35.2 33.6 0.0 1 0

levya quadratic 1 0 3.1 0.0 1.6 1 0
levya linear 1 0 3.2 0.0 1.6 1 0

levyb quadratic 1 0 2.5 0.0 1.3 1 0
levyb linear 1 0 2.3 0.0 1.1 1 0

schwfa quadratic 14 0 2.0 1.4 0.2 1 0
schwfa linear 14 0 1.8 1.4 0.2 1 0

kowlk quadratic 7856 3920 24067.8 18798.9 1.1 1 0
kowlk linear 7856 3920 21981.3 17752.1 0.9 1 0

griew quadratic 1 0 0.4 0.0 0.2 1 0
griew linear 1 0 0.2 0.0 0.2 1 0

csendes quadratic 137 63 390.7 351.7 1.1 1 0
csendes linear 137 63 392.8 355.5 0.9 1 0

wolfe3 quadratic 13 7 44.5 11.7 31.8 1 0

Total: 9331 4583 25218.6 19849.7 13.3
29813 14824 40371.9 34411.8 12.2

Ratio: 0.31 0.31 0.62 0.58 1.09

Table 3. Comparisons with an algorithm by Jansson and Knüppel

Problem J/K Here J/K Here STU rat. NFJ rat.

STU STU NFJ NFJ
shekel 2.00 49.91 7 41 0.04 0.17

hartmn 6.90 60.50 12 94 0.11 0.13
branin 2.30 3.77 18 25 0.61 0.72
levya 3.20 3.05 5 0 1.05 ∞
levyb 5.90 2.51 11 0 2.35 ∞

schwfa 317.20 1.97 9 13 160.62 0.69
griew 2.40 0.36 18 0 6.68 ∞

Totals: 339.9 122.08 80 173 2.78 0.46

NV is the final number of boxes at which feasibility was verified, in the list U .

NNV is the final number of boxes for which feasibility could not be verified, in
the list C.

It is immediately apparent from the table that the algorithm is very effective at
isolating global minima within a single box and verifying that a feasible point exists
in the box. We attribute that to the tolerance used in the local optimizer (O(εd)2))
and the size of the constructed box in Algorithm 2 (O(εd).5).

It is also clear that the quadratic normalization is superior to the linear normal-
ization, with this implementation. One would expect this to be especially so for
variant LF, since the interval Fritz-John matrix cannot be expected to be regular,
and interval Gaussian elimination, used to obtain initial estimates for the Lagrange
multipliers, is then problematical.

The results for csendes compare very favorably with those of [4]. We believe this
to be due to our use of an approximate optimizer, combined with Algorithm 2 and
our choice of tolerances. Also, failure to complete kowlk is reported in [12], whereas
our algorithm completes. This may be due to our allowing more execution time.

Comparisons for the other problems in [12] appear in table 3. There, NFJ repre-
sents the number of evaluations of the Fritz–John matrix (equal to a slope evalu-
ation, with Hansen’s modification, for the Hessian matrix for these unconstrained
problems). This evaluation is the most expensive part of our code, since there are
still various inefficiencies in our evaluation of slopes. The column labeled “STU
rat.” gives the ratio of standard time units for the results in [12] to the results here.
The column “NFJ rat.” gives a similar ratio for the number of second derivative
matrix evaluations. Table 3 does not unequivocally favor one algorithm over the
other. We attribute many of the lower STU values for the code from [12] partially
to their very efficient implementation, relative to ours, and partially to algorithm
differences. We attribute cases where our algorithm does better to the relation
among our tolerances and to the box size in Algorithm 2, and possibly other items.

Table 4. The four algorithm variants on the Shekel function (shekel)

Algorithm Ttot TIN Tla NBOX Ncl Npre Nfail Nsm Nrej
SF, quad. 49.9 42.5 0.9 77 8 164 0 8 0
SF, linear 47.9 41.5 0.0 77 8 165 0 0 0
LF, quad. 28157.1 28135.4 24316.8 233 8 50347 45659 7333 0
LF, linear 807.5 787.2 676.1 233 8 1420 194 0 0

Due to lengthy execution times, we were not able to complete runs for variant LF
for the entire test set. However, table 4 gives results for shekel for all four possible
algorithms. In this table, Ttot, TIN, and NBOX are as in Table 2, while:

Tla is the total amount of time doing linear algebra, including computation of
preconditioners for interval Gauss–Seidel steps.

Ncl is the number of boxes in the list after possibly “peeling” the boundary and
taking the complement around the first approximate optimum (i.e. after step 3
of Algorithm 1).

Npre is the total number of attempts to compute a preconditioner row for a Gauss–
Seidel step.

Nfail is the number of times the LP solver failed to compute a preconditioner.

Nsm is the number of Gauss–Seidel steps that succeeded in making a coordinate
width smaller.

Nrej is the number of times a Gauss–Seidel step succeeded in rejecting a box due
to an empty intersection.

It is evident from table 4 that, overall, the Gauss–Seidel iteration is more effective
on variant SF. Intuitively, this is not surprising, since the Fritz–John matrix cannot
be regular in variant LF, in many cases10 However, it is presently unknown why
the LP solver failed in so many cases: A C-LP preconditioner should exist under
fairly general conditions, but it may not be unique. Further investigation may be
useful.

It is possible that variant LF could be made to work better than variant SF for
problems, such as wolfe that have many bound constraints but few active ones at the
optimizers. Also, alternate techniques or improvements are in order for problems
such as fpqp3, fphe1 or fppb1. Table 5, though somewhat negative, represents
the experiments we have done by the writing of this report. It can be taken as a
challenge for further innovation.

Tables of full information, including additional performance measures and debug-
ging information not appearing here, are available from the author.

Table 5. Failures on some difficult problems

Problem SF, quadratic SF, linear LF, quadratic LF, linear

fpqp3
Out of me-
mory (32mb)

Out of me-
mory (32mb) untried

Did not finish
in 11 CPU
hours

fphe1
Out of me-
mory (32mb) untried

system shut-
down while
run-
ning (about 1
CPU hour)

untried

fppb1

5652 boxes
left after
20000 boxes
processed

untried untried untried

7. Summary and Possible Improvements

We have tested a general constrained global optimization algorithm implemented
within the environment of [22]. A linear and a quadratic normalization of the
Lagrange multipliers, as well as two methods of handling bound constraints, SF
and LF, were compared. For most problems, it was found that the quadratic
normalization and variant SF (generating boundary boxes and working in a reduced
space, rather than including bound constraints in the Fritz–John equations) were
faster.

Variant LF could possibly be made faster with a better LP solver for precondi-
tioners. Also, A more efficient way of computing slope matrices would benefit the
algorithm greatly. Finally, the system of [22] was meant for research and testing;
significant efficiency (with respect to CPU time) could be gained by programming
and compiling the various routines for evaluation of the function, constraints, gra-
dients, and second derivative matrices separately. This may make solution of some
of the more challenging problems practical.

A possible improvement would be to allow the interval Newton method to return
two boxes (“splitting” as in [26]). This complicating factor was not included here,
and the contraction preconditioners used generally do not produce linear interval
systems that result in splits. However, possible splits were observed frequently with
the test set used and algorithm variant SF, when the dimension of the reduced space
was 1 (and hence no preconditioner was required).

An additional gradient test can be implemented to reject boxes within which there
can be no critical points subject to the equality constraints. Appearing in [10], p.
18 and p. 21, this test can be restated in the present context as

0 ∈ ∇φ(X) ◦∇C(X),

where ∇φ(X) is an interval extension to ∇φ, viewed as a row vector, ∇C(X)
is a similar interval extension to ∇C, viewed as an n × m matrix, “◦” is matrix
multiplication, and “0” is interpreted as a row vector in Rm.

Finally, alternate strategies to the maximal smear scheme of step 4(F) i of Al-
gorithm 1 may result in success on some of the problems for which failure was
reported here. This will be the subject of a separate investigation.

Acknowledgments

I wish to acknowledge professors Floudas and Pardalos for their encouragement. I
also wish to acknowledge Shiying Ning for programming and testing several of the
test functions. Finally, I wish to thank the referee for a number of suggestions that
make the paper clearer, as well as pointing out the test in [10], p. 18.

Notes

1. X̌ is often chosen to be the midpoint of X̂.

2. although see [27], §2.3 and [18], §4
3. often, the midpoint

4. but applied to the analogy of ∇φ, rather than φ itself, as here

5. although good evaluations of φ(X) can eliminate most such boxes before they are formed, in
many cases

6. This is the number m in [5], p. 12.

7. Note the error in [5], p. 13: the upper limit of the inner sum there should be n, not m.

8. A dense LP solver, a variant of the simplex method written specially by Manuel Novoa to
compute LP preconditioners efficiently

9. and it is unclear how the inverse midpoint preconditioner will work for large-width interval
matrices that are not regular

10.The successes for the quadratic normalization and variant SF were probably due to reduction
of the Lagrange multiplier bounds V.

References

1. Caprani, O., Godthaab, B., and Madsen, K., Use of a Real-Valued Local Minimum in Parallel
Interval Global Optimization, Interval Computations 1993 (2), pp. 71–82, 1993.

2. Conn, A. R., Gould, N. and Toint, Ph.L., LANCELOT: A Fortran Package for Large-Scale
Nonlinear Optimization, Springer-Verlag, New York, 1992.

3. Conn, A. R., Gould, N., and Toint, Ph. L., A Note on Exploiting Structure when using Slack
Variables, Math. Prog. 67 (1), pp. 89–99, 1994.

4. Csendes, T. and Ratz, D., Subdivision Direction Selection in Interval Methods for Global
Optimization, preprint, 1994.

5. Dixon, L. C. W. and Szegö, G. P., The Global Optimization Problem: An Introduction, in
Towards Global Optimization 2, ed. Dixon, L. C. W. and Szegö, G. P., pp. 1–15, North-
Holland, Amsterdam, Netherlands, 1978.

6. Floudas, C. A. and Pardalos, P. M., A Collection of Test Problems for Constrained Global
Optimization Algorithms, Springer-Verlag, New York, 1990.

7. Hansen, Eldon, Interval Forms of Newton’s Method , Computing 20, pp. 153–163, 1978.
8. Hansen, E. R., Global Optimization Using Interval Analysis, Marcel Dekker, Inc., New York,

1992.

9. Hansen, E. R. and Walster, G. W., Bounds for Lagrange Multipliers and Optimal Points,
Comput. Math. Appl. 25 (10), pp. 59, 1993.

10. Horst, R. and Pardalos, M., eds., Handbook of Global Optimization, Kluwer, Dordrecht,
Netherlands, 1995.

11. Jansson, C. and Knüppel, O., A Global Minimization Method: The Multi-Dimensional Case,
preprint, 1992.

12. Jansson, C. and Knüppel, O., Numerical Results for a Self-Validating Global Optimization
Method , technical report no. 94.1, 1994.

13. Kearfott, R. B., Interval Newton / Generalized Bisection When There are Singularities near
Roots, Annals of Operations Research 25, pp. 181–196, 1990.

14. Kearfott, R. B., Preconditioners for the Interval Gauss–Seidel Method , SIAM J. Numer.
Anal. 27 (3), pp. 804–822, 1990.

15. Kearfott, R. B., and Novoa, M., INTBIS, A Portable Interval Newton/Bisection Package
(Algorithm 681), ACM Trans. Math. Software 16 (2), pp. 152–157, 1990.

16. Kearfott, R. B., Hu, C. Y., Novoa, M. III, A Review of Preconditioners for the Interval
Gauss–Seidel Method , Interval Computations 1 (1), pp. 59–85, 1991.

17. Kearfott, R. B., An Interval Branch and Bound Algorithm for Bound Constrained Optimiza-
tion Problems, Journal of Global Optimization 2, pp. 259–280, 1992.

18. Kearfott, R. B., Empirical Evaluation of Innovations in Interval Branch and Bound Algo-
rithms for Nonlinear Algebraic Systems, accepted for publication in SIAM J. Sci. Comput..

19. Kearfott, R. B., A Review of Techniques in the Verified Solution of Constrained Global
Optimization Problems, preprint, 1994.

20. Kearfott, R. B., On Verifying Feasibility in Equality Constrained Optimization Problems,
preprint, 1994.

21. Kearfott, R. B., Dawande, M., Du K.-S. and Hu, C.-Y., Algorithm 737: INTLIB: A Portable
FORTRAN 77 Interval Standard Function Library, ACM Trans. Math. Software 20 (4), pp.
447–459, 1994.

22. Kearfott, R. B., A Fortran 90 Environment for Research and Prototyping of Enclosure
Algorithms for Constrained and Unconstrained Nonlinear Equations, ACM Trans. Math.
Software 21 (1), pp. 63–78, 1995.

23. Neumaier, A., Interval Methods for Systems of Equations, Cambridge University Press, Cam-
bridge, England, 1990.

24. Ratschek, H., and Rokne, J., New Computer Methods for Global Optimization, Wiley, New
York, 1988.

25. Ratz, D., Automatische Ergebnisverifikation bei globalen Optimierungsproblemen, Ph.D. dis-
sertation, Universität Karlsruhe, 1992.

26. Ratz, D., Box-Splitting Strategies for the Interval Gauss–Seidel Step in a Global Optimiza-
tion Method , Computing 53, pp. 337–354, 1994.

27. Rump, S. M., Verification Methods for Dense and Sparse Systems of Equations, in Topics in
Validated Computations, ed. J. Herzberger, Elsevier Science Publishers, Amsterdam, 1994.

28. Walster, G. W., Hansen, E. R. and Sengupta, S., Test Results for a Global Optimization
Algorithm, in Numerical Optimization 1984, ed. P. T. Boggs, R. H. Byrd, and R. B. Schnabel,
pp. 272–287, SIAM, Philadelphia, 1985.

29. Wolfe, M. A., An Interval Algorithm for Constrained Global Optimization, J. Comput. Appl.
Math. 50, pp. 605–612, 1994.

