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Abstract. Interval Newton methods in conjunction with generalized bi-
section can form the basis of algorithms that find all real roots within
a specified box X ⊂ Rn of a system of nonlinear equations F (X) = 0
with mathematical certainty, even in finite-precision arithmetic. In such
methods, the system F (X) = 0 is transformed into a linear interval
system 0 = F (M) + F′(X)(X̃ −M); if interval arithmetic is then used
to bound the solutions of this system, the resulting box X̃ contains all
roots of the nonlinear system. We may use the interval Gauss–Seidel
method to find these solution bounds.

In order to increase the overall efficiency of the interval Newton /
generalized bisection algorithm, the linear interval system is multiplied
by a preconditioner matrix Y before the interval Gauss–Seidel method
is applied. Here, we review results we have obtained over the past few
years concerning computation of such preconditioners. We emphasize
importance and connecting relationships, and we cite references for the
underlying elementary theory and other details.

1. Introduction and Goals

The general problem we address is:

(1.1)

Find, with certainty, approximations to all solu-
tions of the nonlinear system

F (X) = (f1(x1, x2, . . . , xn), . . . , fn(x1, x2, . . . , xn)) = 0,

where bounds xi and xi are known such that

xi ≤ xi ≤ xi for 1 ≤ i ≤ n.

We write X = (x1, x2, . . . , xn), and we denote the box given by the
inequalities on the variables xi by B.1

1Throughout the paper, we will denote interval quantities with boldface letters. Vec-
tors and matrices will be denoted with capital letters.
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A successful approach to this problem is generalized bisection in
conjunction with interval Newton methods. Interval Newton / general-
ized bisection methods for (1.1) are described in [3], [9], [10], [15], [17],
[20], [22], etc. For an introduction to the interval arithmetic underlying
these methods, see [1], [14], etc. Also, the book [19] will contain an
overview of interval methods for linear and nonlinear systems of equa-
tions.

In these methods, we first transform F (X) = 0 to the linear interval
system

(1.2) F′(Xk)(X̃k −Xk) = −F (Xk),

where F′(Xk) is a suitable (such as an elementwise) interval extension
of the Jacobian matrix over the box Xk (with X0 = B), and where
Xk ∈ Xk represents a predictor or initial guess point. If we then formally
solve (1.2) using interval arithmetic, the resulting box X̃k, which actually
just satisfies

(1.2(b)) F′(Xk)(X̃k −Xk) ⊃ −F (Xk),

will contain all solutions to every possible system A(X−Xk) = −F (Xk)
with A ∈ F′(Xk). Furthermore, under suitable (usually satisfied) as-
sumptions on the interval extension F′, it follows from the mean value
theorem that X̃k will contain all solutions to F (X) = 0 in Xk. We may
then iterate Xk+1 with the formula

(1.3) Xk+1 = Xk ∩ X̃k,

to obtain tighter bounds on all possible roots.
If the coordinate intervals of Xk+1 are not smaller than those of Xk,

then we may bisect one of these intervals to form two new boxes; we then
continue the iteration (1.3) with one of these boxes, and put the other
one on a stack for later consideration. As explained in [9], [10], [15], and
elsewhere, the following fact (from [17, p. 263]) allows such a composite
generalized bisection algorithm to compute all solutions to (1.1(b)) with
mathematical certainty . For many methods of solving (1.2),

(1.4)

if X̃k ⊆ Xk, then the system of equations in (1.1)
has a unique solution in Xk. Conversely, if X̃k ∩
Xk = ∅ then there are no solutions of the system
in (1.1) in Xk.

The portion of the overall generalized bisection algorithm treated
here (and given completely in [13] and elsewhere) is the preconditioned
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interval Gauss–Seidel method, which we describe with the following no-
tation. We write X = (x1,x2, . . . ,xn) for Xk and we write f ′i,j for the
interval in the i-th row and j-th column of F′ = F′(X). Similarly, we
write2 F (Xk) = F = (f1, f2, . . . , fn), and Xk = (x1, x2, . . . , xn), so that
(1.2) becomes

(1.5) F′(X̃k −Xk) = −F.

In order to make some measure of Xk+1 in the (1.3) small, we
precondition (1.5); i.e., we multiply by a matrix Y to obtain

(1.6) Y F′(X̃k −Xk) = −Y F.

Such preconditioning usually lessens the work required to complete the
generalized bisection algorithm, and accelerates convergence of the it-
erates of the interval Gauss-Seidel method to a point in cases where
generalized bisection is not required. Let

Yi = (y1, y2, . . . , yn)

denote the i-th row of the preconditioner, let

(1.7(a)) ki = YiF,

and let

(1.7(b))
YiF′ = Gi = (gi,1,gi,2, · · · ,gi,n)

= ([g
i,1

, gi,1], [gi,2
, gi,2], · · · , [g

i,n
, gi,n]).

With the above notation, we have

Algorithm 1.1. (Preconditioned version of interval Gauss–Seidel) Do
the following for i = 1 to n.

1. (Update a coordinate.)
(a) Compute the preconditioner row Yi.
(b) Compute ki and Gi.
(c) Compute

(1.8) x̃i = xi −





ki +
n

∑

j=1
j 6=i

gi,j(xj − xj)







/

gi,i

2We denote the components of F as boldface intervals, since they must be evalu-
ated in interval arithmetic with directed roundings or else roundoff error may cause
Algorithm 1.1 to miss a root.
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using interval arithmetic.
2. (The new box is empty.) If x̃i ∩xi = ∅, then signal that there is no

root of F in Xk, and continue the generalized bisection algorithm.
3. (The new box is non-empty; prepare for the next coordinate)

(a) Replace xi by xi ∩ x̃i.
(b) Possibly re-evaluate F′(Xk) to replace F′ by an interval matrix

whose corresponding widths are smaller.

Moore and Jones proposed in [15] that Y be taken to be the inverse
of the midpoint matrix of F′ in the Krawczyk method for bounding X̃k

in (1.2). Also, Hansen proposed the identical in preconditioner Y for
the interval Gauss-Seidel method in using this same inverse midpoint
matrix in [2]. In fact, this particular preconditioner has been generally
used and has been thought to be usually optimal (cf. eg. [24]). However,
the examples in Sect. 3 of [13] show that this preconditioner can be far
from optimal in the sense just described.

Here, we survey results we have obtained over the last several years
on preconditioners for the interval Gauss-Seidel method. Though our
purpose is not to give an elementary introduction, we will give references
for such a study. We do not present proofs in their entirety, but cite the
works where they originally appeared. This paper is meant to be a guide
for this body of knowledge, as well as a formula reference for machine
implementation.

In §2, we describe our general approaches to finding optimal pre-
conditioners, and we present the resulting classification scheme. At the
highest level of this classification, we have the “C” or “contraction”
and the “S” or “splitting” preconditioners. In §3, we review our C-
preconditioner results, while we review the S-preconditioner results in
§4. We discuss numerical experiments in §5, while we point to future
work in §6.

2. Classification of Preconditioners
In one dimension, all scalar non-zero preconditioners for the interval

Newton method are equivalent. However, even in one dimension, we may
illustrate the two possibilities which lead to the C-preconditioner and the
S-preconditioner.

Example 2.1. Suppose n = 1 and that

f(x) = x2 − 4,

so that (1.8) becomes

x̃i = x̃ = xi −
f(xi)
2xi

= x− f(x)
2x

.
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If, in Example 2.1, the initial interval and point are

Xk = xi = x = [1, 2.5], xi = x = 1.75,

then

x̃ = 1.75− −.9375
[2, 5]

= 1.75− [.1875, .46875] = [1.9375, 2.21875] ⊂ x,

so we may conclude that there is a unique root of f in x, Furthermore,
interval Newton iteration will converge to that root.

When n > 1, a C-preconditioner replaces fi by a linear combination
of the components of F for which, when (1.8) is applied, the width
w(x̃i ∩ xi) of the interval x̃i ∩ xi is small. Formally, we have

Definition 2.1. A preconditioner row Yi as in (1.7) is called a C-pre-
conditioner, provided, in (1.7(b)), 0 6∈ gi,i.

Note. With C-preconditioners, the denominator in the interval Gauss-
Seidel iteration (1.8) does not contain zero, so the image interval x̃i is a
single connected interval.

On the other hand, if we took

x = B = [−3, 3], x = 0,

then we may use extended interval arithmetic (cf. [14], or [3] and [8] for
the context here) to obtain

x̃ = 0− −4
[−6, 6]

=
(

−∞,−2
3

]

∪
[

2
3
,∞

)

,

so

x ∩ x̃ =
[

−3,−2
3

]

∪
[

2
3
, 3

]

.

In this case, the result is two intervals, which isolate the two roots of f
in B. The total width of these two intervals is smaller than the total
width of the two intervals [−3, 0] ∪ [0, 3] which we would have obtained
from bisection.

When n > 1, an S-preconditioner replaces fi by a linear combina-
tion of the components of F for which, when (1.8) is applied, the sum of
the widths w(x̃i ∩ xi) of the interval x̃i ∩ xi is small. Formally, we have
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Definition 2.2. A preconditioner row Yi as in (1.7) is called an S-pre-
conditioner, provided, in (1.7(b)), 0 ∈ gi,i and 0 6= gi,i.

Note. With S-preconditioners, the denominator in the interval Gauss-
Seidel iteration (1.8) contains zero, so the image x̃i is an extended in-
terval consisting of either one or two semi-infinite real intervals.

We will note a duality between C-preconditioners and S-precondi-
tioners in §4.

Ideally, in cases for which a C-preconditioner is appropriate, we
would use that Yi in (1.7) which made the width w (xi ∩ x̃i) in Step
3(a) of Algorithm 1.1 minimal. However, computation of such a precon-
ditioner in general appears to be a fairly difficult optimization problem,
whereas, if certain possibilities are considered separately, the optimal
preconditioner is accessible as the solution of a reasonably small linear
programming problem. In particular, we consider three cases, depending
upon whether we expect
(i) x̃i ⊆ xi,
(ii) the left endpoint x̃i of x̃i to be greater than the left endpoint xi of

xi, or
(iii) the right endpoint x̃i of x̃i to be less than the right endpoint xi of

xi.
Corresponding to these three cases, we have the following three types of
C-preconditioners.

Definition 2.3. A C-preconditioner Y CW
i is a W-optimal C-precondi-

tioner if it minimizes the width w(x̃i − x̃i) of the image x̃i in (1.8) over
all C-preconditioners.

Definition 2.4. A C-preconditioner Y CL
i is an L-optimal C-precondi-

tioner if it maximizes the left endpoint x̃i of the image x̃i in (1.8) over
all C-preconditioners.

Definition 2.5. A C-preconditioner Y CR
i is an R-optimal C-precondi-

tioner if it minimizes right endpoint x̃i of the image x̃i in (1.8) over all
C-preconditioners.

We have an analogous situation for S-preconditioners. In particu-
lar, if we apply an S-preconditioner and the numerator in (1.8) does not
contain zero, and a is the left endpoint of the numerator when we apply
the minus sign, then x̃i in (1.8) will consist of the union of two disjoint
semi-infinite intervals

x̃i = (−∞, a/g
i,i

+ xi] ∪ [a/gi,i + xi,∞)
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if neither g
i,i

nor gi,i equals zero. (The image x̃i will consist of one such
semi-infinite interval if one of g

i,i
and gi,i equals zero.) Thus, an interval

(2.1) zi = (a/g
i,i

+ xi, a/gi,i + xi)

will be excluded from xi ∩ x̃i. (See [7] or Lemma 5.1 in [8].)

Definition 2.6. The interval zi in (2.1) which is excluded in xi ∩ x̃i

when we apply an S-preconditioner is termed a solution complement.

Our three cases for the S-preconditioner depend on whether we
expect
(i) zi ⊆ xi,
(ii) The right endpoint a/gi,i + xi of zi to be greater than the right

endpoint xi of xi.
(iii) The left endpoint a/g

i,i
+ xi of zi to be less than the left endpoint

xi of xi.

Definition 2.7. An S-preconditioner Y SW
i is a W-optimal S-precondi-

tioner if it maximizes the width a/gi,i−a/g
i,i

of the solution complement,
subject to a > 0 and g

i,i
< 0 < gi,i.

Definition 2.8. Y SL
i is an L-optimal S-preconditioner if it minimizes

the left endpoint a/g
i,i

+xi of the solution complement, subject to a > 0
and g

i,i
< 0 ≤ gi,i.

Definition 2.9. Y SR
i is an R-optimal S-preconditioner if it maximizes

the right endpoint a/gi,i + xi of the solution complement, subject to
a > 0 and g

i,i
≤ 0 < gi,i.

At times we may not need to form a linear combination of the rows
of the interval Jacobian matrix for adequate convergence properties, but
may enable or prove convergence by selecting the appropriate row of the
Jacobian matrix. For these cases, we have

Definition 2.10. We say Yi is a pivoting preconditioner provided Yi is
a multiple of a coordinate vector. We will speak of pivoting C-precondi-
tioners and pivoting S-preconditioners as well as W-optimal, L-optimal,
and R-optimal pivoting preconditioners.

Finally, we clarify notation in

Definition 2.11. If we speak of a preconditioner Yi, we will mean a
preconditioner row for the i-th variable, where i is as in (1.8).

We summarize results related to the three types of C-precondition-
ers in §3, while we do the same for the S-preconditioners in §4.
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3. C-Preconditioners

First, we note

Theorem 3.1. ([13]) for a given interval Jacobian matrix F′, there
exists a C-preconditioner Yi if and only if at least one entry of the i-th
column of F′ does not contain 0.

In what follows, we will assume that a C-preconditioner exists.
In our first published results in [13], we assumed that the guess

point Xk was the midpoint of Xk, i.e., that

(3.1) xj = (xj + xj)/2 for j = 1 to n.

There, we formulated computation of the W-optimal C-preconditioner
as solution of a linear programming problem. That linear programming
problem was based on the following

Theorem 3.2. (Theorem 2.6 in [13]) Assume a C-preconditioner exists.
Then the row vector Yi which minimizes w(x̃i) in (1.8) is a solution to

min
Yi

g
i,i

=1

w

(

[a, b]
[g

i,i
, gi,i]

)

,

where [a, b] is the numerator in the quotient in (1.8), including the minus
sign. Furthermore, suppose we compute a Yi which solves the problem

(3.2) min
Yi

g
i,i

=1

w {[a, b]} .

Then a Yi which solves (3.2) is a Yi for which w(x̃i) is minimal, provided
the resulting [a, b] is such that 0 ∈ [a, b]. If, on the other hand, Yi solves
(3.2) but the corresponding [a, b] does not contain zero, then, for Xk

arbitrary, the resulting xi ∩ x̃i is such that

w(xi ∩ x̃i) < max {(xi − xi), (xi − xi)} .

If we define j′ by

j′ =
{

j if j < i

j + 1 if j ≥ i,

then the linear programming problem presented in [13] for solving (3.2)
is essentially

(3.3a) minimize W (V ) =
n−1
∑

j=1

vjw(xj′)
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subject to

vj ≥ −

[

n
∑

l=1

vl+(n−1)f
′
l,j′

−
n

∑

l=1

vl+(2n−1)f
′
l,j′

]

, 1 ≤ j ≤ n− 1,

(3.3b)

vj ≥ +

[

n
∑

l=1

vl+(n−1)f
′
l,j′ −

n
∑

l=1

vl+(2n−1)f
′
l,j′

]

, 1 ≤ j ≤ n− 1,

(3.3c)

1 =

[

n
∑

l=1

vl+(n−1)f
′
l,i
−

n
∑

l=1

vl+(2n−1)f
′
l,i

]

,

(3.3d)

and

(3.3e) vj ≥ 0 for 1 ≤ j ≤ 3n− 1.

Once we compute the solution components vj , 1 ≤ j ≤ 3n − 1, we
compute the elements of the preconditioner Y CW

i = (y1, y2, . . . , yn) by

(3.4) yl = vl+(n−1) − vl+(2n−1), 1 ≤ l ≤ n.

The following theorem appeared in [13].

Theorem 3.3. (Theorem 2.7 in [13]) Assume (3.1), and suppose that
vj , 1 ≤ j ≤ 3n − 1 form a solution of (3.3). If Yi is defined by
(3.4), then Yi solves (3.2), provided that, for each l between 1 and n,
vl+(n−1)vl+(2n−1) = 0.

The following stronger theorem, observed by Novoa and stated as a
conjecture in [13], shows that the solution to (3.3) combined with (3.4)
always solves (3.2).

Theorem 3.4. (to appear in [21]) If vj , 1 ≤ j ≤ 3n − 1 represent an
optimum of (3.3(a)) subject to (3.3(b)), (3.3(c)), (3.3(d)), and (3.3(e)),
and if yl, 1 ≤ l ≤ n is defined through (3.4), then the resulting precon-
ditioner Yi solves the optimization problem (3.2).

Though numerical results based on (3.3) in [13] show an improve-
ment over the inverse midpoint preconditioner, we have developed sev-
eral additional formulations for solving (3.2), and continue to investi-
gate. Preliminary experiments indicate that the following formulation
(whose derivation is explained in [21]) is a less costly way of obtaining
the solution to (3.2) when the simplex method is used.
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(3.5a) minimize W (V ) =
n−1
∑

j=1

(

−
n

∑

l=1

vl+(n−1)f
′
l,j′

+
n

∑

l=1

vl+(2n−1)f
′
l,j′ + vj

)

w(xj′)

subject to

vj ≥
n

∑

l=1

(

vl+(n−1) − vl+(2n−1)
)

(

f ′
l,j′

+ f
′
l,j′

)

, 1 ≤ j ≤ n− 1,

(3.5b)

1 =
n

∑

l=1

vl+(n−1)f
′
l,i
−

n
∑

l=1

vl+(2n−1)f
′
l,i,

(3.5c)

and

(3.5d) vj ≥ 0 for 1 ≤ j ≤ 3n− 1.

As for (3.3), we then define Y CW
i = (y1, y2, . . . , yn) by (3.4).

Results corresponding to Theorem 3.3 and Theorem 3.4 will be
stated and proven in [21].

If we assume (3.1), we may formulate linear programming problems
analogous to (3.5) for computing the L-optimal and R-optimal C-pre-
conditioners. In particular, the following linear programming problem
is solved to compute Y CL

i .

(3.6) minimize L(V ) =
n

∑

l=1

(

vl+(n−1) − vl+(2n−1)
)

fi(Xk)

+ 1
2







n−1
∑

j=1

(

−
n

∑

l=1

vl+(n−1)f
′
l,j′

+
n

∑

l=1

vl+(2n−1)f
′
l,j′ + vj

)

w(xj′)







subject to
(3.5(b)), (3.5(c)), and (3.5(d)).

Similarly, the following linear programming problem is solved to com-
pute Y CR

i .

(3.7) minimize −R(V ) = −
n

∑

l=1

(

vl+(n−1) − vl+(2n−1)
)

fi(Xk)

+
1
2







n−1
∑

j=1

(

−
n

∑

l=1

vl+(n−1)f
′
l,j′

+
n

∑

l=1

vl+(2n−1)f
′
l,j′ + vj

)

w(xj′)







.
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subject to
(3.5(b)), (3.5(c)), and (3.5(d)).

The solutions to (3.6) and (3.7) give approximations to Y CL
i and Y CR

i ,
respectively, and give Y CL

i and Y CR
i exactly when the resulting numer-

ator for (1.8) contains zero. Such theory will appear in [21].
The following assertion is proved in a manner analogous to Lemma

5.6 in [8].

Lemma 3.5. Suppose we compute x̃L
i from Xk via (1.8) using an L-op-

timal C-preconditioner, and independently (with the same F′ and Xk)
compute x̃U

i using a R-optimal C-preconditioner. Then the width of

x̃L
i ∩ x̃U

i ∩ xi

is at least as small as the width of

x̃A
i ∩ xi,

where x̃A
i is obtained through (1.8) by application of an arbitrary C-pre-

conditioner.

In practice, whether it is less costly to apply a single W-optimal
preconditioner or to apply an L-optimal and R-optimal pair of precon-
ditioners probably depends on the problem.

If we do not assume (3.1), i.e., if we do not assume that the guess
point Xk is the midpoint vector for the interval vector Xk, then we may
still formulate solution of (3.2) as a linear programming problem; an
explanation is given in [21]. However, such an LP problem would have
far more variables and constraints than even (3.3), so we feel the cost to
obtain it would outweigh the possible advantages of using a theoretically
optimal preconditioner for off-center guess points.

We may compute L-optimal and R-optimal preconditioners via
moderately sized linear programming problems analogous to (3.4), (3.5),
and (3.6) when we allow the coordinates of Xk to (arbitrarily) be left
endpoints, right endpoints, or midpoints of the corresponding coordi-
nates of Xk. Since such Xk may approximate the Neumaier predictor
points (see [17]), these endpoint preconditioners may be useful in some
contexts. See [21] for their formulation.

An interesting preconditioner may also be obtained if we ignore
subdistributivity in computing the width of the numerator in (1.8). In
particular, if we replace the intervals

gi,j(xj − xj)
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by the containing intervals
n

∑

l=1

yi,lf ′l,j(xj − xj)

in the formula for computing w(x̃i) (see [6]), we obtain the following
LP problem, whose solution will approximate the W-optimal C-precon-
ditioner.

(3.8a) minimize W (V ) =
n

∑

l=1





(vl + vl+n)
n

∑

j=1
j 6=i

w
(

f ′l,j(xj − xj)
)







subject to

(3.8b) 1 =
n

∑

l=1

vlf ′l,i −
n

∑

l=1

vl+nf
′
l,i,

and

(3.8c) vj ≥ 0 for 1 ≤ j ≤ 2n.

Analogous to (3.4), we then compute the yl by

(3.9) yl = vl − vl+n, 1 ≤ l ≤ n.

Theorem 3.6. (See [7]) The preconditioner corresponding to solution
of (3.8) is a W-optimal pivoting preconditioner.

Theorem 3.6 is due to the fact that (3.8) is a linear programming
problem in 2n variables and only one constraint.

Pivoting preconditioners are obtainable with less computation than
general optimal preconditioners, especially when the number of equa-
tions and variables n is large. For this reason, we conclude this section
with a summary of such preconditioners. The following width character-
ization gives insight and is useful for computing pivoting preconditioners
for arbitrary guess points Xk.

Theorem 3.7. (Theorem 2.4 in [5] or Theorem 4.1.2 in [7]) In (1.8), if
xj ∈ xj for 1 ≤ j ≤ n,
if ki ∈ −

∑n
j=1
j 6=i

gi,j(xj − xj), and if
0 6∈ gi,i, then

(3.10) w(x̃i) =
n

∑

j=1
j 6=i

σj=1

max{|g
i,j
|, |gi,j |}w(x1

j ) +
n

∑

j=1
j 6=i

σj=0

λ∗jw(gi,j)w(x1
j ),
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where

λ∗j =
{

max
{

(xj − xj), (xj − xj)
}

/w(x1
j ) if w(x1

j ) 6= 0,

0 otherwise,

where

σj =











0 if |g
i,j
|(1/λ∗j − 1) < |gi,j | < |g

i,j
|λ∗j/(1− λ∗j )

and 0 ∈ gi,j = [g
i,j

, gi,j ],

1 otherwise,

and where

x1
j =

{

xj ∩ x̃j if j ≤ i,
xj if j > i.

In [5], we give details on using (3.10) in computing the pivoting C-
preconditioner which is W-optimal over all pivoting C-preconditioners.
Though such preconditioners are not adequately general to be effective
on all problems, on many they work significantly better than no pre-
conditioner at all, and they require two orders of magnitude (a proven
O(n2) versus an empirically observed O(n3)) less arithmetic operations
than preconditioners based on linear programming problems or solution
of linear systems when the size n of the system is large. (See the ta-
bles in Section 4 of [5].) They may thus be used in a hybrid algorithm
in which a pivoting preconditioner is applied first, followed by an LP
preconditioner only if the pivoting preconditioner does not work.

The following algorithm selects the W-optimal pivoting C-precon-
ditioner.

Algorithm 3.11. (Algorithm 3.9 in [5]; determination of the W-opti-
mal pivoting C-preconditioner)

1. Check w(x1
j ) for j = 1, 2, . . . , i− 1, i + 1, . . . , n to find Ncol, where

Ncol =
{

j ∈ {1, 2, . . . , i− 1, i + 1, . . . , n} | w(x1
j ) 6= 0

}

.

2. Check the i-th column of the interval Jacobian matrix F′ to deter-
mine Nrow, where

Nrow =
{

j ∈ {1, 2, . . . , n} | 0 /∈ f ′j,i
}

.

3. Pick m0 ∈ Nrow which minimizes w(x̃i), over all m ∈ Nrow, where
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w(x̃i) is defined as in (3.10) by

w(x̃i) =







∑

j∈Ncol
σj=1

max{|f ′
m,j
|, |f ′m,j |}w(x1

j )+

∑

j∈Ncol
σj=0

λ∗jw(f ′m,j)w(x1
j )







/

min{|f ′
m,i
|, |f ′m,i|}.

4. Choose Yi = eT
m0

, where eT
m0

is that unit row vector with 1 in the
m0-th coordinate and 0 in the other coordinates.

4. S-Preconditioners

The S-preconditioners depend on the concept of extended interval
arithmetic; see [14, pp. 66–68] for a definition.

We introduce the section with an examination of conditions under
which S-preconditioners exist.

Theorem 4.1. (Theorem 4.3 in [8] or Theorem 2.5.3 in [7]) An S-
preconditioner Yi exists provided i-th column of the interval Jacobian
matrix F′(Xk) satisfies one of the following conditions.
(1) One or more entries contains zero but is not zero, or
(2) at least two entries do not contain zero, and at least one of these

has nonzero width.
Furthermore, if neither (1) nor (2) is valid, then there does not exist an
S-preconditioner.

The conditions in Theorem 4.1 complement the conditions under
which we would apply an S-preconditioner in the sense of

Remark 4.2. If the i-th column of the interval Jacobian matrix contains
only one nonzero entry and that entry does not contain zero, then a C-
preconditioner row exists for the i-th variable. On the other hand, when
the Jacobian matrix is a scalar nonsingular matrix, then not only does
a C-preconditioner exist, but the width characterization (3.10) shows
that either an optimal C-preconditioner or the inverse midpoint precon-
ditioner will result in w(x̃i) = 0.

There is an interesting duality between L-optimal C-precondition-
ers and R-optimal S-preconditioners, and between R-optimal C-precon-
ditioners and L-optimal S-preconditioners ([7]). In particular, if we let
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[a, b] denote the numerator in (1.8) (including the minus sign), and 0 ∈
[a, b] but 0 6∈ gi,i, then the left endpoint of the image interval is

xi + a/g
i,i

.

On the other hand, if [a, b] > 0 but 0 ∈ gi,i (which can be arranged
if an S-preconditioner exists), then the right endpoint of the solution
complement is

xi + a/gi,i

In Theorem 3.2, as well as in (3.3d), and (3.5c), we normalized the
C-preconditioner through the constraint

g
i,i

= 1.

If the right endpoint gi,i of the denominator is nonzero (so that x̃i con-
tains the semi-infinite interval [xi + a/gi,i,∞), then we may similarly
normalize the S-preconditioner via the constraint

gi,i = 1.

The analogue to (3.2) for the L-optimal C-preconditioner (upon which
(3.6) is based; see [21]) then becomes

(4.1) min
Yi

g
i,i

=1

−a,

where we obtain an L-optimal C-preconditioner if a < 0. In contrast,
the corresponding analogue for the R-optimal S-preconditioner is

(4.2) min
Yi

gi,i=1

−a,

where we obtain an S-preconditioner if g
i,i
≤ 0 at the optimal point,

and where we obtain a nonempty solution complement if a > 0 at the
optimal point.

The above duality is exploited in [7, Chapter 6] to unify and sim-
plify theory of C-preconditioners and S-preconditioners.

In (4.2), we may use g
i,i
≤ 0 as an additional constraint in con-

structing the linear programming problem, to ensure that the resulting
preconditioner is an S-preconditioner. However, we may instead con-
struct the LP problem from (4.2) exclusively, and simply use the re-
sulting C-preconditioner if g

i,i
> 0 at the optimal point. The latter
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scheme is preferable in practice, since the right endpoint of the resulting
C-preconditioner is at least as large as the left endpoint of the solution
complement in the S-preconditioner which would have been obtained
had the constraint g

i,i
≤ 0 been used.

A similar duality between the R-optimal C-preconditioner and the
L-optimal S-preconditioner holds.

If, analogously to derivation of (3.8), we ignore subdistributivity
in the expression for a in (4.2), we obtain a pivoting preconditioner
which allows for this splitting. It takes O(n2) operations per variable to
determine this preconditioner. On the other hand, we may use a special
subtraction technique pointed out independently by Novoa (and similar
to that in [18]) which avoids interval dependencies to apply all possible
pivoting preconditioners for all variables in O(n2) total operations. This
technique is embodied in the following algorithm.

Algorithm 4.3. ([7] or [8]; solving for each variable in each row, with
a special subtraction step) Do all arithmetic with directed roundings.

Do the following for for m = 1 to n.
1. Compute

[α, β] = fm +
n

∑

j=2

f ′m,j(xj − xj)

Do the following for i = 1 to n.
2. Compute

x̃i = xi −
[α, β]
f ′m,i

using interval arithmetic.
3. If x̃i ∩ xi = ∅, then signal that there is no root of F in

X, and continue the generalized bisection algorithm.
4. (Prepare for the next coordinate)

(a) Replace xi by xi ∩ x̃i.3

(b) Possibly re-evaluate F′(Xk) to replace F′ by an in-
terval matrix whose corresponding widths are smal-
ler.

Next i.
4. (Special subtraction)

α ← α + ui − ui+1,

β ← β + vi − vi+1,

3We may not do this step if xi ∩ x̃i consists of two intervals and the solution com-
plement is not sufficiently large, where “sufficiently” is determined by a heuristic
parameter. Also, note that in the case when xi ∩ x̃i consists of two boxes, we will
push one of them onto a stack at this point.
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where
[ui, vi] = f ′m,i(xi − xi),

where we use the values of F′ and (xi − xi) before Step 4a in
computing [ui, vi] and the values after Step 4a in computing
[ui+1, vi+1]

Next m.

In [21] and [8], an alternate optimization problem which leads to a
similar hybrid S-preconditioner or C-preconditioner is presented. This
optimization problem is

(4.3) min
Yi

a=1

(

max
{

g
i,i

, gi,i

})

,

where a is the left endpoint of the numerator in (1.8).
This minimization problem is related to C- and S-preconditioners

in the following way.

Theorem 4.4. ([21]) Let

D = max
{

−g
i,i

, gi,i

}

correspond to the solution of (4.3). The following are true.
(1) (4.3) has a feasible point (so that D exists) if and only if there

exists a preconditioner for which the numerator in (1.8) does not
contain zero.

(2) If D > 0, and the resulting preconditioner is an S-preconditioner,
then the solution complement (and hence, up to the boundaries,
the portion of xi which is eliminated in x̃i) is of width at least
2/D.

(3) If D > 0 and the resulting preconditioner is a C-preconditioner,
then w(x̃i) differs from w(xi) by at least 1

2w(xi) + 1/D.
(4) If (4.3) does not have a feasible point, then the numerator in (1.8)

will contain zero when we use the preconditioner obtained from
(3.5), (3.6), or (3.7). Therefore, the preconditioner will be W-
optimal, L-optimal, or R-optimal, respectively.

(5) If D = 0, then the original nonlinear system of equations (1.1) has
no solution in Xk.

Theorem 4.4 asserts that, if (4.3) has a solution, then the resulting
preconditioner maximizes a measure of the size of the complement of
xi in x̃i, and that, if (4.3) does not have a solution, then any of the
linear programming problems for C-preconditioners will give optimal
preconditioners.
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Definition 4.5. The preconditioner defined by (4.3) will be called the
SN , or normalized numerator preconditioner.

Novoa has exhibited a generalization of the following linear pro-
gramming problem for (4.3) in [21].

(4.4a) minimize D(V ) = vi

−
n

∑

l=1

[

(vl+n − vl+2n) f
′
l,i(Xk)

−vl+n

(

f
′
l,i(Xk)− f ′

l,i
(Xk)

)]

.

subject to

(4.4b) vj ≥ −
n

∑

l=1

(vl+n − vl+2n)
(

f ′
l,j′

+ f
′
l,j′

)

, 1 ≤ j ≤ n

and

(4.4c) 1 =
n

∑

l=1

(vl+n − vl+2n) fl(Xk)

− 1
2

n
∑

j=1
j 6=i

w(xj)

{

vj +
n

∑

l=1

[

− (vl+n − vl+2n) f
′
l,j′(Xk)

+vl+n

(

f
′
l,j′(Xk)− f ′

l,j′
(Xk)

)]}

,

and subject to the natural constraints

(4.4d) vj ≥ 0 for 1 ≤ j ≤ 3n.

In contrast to the linear programming problem corresponding to
(4.2), we (Novoa) have been able to prove

Theorem 4.6. ([21]) If we set yl = vl+n − vl+2n for 1 ≤ l ≤ n, then
any solution to (4.4) is a solution to (4.3). Conversely, if we set vl+n =
max{yl, 0} and vl+2n = max{−yl, 0}, then any solution of (4.3) is a
solution to (4.4).

5. Numerical Experiments

We will not exhaustively reproduce results here which have ap-
peared or will appear elsewhere, but will summarize, interpret, and give
references as appropriate.
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In most of the experiments, we use modifications of the portable
Fortran 77 interval Newton / generalized bisection code in [12], and we
employ cost measures such as the total number of boxes, total number of
interval Jacobian matrices, total number of evaluations of F , and total
CPU time for completion of the entire generalized bisection algorithm.

Our experiments are carried out on various machines, including on
an IBM3090 on a single processor in scalar mode with the VS-Fortran
compiler and on an 80286-based IBM PC-compatible with a numeric
co-processor and Microsoft Fortran. Though CPU times varied on these
machines, other cost measures such as number of boxes are almost iden-
tical for a given program.

The test set includes a set of seventeen problems originally assem-
bled in [10]. We also have tried our techniques on additional problems,
such as the unreduced system from a heart dipole model ([16]), a vi-
sion problem ([4]), and some non-polynomial systems such as the Layne
Watson exponential cosine function of [23].

Original experiments with the inverse midpoint preconditioner, in
which we allowed zero in the denominator of (1.8) (and hence, extended
interval arithmetic), appear in [10].

Experiments with the prototypical linear programming problem
(3.3) appear in [13]. In those experiments, only (3.3) was used to ob-
tain preconditioners (without ever allowing a splitting preconditioner),
and the results were compared to the inverse midpoint preconditioner,
in which we did not allow zero in the denominator of (1.8), and to use of
no preconditioner at all. In all cases, (3.3) led to significantly less func-
tion and Jacobian evaluations than the inverse midpoint preconditioner
and no preconditioner at all, and it also resulted in less CPU time for
most problems. For the five-dimensional version of Brown’s almost lin-
ear function, approximately 300 times less Jacobian evaluations and 100
times less CPU time were required to complete the generalized bisection.

In [13], a dramatic improvement also occurred with a variant of
Powell’s singular function when we used (3.3). However, situation like
that can be handled even more efficiently by taking advantage of the fact
that the classical Newton’s method usually converges even to roots at
which the Jacobian matrix is singular, and by appropriately subdividing
the region. See [11].

The way the simplex tableau is set up and the method of solution
are critical. In the results in [13], the amount of CPU time in the linear
programming problems was roughly a factor of 10 smaller than that in
our first experiments.

In [13] (where we used (3.3)), the portion of the CPU time spent in
the linear programming problem varied from somewhat less than half to
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over 90%, with proportionally more time spent in linear programming
in problems with more variables n. Experiments to appear in [21] and
elsewhere use (3.5) instead of (3.3), and use a different simplex method.
In these experiments, all cost measures except CPU time were identical
to the experiments with (3.3), except in certain cases where the linear
programming for (3.3) failed due to roundoff error, but that based on
(3.5) did not. However, the CPU times spent in linear programming
varied from between roughly a factor of 2/3 to a factor of 1/6 of those
corresponding to (3.3).

We have done some experiments with linear programming C-pre-
conditioners based on taking the guess point Xk to be the left or right
endpoint of the interval Xk instead of the midpoint; see [21]. Such end-
point preconditioners were initially considered because it was thought we
could formulate smaller linear programming problems for them. How-
ever, these experiments did not reveal any particular advantage to end-
point preconditioners. We are presently working on some ideas for com-
bining endpoint preconditioners to get a better hybrid algorithm.

We examine pivoting C-preconditioners in [5], and in summary
form in [6]. In [5], we presented a table of the numbers of operations,
broken down by interval and scalar operations, as a function of the
dimension n, the number of nonzeros ν in the interval Jacobian matrix,
and the number ω of entries of the interval Jacobian matrix which do not
contain zero. That table reveals that, for general dense systems, O(n2)
total operations are required for the interval Gauss-Seidel method with
the pivoting preconditioner, while O(n3) are required for the inverse
midpoint preconditioner, or by applying (1.8) n2 times, once for each
variable in each equation.4

Numerical experiments in [5] with Broyden’s banded function
(treated as a dense system), for n between 5 and 40, corroborate these
operations counts, and show that the inverse midpoint precondition-
er rapidly becomes impractical for this problem for n > 10; similarly,
unpublished experiments on Brown’s almost linear function (treated as a
dense system) for n between 5 and 20 indicate that the amount of time
required to complete generalized bisection when (3.3) is used goes up
at a rate of between O(n4) and O(n5). Thus, pivoting preconditioners
should be preferable, if applicable, for large problems.

Experiments in [5] on those problems in the test set for which piv-
oting preconditioners are practical indicate the potential importance of
such preconditioners in practice. In practice, however, we will probably

4This was before discovery of the special subtraction technique in [8], in which only
O(n2) operations are required for each variable and each row.
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use Algorithm 4.3.
Experiments comparing pivoting preconditioners in conjunction

with the Neumaier predictor Xk as in [17] to the same preconditioners
with Xk equal to the midpoint have given mixed results. See [7].

Comparison of the inverse midpoint preconditioner results when
we allow 0 ∈ gi,i in (1.8) to the results of similar experiments in which
we do not apply (1.8) when 0 ∈ gi,i indicate that use of extended in-
terval arithmetic (and splitting preconditioners) improves performance.
(See also the discussion in [2].) However, preliminary experiments with
pivoting S-preconditioners or with indiscriminate application of linear
programming S-preconditioners have shown equivocal results. In [8]
and in [21], respectively, we report results from the following hybrid
algorithms, which are intended to be applicable for general systems.

Algorithm 5.1. (All pivoting preconditioners possibly followed by a
W-optimal C-preconditioner; [8] and [7])

1. Input a heuristic parameter τ , 0 ≤ τ ≤ 1, a zero tolerance εw and
Xk = (x1,x2, . . . ,xn).

2. Apply Algorithm 4.3 to Xk; call the new Xk

X+
k = (x+

1 ,x+
2 , . . . ,x+

n ).

3. Apply (1.8) for those i for which w(x+
i ) ≥ εw|x+

i | and w(x+
i ) ≥

τw(xi); use the preconditioner computed through (3.5).
4. Repeat steps 2 and 3 of this algorithm or else apply generalized

bisection, as appropriate.

Algorithm 5.2. (The preconditioner based on (4.4) followed by a W-
optimal C-preconditioner as appropriate; see [21].)

1. Input a heuristic parameter τ , 0 ≤ τ ≤ 1, a zero tolerance εw
Xk = (x1,x2, . . . ,xn), and an additional preconditioner selection
parameter η, 0 ≤ η ≤ 1.

2. Compute the quantities Ni, 1 ≤ i ≤ n through the formula

Ni = max
1≤m≤n











∑

j=1
j 6=i

max
{

|f ′
m,j
|, |f ′m,j |

}











w(xi).

(Note: These quantities can be computed in O(n2) operations, for
dense systems, using a technique similar to that in Algorithm 5.1.)
Do the following for i = 1 to n.
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3. (Application of the SN-preconditioner if appropriate)
If ‖F (Xk)‖∞ > ηNi, then apply (1.8), where the precondi-
tioner is computed through (4.4); call the new Xk X+

k =
(x+

1 ,x+
2 , . . . ,x+

n ).

4. If w(x+
i ) ≥ εw|x+

i | and w(x+
i ) ≥ τw(xi) then apply (1.8); use

the preconditioner computed through (3.5).
Next i.

5. Repeat the loop on i in this algorithm or else apply generalized
bisection, as appropriate.

Our assumption in the above two algorithms is that the advantage
implied by Lemma 3.5 of (3.6) and (3.7) over (3.5) is outweighed by
the cost of computing the solution to two linear programming problems
instead of just one.

Here, to indicate the progress we have made since [10] and [13],
we give some experimental results for generalized bisection (similar to
Algorithm 1.1, pp. 805-806 of [13]) in conjunction with an algorithm
similar (but somewhat more sophisticated than) Algorithm 5.1. Here,
we took εw = 10−5/16, εF (from Algorithm 1.1 in [13]) to be 10−10; we
took τ = .8. Some modifications are

1. reuse of the computed linear programming preconditioner rows for
sibling boxes in the generalized bisection algorithm, provided the
preconditioner resulted in a sufficent width reduction for the parent
box, and

2. iteration of portions of step 2 of Algorithm 5.1 twice before trying
step 3.
These results appear in Table 1. As in [13], the problem num-

bers refer to problems from [10]; also as in [13], we have reported only
on those problems which are nontrivial for the algorithm. The column
labelled “n” gives the dimension of the problem, the column labelled
“NBOX” gives the number of boxes considered in the generalized bi-
section algorithm, the column labelled “NFUN” gives the total number
of interval function evaluations, and the column labelled “NJAC” gives
the total number of interval Jacobian evaluations. The column labelled
“CPU sec.” gives CPU time on an IBM 3090 with a single processor,
using Fortran 77 code compiled with VS-Fortran, and measuring the
time with the routine “CPUTIME”; the time represents all functions
excluding input and output.

A comparison of these results with those in [13] reveals improve-
ments we have made during the past several years.
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Table 1.
Some results with generalized bisection and a variant of Algorithm 5.2

# n NBOX NFUN NJAC CPU sec.

1 2 10 75 37 0.048934
2 2 15 74 36 0.087997
3 4 87 334 137 0.467594
4 5 35 107 50 0.587334
9 2 11 33 16 0.032724

10 4 35 195 94 0.508553
11 8 103 434 203 2.250024
12 3 187 1022 487 2.140635
14 2 14 58 27 0.037991
15 2 3 5 2 0.003180
16 4 1 4 2 0.006693
17 5 19 63 29 0.297805

Totals 520 2404 1120 6.469464

We have also experimented with Algorithm 5.2, but we have not
observed significant advantages of that algorithm in its present form over
Algorithm 5.1.

6. Summary and Future Work
During the past several years, we have been studying precondi-

tioners based on various optimality conditions. These preconditioners
implicitly take account of scaling, differences in nonlinearity, etc. Signif-
icant improvements can be obtained in interval Newton methods based
on the interval Gauss-Seidel method if such preconditioners are used in
place of the inverse midpoint preconditioner . Use of appropriate heuris-
tics to combine various preconditioners in an overall algorithm will give
general root-finding software whose range of applicability exceeds that
of software based exclusively on the inverse midpoint preconditioner or
any other particular preconditioner .

We have studied general root-finding extensively, and have devel-
oped good general algorithms. One possible improvement would be to
develop an appropriate heuristic to specify when to use the inverse mid-
point preconditioner instead of a linear-programming based precondi-
tioner. The inverse midpoint preconditioner is appropriate when the
problem is well-scaled and when the Jacobian matrix is well-conditioned
and approximately a scalar matrix. This is because, for dense larger sys-
tems, obtaining the inverse midpoint preconditioners seems to require
roughly at least a factor of n less work than solving the linear program-
ming problems.

Possibly our most significant future work will entail application of
our knowledge to specific problems. For example, the numerous low-
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dimensional problems which would arise in a robust geometric computa-
tion algorithm embedded in a CAD system would undoubtedly require
different types of preconditioners than a large, sparse system arising
from discretization of a nonlinear elliptic partial differential equation.
It is unreasonable to try to design general software which will perform
optimally in all such cases, and significant work can be done to take
advantage of problem-specific properties.

Another line of research involves algorithmic design on parallel ar-
chitectures. If efficiency is measured by total clock time, then the relative
merits of the various preconditioners may differ, depending on the archi-
tecture. For example, if each box is allocated to a processor and there
are a large number of processors, then there may be less of a penalty in
forming two boxes via a splitting preconditioner.
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