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Abstract. Given an approximate solution to a nonlinear system of equations at which the
Jacobi matrix is nonsingular, and given that the Jacobi matrix is continuous in a region about
this approximate solution, a small box can be constructed about the approximate solution in which
interval Newton methods can verify existence and uniqueness of an actual solution. Recently, we
have shown how to verify existence and uniqueness, up to multiplicity, for solutions at which
the Jacobi matrix is singular. We do this by efficient computation of the topological index over
a small box containing the approximate solution. Since the topological index is defined and
computable when the Jacobi matrix is not even defined at the solution, one may speculate that
efficient algorithms can be devised for verification in this case, too. In this note, however, we
discuss, through examples, key techniques in underlying our simplification of the calculations that
cannot necessarily be used when the function is non-smooth. We also present those parts of the
theory that are valid in the non-smooth case, and suggest when degree computations involving
non-smooth functions may be practical.

As a bonus, the examples lead to additional understanding of previously published work on
verification involving the topological degree.

Keywords: singular nonlinear algebraic systems, existence verification, interval computations,
Brouwer degree

1. Introduction

Given a system of nonlinear equations F (x) = 0, numerical methods produce an
approximation x̌ to a solution x∗. It is then sometimes desirable to compute bounds

x = (x1,x2, . . . , xn)

= ([x1, x1], [x2, x2], . . . , [xn, xn],

such that x̌ is the center of x, and such that x is guaranteed to contain a solution
x∗ to F (x) = 0. This leads to the problem

Given F : x → Rn, where x ∈ IRn, rigorously
verify:

• there exists a x∗ ∈ x such that F (x∗) = 0.
(1)

Here, IRn represents the set of n-dimensional vectors, as x, whose components are
intervals.

In this introduction, we give a brief overview of our approaches to (1). For a fuller
understanding of the theory and techniques, see the references cited here.
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If the Jacobi matrix F ′(x∗) is non-singular and continuous in x, then it has been
well-known for some time that we can construct an algorithm, based on an interval
Newton method, that verifies existence and uniqueness; see [6, Chapter 8], [8, pp.
219–223], and the references therein. Such interval Newton methods are of the form

x̃ = N(F ; x, x̌) = x̌ + v, (2)

where

Σ(A,−F (x̌)) ⊂ v, (3)

where A is a Lipschitz matrix for F over x, and where

Σ(A,−F (x̌)) = {x ∈ Rn | ∃A ∈ A with AX = −F (x̌)} . (4)

Here x̌ is some point in x (often taken to be its midpoint) that, in the context of
this paper, we consider to be an approximate solution.

Theorem 1 ([8, Theorem 1.19, p. 62], originally from [12]) Suppose x̃ = N(F ;x, x̌)
is the image of x and x̌ under an interval Newton method. If x̃ ⊆ x, it follows that
there exists a unique solution of F (x) = 0 within x.

Combined with good heuristics for setting the widths of the box x, such interval
Newton methods reliably verify existence and uniqueness, provided we use at least
an order-one interval extension of the Jacobi matrix for the matrix A; see [8, pp.
219–223] for a simple analysis of this. However, if A contains a singular matrix
(which must be true if an interval extension of the Jacobi matrix is used and the
Jacobi matrix is singular at some point within x), then the solution set Σ(A,−F (x̌))
in (4) must be unbounded, and existence / uniqueness verification as in Theorem 1
cannot occur1 .

Recently, we have developed techniques that can verify existence of solutions to
F (x) = 0 within x, even when F ′(x) = 0 for some x ∈ x. These techniques are
based on computing the topological degree d(F, x, 0) of F over x. If every x ∈ x
where F (x) = 0 has the Jacobi matrix F ′(x) nonsingular, then d(F, x, 0) is equal
to the number of solutions of F (x) = 0 in x at which the determinant of F ′(x) is
positive, minus the number of solutions of F (x) = 0 in x at which the determinant
is negative. However, the integer d(F, x, 0) depends only on values of F on the
boundary ∂x, so F ′ may be singular, and indeed, even non-smooth, in the interior
int(x).

In particular, in our efficient methods for existence and uniqueness verification,
we have utilized a derivation from a known formula relating the degree d(F, x, 0)
to zeros of components of F on the boundary ∂x. Namely, the boundary ∂x of x
consists of 2n (n− 1)-dimensional boxes

xk ≡ (x1, . . . , xk−1, xk,xk+1, . . . , xn)T and

xk ≡ (x1, . . . , xk−1, xk, xk+1, . . . , xn)T ,
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where k = 1, . . . , n. The oriented boundary ∂x can be divided into xk and xk,
k = 1, . . . , n, with the associated orientations. Furthermore, fix a ` between 1 and
n and define

F¬`(x) = (f1(x), f2(x), . . . , f`−1(x), f`+1(x), . . . , fn(x))T .

For this fixed `, let K0(s) denote the subset of the integers k ∈ {1, . . . , n} such

that F¬` = 0 has solutions on xk and sgn(f`) = s at these solutions, and let K0(s)
denote the subset of the integers k ∈ {1, . . . , n} such that F¬` = 0 has solutions on
xk and sgn(f`) = s at these solutions, where s ∈ {−1, +1}. We then have

Theorem 2 (See [11].) Suppose F is continuous, F 6= 0 on ∂x, and suppose there
is an `, 1 ≤ ` ≤ n, such that:

1. F¬` 6= 0 on ∂xk or ∂xk, k = 1, . . . , n; and

2. the Jacobi matrices of F¬` are non-singular at all solutions of F¬` = 0 on ∂x.

Then

d(F, x, 0) = (−1)`−1s

·

{

∑

k∈K0(s)

(−1)k
∑

x∈xk
F¬`(x)=0

sgn
∣

∣

∣

∣

∂F¬`

∂x1x2 . . . xk−1xk+1 . . . xn
(x)

∣

∣

∣

∣

+
∑

k∈K0(s)

(−1)k+1
∑

x∈xk
F¬`(x)=0

sgn
∣

∣

∣

∣

∂F¬`

∂x1x2 . . . xk−1xk+1 . . . xn
(x)

∣

∣

∣

∣

}

.

In our methods, we precondition F , then arrange the coordinate widths of x about
our approximate solution x̌ so that we can verify, with a single interval evaluation
of a component of F per face xk or xk eliminated, that there are only several
terms in the sum in Theorem 2. We then use a very low-dimensional search on the
remaining several faces of x to find the solutions of F¬` = 0. In certain instances,
we have used a heuristic to guess the value of d(F, x, 0). In [11], we assumed that
the rank defect of the Jacobi matrix at the solution x∗, F (x∗) = 0 was 1, and that
quadratic terms of the “singular” component in the preconditioned function did
not vanish. We also reposed the verification task in complex n-space, necessary
to verify even-multiplicity solutions. (See [11, §4].) Under these assumptions, we
can verify that d(F, x, 0) = 2, and hence, there exists precisely either a singular
solution of multiplicity 2 or two nonsingular solutions in Cn near x̌. Our verification
process proceeds with 2n − 2 interval evaluations of a component of F and 2 one-
dimensional searches for solutions of a single nonlinear equation. Furthermore, the
one-dimensional searches are particularly efficient, since the solution locations can
be accurately predicted from a local model. Our analysis indicated the verification
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proceeded in O
(

n3
)

; this order was verified experimentally with solutions to finite
discretizations of a model problem with n up to 320.

In [9], we continued to consider the rank-defect-one case, but we no longer as-
sumed the quadratic terms did not vanish. If terms of the Taylor series up to
degree d vanish, but not all degree d terms vanish, then, in [9], we show how to
construct x about x̌ (in complex n-space) to easily verify that d(F, x, 0) = d. This
algorithm is a straightforward generalization of the degree-2 algorithm in [11], and
also runs in O

(

n3
)

time, both according to our analysis and according to experi-
ments done with finite-difference discretizations of degree 2 and 3, up to n = 160.
Also in [9], we present a heuristic that guesses the degree d before the verification
proceeds; knowing d beforehand allows us to structure the two one-dimensional
searches efficiently.

In [10], we first provide a general introduction and brief review of our techniques,
then speculate on the applicability of our techniques for rank defect higher than
1. In particular, we showed that, if the rank defect is p and the first terms in the
multivariate Taylor expansions that do not vanish are of order d, then verification of
the degree reduces, not to 2 one-dimensional searches for zeros of a single function,
but to 4p 2p−1-dimensional searches (over boxes in R2p) for solutions of a system of
2p−1 equations in 2p−1 variables. Furthermore, contrary to when p = 1, predicting
where the solutions to this system lie would, in general, involve finding the solutions
(in projective space) to an arbitrary system of p d-homogeneous polynomials in p
unknowns. Thus, verification appears significantly more costly in this case.

In theoretical developments of the topological degree as in [2] or [3], the degree
is defined for merely continuous, and not-necessarily differentiable F , and the de-
gree depends only on values of the components of F on the boundary ∂x; the
dependence on the boundary only is exemplified in the formula in Theorem 2. In
other words, the degree d(F, x, 0) (and hence the existence of solutions within x,
is invariant under continuous deformations of the graph of F in the interior of x,
with values on the boundary ∂x held constant. This fact has led people to propose
degree computation as a way of verifying solutions to nonlinear systems of equa-
tions F (x) = 0 where the components of F are defined in a piecewise fashion, such
as if these components are piecewise linear. (In fact, these considerations led us
to entitle [5] “Existence Verification for Singular and Non-Smooth Zeros of Real
Nonlinear Systems”.) The purpose of this paper is to clarify the possibilities of
applying our techniques in to non-smooth problems.

2. Are Degree Techniques Efficient to Verify Solutions for Nonsmooth
Functions?

Theorem 2 is related to a class of methods of computation of the topological de-
gree, derived from formulas first proposed by Stenger [14]. The first computational
techniques considered the computation as a global problem, in contrast to the local
problem of verifying existence within a small region around an approximate solu-
tion. In contrast to the verification techniques we developed, an exhaustive search
is done on the boundary of the region, without shortcuts. In [7] and [15], the degree
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was computed over an n-simplex, while the degree was computed over an n-box in
[16]. In all three of these developments, only the algebraic signs of the components
of F needed to be correct; however, the three methods used only heuristics to de-
termine when the boundary was sufficiently subdivided, and could thus produce
incorrect values, without an indication that the result is incorrect. In [1], Aberth
proposed a method based on interval evaluations on the boundary of a (relatively
large box) x; this method could never give an incorrect value of d(F, x, 0).

In contrast, in our work in [4], [11], [9], [10], and [5], we are not given a large box
x, but we construct x sufficiently small to allow us to use a local model of F to
both reduce the dimension of the search on the boundary and to greatly speed the
resulting low-dimensional search. The question we ask here is: “Can we do similar
simplifications if F is defined in a piecewise fashion, or is otherwise non-smooth?”
Such simplifications include

1. preconditioning the system,

2. applying a local model to the preconditioned system to reduce the dimension,
and

3. using a local model to predict where the solutions to F¬` = 0 are on ∂x, as in
Theorem 2.

Can our algorithms succeed, even when, strictly speaking, the local models that
justify the algorithms are not valid, because the components of F are non-smooth?
We consider several examples.

2.1. Degree Verification: Some Examples

In the work for [11], [9], and [5], we assumed a singular solution x∗ near our ap-
proximate solution x̌ such that the rank of the Jacobi matrix F ′(x∗) is n − 1. (In
[9], we assumed rank n − p, and proceeded similarly, but we consider p = 1 here
for simplicity.) We implicitly assumed local linearity, and we preconditioned the
system with an incomplete LU-factorization to eliminate (approximately) all but
the last variable from the first n − 1 functions. In other words, we replaced fk,
1 ≤ k ≤ n by linear combinations

fk ←
n

∑

j=1

yk,jfj ,

such that the all of the order 1 terms in the multivariate Taylor series for fk 1 ≤
k ≤ n− 1 vanished except for ∂fk

∂xk
= 1 and ∂fk

∂xn
, and such that all first order terms

in fn vanished. In other words, the preconditioned Jacobi matrix is of the form

Y F ′(x∗) ≈















1 0 . . . 0 ∗
0 1 0 . . . 0 ∗
...

...
. . .

...
...

0 . . . 0 1 ∗
0 . . . 0 0 0















. (5)
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To precondition in such a way, we take an incomplete LU-factorization of the Jacobi
matrix F ′(x̌) at the approximate solution x̌.

Example: Define

f1(x) = x1 + x2 + x3,
f2(x) = −x2 + x3

3,

f3(x) = x2 + x3
3, (6)

In this example, F (x) = 0 at x = (0, 0, 0)T , and

F ′(0) =





1 1 1
0 −1 0
0 1 0



 , L =





1 0 0
0 −1 0
0 1 1



 , U =





1 1 1
0 −1 0
0 0 0



 .

If we choose x = ([−0.02, 0.02], [−0.01, 0.01], [−0.01, 0.01])T , then an interval Jacobi
matrix is

F ′(x) =





1 1 1
0 −1 [0, 0.0003]
0 1 [0, 0.0003]



 .

Let Y represent a nonsingular matrix corresponding to the incomplete precondi-
tioning. We can obtain such a matrix by replacing the last column of U by the
corresponding column of the identity matrix, to form Ũ ; we then set Y = Ũ−1L−1.
Then

Y F ′(x) =





1 0 [0.9997, 1]
0 1 [−0.0003, 0]
0 0 [0, 0.0006]



 , and Y F (x) ≈





x1 + x3 − x3
3

x2 − x3
3

2x3
3



 ,

where

Y =





1 0 −1
0 −1 0
0 1 1



 .

Our simplification techniques in [11], [9], and [5] rely on numerically “solving” for
xk in terms of xn in the k-th equation, 1 ≤ k ≤ n − 1, using interval techniques
to take account of the fact that the form in (5) is only approximate. To illustrate,
we follow the general procedure in [11]. In Theorem 2, we will choose ` = 3 and
s = +1. First, we see that the relative widths of the coordinates of x follow [11,
(5.1)], so we would expect there to be no solutions of f1 = 0, and hence, no solutions
of F¬` = 0, on x1 and x1. We verify this by evaluating f1(x1) and f1(x1) with
mean value extensions:

(Y F )1(x1) ⊆ (Y F )1(0, 0, 0) + 1 · (−0.02) + [0.9997, 1] · [−0.01, 0.01]

⊆ [−0.03,−0.01],
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so we have verified that 0 6∈ (Y f)1(x1). Similarly, (Y f)1(x1) ⊆ [.01, .03], and
we have verified that (Y F )¬3 6= 0 on x1 = (−0.02, [−0.01, 0.01], [−0.01, 0.01])T and
x1 = (+0.002, [−0.01, 0.01], [−0.01, 0.01])T . Similarly, we use mean value extensions
for (Y f)2 on x2 and x2 to verify that (Y F )¬3 6= 0 on x2 and x2.

Now, we proceed as in the search phase of [5, Algorithm 1], to find the solutions of
(Y F )¬3 = 0 on x3 and x3. The search proceeds by “substitution” of the bound for
x3 into the mean value extensions for (Y F )1 and (Y F )2, to determine bounds on
x1 and x2 where F¬3 = 0. It is necessary here to use mean value extensions based
at the midpoint vector of the face. For example, on x3, x3 = −0.01. Plugging into
(Y F )1 = 0 gives

(Y F )1(0, 0,−.01) + (x1 − 0) + 0 · x2 + [0.9997, 1](0) = 0

⇒ x1 ∈ 0− (Y F )1(0, 0,−0.01)− ([−0.01,−0.009997] · 0)
1

= 0.009999.

Similarly, we obtain x2 ∈ [−10−6,−10−6]. (Note that this is simply the same
as applying two of the three steps of a Gauss–Seidel sweep to the preconditioned
system Y F ; this can be considered as an incomplete Gauss–Seidel sweep.) We thus
obtain that the solution of (Y F )¬3 = 0 on x3 must be at

x ∈ ([0.009999], [−10−6], [−0.01])T = x(1).

An interval evaluation of F (x(1)) gives

Y F (x) ∈
(

[0, 0], [0, 0], [−2× 10−6,−2× 10−6]
)T

,

thus showing that (Y F )3 < 0 at the unique solution of (Y F )¬3 = 0 on x3. (On
an actual computer, there would be some roundout error in the above, although it
would not be significant here.) Since (Y F )3(x(2)) < 0 and we have chosen s = 1,
this solution of (Y F )¬3 = 0 on ∂x does not occur in the sum in Theorem 2.
However, we do a similar computation on x3, to obtain a point x(1) ∈ x3 with

x(1) =





−0.009999
+10−6

+0.01



 , Y F (x(1)) =





0
0

+2× 10−6



 .

Since(Y F )¬3(x(1)) > 0, x(1) figures into the sum in Theorem 2. At x(1), we have

∂(Y F )¬3

∂x1∂x2
(x1) =

(

1 0
0 1

)

, det
(

∂(Y F )¬3

∂x1∂x2
(x1)

)

> 0.

Finally, since k = 3 for the sum in Theorem 2 and since the upper faces correspond
to the second summation in Theorem 2, the contribution of x(1) to this sum is +1.

Since the entire process above has exhaustively and rigorously searched all of
∂x, we have verified that d(Y F, x, 0) = +1, and hence, there exists a solution of
F (x) = 0 in x. Note that we have done this with 2 ∗ (n− 1) mean-value-extension
evaluations of (n − 1) components of F and with two incomplete Gauss–Seidel
sweeps2.

Can we do a similar computation when when the components of F are non-
smooth? Consider
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Example: Define

f1(x) = x1 + x2 + x3,

f2(x) =
{

−x2 + x3
3 if x2 ≥ 0,

−5x2 + x3
3 if x2 < 0,

f3(x) =
{

x2 + x3
3 if x2 ≥ 0,

0.1x2 + x3
3 if x2 < 0. (7)

This example is similar to the previous example, except that the Jacobi matrix
F ′ is not defined at the solution x∗ = (0, 0, 0)T . However, we may possibly use
techniques for non-smooth extensions as described in [8, Ch. 5]3. In short, to
evaluate F ′(x) for use in mean-value extensions, etc., we simply take the interval
hull of the range of F ′ over all x ∈ x for which F ′(x) is defined. If we take
x = ([−0.02, 0.02], [−0.01, 0.01], [−0.01, 0.01])T , we obtain

F ′(x) =





1 1 1
0 [−5,−1] [0, 0.0003]
0 [0.1, 1] [0, 0.0003]



 .

We can try preconditioning using the matrix of midpoints of F ′(x):

m
(

F ′(x)
)

=





1 1.00 1.00000
0 −3.00 0.00015
0 0.55 0.00015



 .

Although m
(

F ′(x)
)

is non-singular, F ′(x) contains singular matrices, and, in this
case, the midpoint matrix is approximately singular. We may still do an incomplete
LU-factorization for m

(

F ′(x)
)

(stopping at the small pivot element) to obtain:

L =





1 0 0
0 1 0
0 −0.183 1



 , Ũ =





1 1 0
0 −3 0
0 0 1



 , Y = Ũ−1L−1 =





1 0.333 0
0 −0.333 0
0 0.183 1



 ,

and

Y F ′(x) =





1 [−0.666, 0.666] [ 1.0000, 1.0001]
0 [ 0.333, 1.666] [−0.0001, 0]
0 [−0.816, 0.816] [0, 0.000355]



 .

We will now attempt to proceed as in the previous example. We observe that the
main difference in this example is that the entries in the preconditioned Jacobi ma-
trix are wider, and, in contrast to the previous example, cannot be made narrower
by decreasing the coordinate widths of x. Proceeding with the verification that
(Y F )¬3 6= 0 on x1, x1, x2, and x2, we obtain:

(Y F )1(x1) ⊆ (Y F )1(0, 0, 0) + 1 · (−0.02) + [− 0.666, 0.666] · [−0.01, 0.01]

+[1, 1.0001] · [−0.01, 0.01]

⊂ [−0.037,−0.002],
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and the verification that 0 6∈ (Y F )1(x1) succeeds in this case. However, extra
width is introduced due to the off-diagonal entries of the preconditioned Jacobi
matrix; these off-diagonal entries cannot be made small by making the box widths
small, and could cause a problem in this step of the verification process, in other
non-smooth examples. Nonetheless, in this case, we can also verify 0 6∈ (Y F )1(x1),
0 6∈ (Y F )2(x2), and 0 6∈ (Y F )2(x2) with corresponding mean value extensions.

Proceeding to the incomplete Gauss–Seidel sweep,

(Y F )(x̌) = (Y F )(0, 0,−0.01) =





−0.0100003
0.0000003

−0.0000001183



 ,

and the incomplete Gauss–Seidel sweep gives, for the solution to (Y F )¬3 = 0 on
x3,

x ∈ ([0.0033336, 0.016667], [−1.0× 10−6,−0.2× 10−6], [−0.01,−0.01])T = x(1).

Continuing, an interval evaluation of F (x(1)) gives

Y F (x) ∈





[−0.0066673, 0.00666813]
[−0.0000013, 0.00000000]

[−0.0000011,−0.000000286]



 .

The above computation shows that (Y F )3 < 0 at any points on x3 where (Y F )¬3(x) =
0; since we have chosen s = 1, such points do not enter into the sum in Theorem 2.
However, proceeding similarly with x3 gives

x(1) =





[−0.016667,−0.0033336]
[+0.0000002, +0.000001]

0.01



 , (Y F )(x(1)) =





[−0.0066668, 0.0066676]
[−0.00000026, 0]

[0.0000012, 0.000002146]



 .

Furthermore, over x(1),

∂(Y F )¬3

∂x1∂x2
(x1) =

(

1 0.6
0 0.3

)

, det
(

∂(Y F )¬3

∂x1∂x2
(x1)

)

> 0.

Thus, as in the previous, smooth example, we have shown that d(Y F, x, 0) = 1,
and, therefore, since Y is non-singular, we have verified existence of a solution of
F (x) = 0 within x. (Note that, since det(Y ) = −0.3 < 0 here, d(F, x, 0) = −1.)

Although the computations succeeded with this second, non-smooth, example,
we see that the extra widths (that cannot be reduced by making the coordinate
widths of x smaller) could cause either failure to verify F¬n 6= 0 on xk or xk for
some k between 1 and n−1, or else these excess widths may cause failure to obtain
sufficiently tight bounds to the solutions to F¬n = 0 on xn and xn to rigorously
determine sgn(fn) at these solutions. Such excessive overestimation seems more
likely when n > 3; nonetheless, the following modification to Example (7) exhibits
such excess.
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Example: Define

f1(x) =
{

x1 + x2 + x3 if x2 ≥ 0,
x1 + 10x2 + x3 if x2 < 0,

f2(x) = same as in Example (7),

f3(x) = same as in Example (7). (8)

Again taking x = ([−0.02, 0.02], [−0.01, 0.01], [−0.01, 0.01])T , we obtain

F ′(x) =





1 [1, 10] 1
0 [−5,−1] [0, 0.0003]
0 [0.1, 1] [0, 0.0003]



 , m
(

F ′(x)
)

=





1 5.50 1.00000
0 −3.00 0.00015
0 0.55 0.00015



 .

Computing the incomplete LU-factorization as before now gives

L =





1 0 0
0 1 0
0 −0.183 1



 , Ũ =





1 5.5 0
0 −3.0 0
0 0.0 1



 , Y = Ũ−1L−1 =





1 1.833 0
0 −0.333 0
0 0.183 1



 ,

and

Y F ′(x) =





1 [−8.166, 8.166] [ 1.0000, 1.00055]
0 [ 0.333, 1.666] [−0.0001, 0]
0 [−0.816, 0.816] [0, 0.000355]



 .

Trying, as before, to verify (Y F )¬3 6= 0 on x1, we obtain:

(Y F )1(x1) ⊆ (Y F )1(0, 0, 0) + 1 · (−0.02) + [−8.166, 8.166] · [−0.01, 0.01]

+[1, 1.00055] · [−0.01, 0.01]

⊂ [−0.1167216,+0.0716216],

and we cannot conclude that 0 6∈ (Y F )1. In fact, for this particular example, we
can compute the sharp range of (Y F )1 over x1. We have

(Y F )1(x) = f1(x) + 1.83f2(x)

=
{

x1 − 0.83x2 + x3 + x3
3 if x2 ≥ 0

x1 − 4.83x2 + x3 + x3
3 if x2 < 0,

from which it follows that the range of (Y F )1 over x1 must be equal to

x1
︷ ︸︸ ︷

−0.02
+

range of x2 terms
︷ ︸︸ ︷

[−0.0083, +0.0483]
+

range of x3 terms
︷ ︸︸ ︷

[−0.010001,+0.010001]

= [−0.0383343,+0.0383343].

(9)

Our construction of the box as in [11, (5.1)] fails in Example (8) to arrange that
(Y F )¬3 is non-zero on x1. The reason is that the heuristic presented in [11, (5.1)]
to select the ratio of coordinate widths to force 0 6∈ (Y F )1(x1 assumes that the
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off-diagonal entries of Y F ′(x), except in the last column, are approximately zero,
and that (Y F )k, 1 ≤ k ≤ n − 1 is thus approximately a linear function of x1

and xn. If the components of F have continuous second derivatives and if usual
interval extensions are employed to obtain the entries in F ′(x), then this assumption
becomes valid if the coordinate widths of x are all sufficiently small. However, in
Example (8), one of the off-diagonal entries is large, no matter how small we make
the widths of the box x. To see this, observe that each of the three terms in (9)
is approximately linear, so, if the ratios of the widths of x remain the same, the
range will be an interval that is approximately symmetric around zero, no matter
how small we make x, as long as x is centered on the solution x∗ = (0, 0, 0)T .

2.2. The Degree Prediction Heuristic: Examples

To verify existence, we verify that the topological degree is a particular non-zero
value. To efficiently prove that the degree is a certain value, we first conjecture
what that value is. For example, we do not need to extend to complex space to
verify existence if the degree is odd (as in the examples above), and verification of
the degree in complex space (corresponding to solutions of even degree) as described
in [11] and [9] is efficient only if we first correctly conjecture the value of d(F, x, 0).
We presented a heuristic for guessing the value of d(F, x, 0) in [9, §5] as follows:

1. Assume we have an accurate approximate solution x̌ to F (x) = 0, and assume
that F ′ has been preconditioned so Y F ′(x̌) ≈ Y F ′(x∗) is roughly of the form
(5).

2. In view of the form (5), define

g(xn − x̌n) = (Y F )n(t1, . . . , tn), where tn = xn and

tk = x̌k −
∂(Y F )k

∂xn
(x̌)(xn − x̌n), 1 ≤ k ≤ n− 1,

K(r, xn − x̌n) ≡ g(xn − x̌n)
(xn − x̌n)r , and

R(r) =
K(r, δ(xn − x̌n))
K(r, xn − x̌n)

=
g(δ(xn − x̌n))
g(xn − x̌n)

δ−r,

for integers r and a heuristic parameter δ. (10)

Then, as was shown in [9, §5], R(r) is approximately equal to δd−r, provided F
(and hence Y F ) can be represented as a multivariate Taylor polynomial of degree
at least d about x∗ ≈ x̌. Thus, if we chose, say, δ = 100, then we could compute
R(r) for different values of r, until we found an r0 for which 0.01 < R(r0) < 100;
d(F, z, 0) is then probably equal to r0, where z is a small box in complex n-space
containing the real point x̌. For example, in Example 6, suppose we have found the
solution x̌ = x∗ = (0, 0, 0)T exactly. Then we may choose xn − x̌n = 0.01. Then,
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since

Y F ′(x̌) =





1 0 1
0 1 0
0 0 0



 ,

t1 = −1·(0.01) = −0.01 and t2 = 0, F (t1, t2, x3) = (0, 10−6, 10−6), and g(xn−x̌n) =
(Y F )3(t1, t2, x3) = 2× 10−6. Similarly, g

(

δ(xn − x̌n)
)

= 2, so

R(r) =
g
(

δ(xn − x̌n)
)

g(xn − x̌n)
· δ−r, =

2
2× 10−6 · 100−r = 106−2r

Since R(r) is between 0.01 and 100 when r = 3, this heuristic provides the guess
that d(F, z, 0) = 3. In fact, the heuristic happens to also give the correct d(F, z, 0)
for Example 7 and Example 8, since if either Y F ′(0, 0, 0) or m(Y F ′(x)) is used,
the heuristic gives t2 > 0. However, consider

Example: Define

f1(x) = x1 + x2 + x3,

f2(x) =
{

−x2 + x2
3 if x3 ≥ 0,

−x2 + x3
3 if x3 < 0,

f3(x) =
{

x2 + x2
3 if x3 ≥ 0,

x2 + x3
3 if x3 < 0. (11)

Again taking x = ([−0.02, 0.02], [−0.01, 0.01], [−0.01, 0.01])T , we obtain

F ′(x) =





1 1 1
0 −1 [−3× 10−4, 2× 10−2]
0 1 [−3× 10−4, 2× 10−2]



 , m
(

F ′(x)
)

=





1 1 1.00000
0 −1 0.00985
0 1 0.000985



 ,

Y =





1 0 −1
0 −1 0
0 1 1



 , and Y F ′(x) =





1 0 [0.9997, 1.02]
0 1 [−0.02, 0.0003]
0 1 [−0.0006, 0.04]



 .

The degree verification process now proceeds very similarly to Example (6): After
verifying no solutions of (Y F )¬3 on x1, x1, x2, and x2, we verify that (Y F )3 < 0
at the solution of (Y F )¬3 = 0 on x3. On x3, we obtain the solution

x(1) =





−1.01× 10−2

1.00× 10−4

1.00× 10−2



 , (Y F )3(x(1)) = 2× 10−3.

Computations similar to those for Example (6) then verify that the contribution of
x(1) to the sum in Theorem 2 is +1. Furthermore, since F is smooth at x(1), this
successfully verifies that d(Y F, x, 0) = 1. (See §3 below for comments on why the
theory is still valid.)
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However, let us attempt to apply the heuristic (10) to Example 11. Using xn −
x̌n = x3 = 0.01, we obtain t1 = 1.00985 × 10−2, t2 = 9.85−5, and g(xn − x̌n) =
(Y F )3(t1, t2, x3) = 0.0002. Similarly, with δ = 100, we obtain g(δ(xn − x̌n)) = 2.
Thus,

R(r) =
2

2× 10−4 · 100−r = 102−r,

and the heuristic predicts that d(F, z, 0) = 2. In fact, the actual degree of the
complex extension must be odd, since the degree in real space is non-zero.

2.3. Summary: What do These Examples Illustrate?

The topological-degree-based algorithms we introduced in [11], [9], and [5] depend
on being able to reduce the system, with preconditioning, to a form in which the
off-diagonal elements of the interval Jacobi matrix (except for the last rows, corre-
sponding to the singular part) are intervals that approximately contain zero. For
systems with continuous derivatives of at least 2, it can always be arranged so that
the off-diagonal elements are sufficiently small by making the approximate solution
sufficiently accurate and making the box x, centered on the approximate solution,
sufficiently small. In the non-smooth case, depending on particulars of the system,
it may not be possible to precondition the system such that, for small boxes x, the
off-diagonal elements corresponding to the non-singular part of the preconditioned
interval Jacobi matrix are sufficiently small.

Second, the verification procedure works with a heuristic that determines a proba-
ble topological index. In the smooth case, subject to a size being chosen reasonably,
this heuristic can be expected to usually work. Examples have shown that the un-
derlying assumption upon which this heuristic is based (that is, that the system
can be reduced to an equation that behaves like a power of one of the variables)
no longer holds for non-smooth problems, and that the heuristic actually fails for
such cases.

Finally4, in the complex case (corresponding to solutions of even degree) described
in [11] and [9], an exhaustive one-dimensional search is made more efficient by
predicting locations of the solutions of F¬n = 0 on the boundary ∂x. The predicted
locations are based on a quadratic model (when the degree is suspected to be 2)
or on a higher-order model (when the degree is suspected to equal some number
higher than 2). In the non-smooth case, such predictions make no sense, and the
solutions may appear anywhere.

3. Theoretical Considerations

The theoretical grounding of the index verification procedure consists of Theorem 2,
combined with the preconditioning, interval evaluations, and incomplete Gauss–
Seidel steps illustrated in §2.1. Both Theorem 2 and the procedures illustrated in
§2.1 are valid when F is non-smooth, for the following reasons.
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3.1. Why Theorem 2 is true for non-smooth functions

The topological degree depends only on values on the boundary, and, furthermore,
the topological degree is a continuous function of F . (See [2],[3], [13], etc.) Finally,
it is well known that any continuous function F : x → Rn can be approximated
arbitrarily closely by a differentiable function. These facts, combined with the proof
of Theorem 2 in [11], show that Theorem 2 is valid even for F nonsmooth.

3.2. Why the elimination and incomplete Gauss–Seidel procedure are valid for
non-smooth functions

Verification that the faces xk and xk do not contain solutions of F¬n = 0, for
1 ≤ k ≤ n − 1, depends only on interval evaluations. Thus, whether or not F is
smooth, the conclusions will be correct provided the interval extensions are correct.
Similarly, the incomplete Gauss–Seidel procedure involves only interval arithmetic
(on possibly non-smooth expressions), and hence always gives correct results.

3.3. Consequences

Thus, regardless of whether or not F is smooth at solutions of F = 0, the verifica-
tion procedure will never incorrectly verify existence. However, for the procedure
to actually assert existence, certain widths need to be sufficiently small. In our pre-
vious analyses, the conditions we used to argue that those widths could be made
small depended strongly on F having a Taylor approximation of an appropriate
order. As a consequence, the verification is more likely to fail, if applied naively for
non-smooth F .

Nonetheless, since Theorem 2 is true for continuous functions, as long as the de-
terminants in the statement of the theorem are defined and non-zero, Theorem 2
can still be used in a generalized verification procedure for non-smooth functions.
However, without elimination and incomplete Gauss–Seidel procedures, direct ap-
plication of Theorem 2 requires an exhaustive search of 2n (n − 1)-dimensional
hypercubes, a prohibitive amount of work when n is large.

4. Conclusions

The procedures we have previously proposed for verifying existence of solutions of
nonlinear systems at which the Jacobi matrix is singular are also applicable when
the system is non-smooth at the solutions. However, these procedures are less likely
to produce a positive result. The underlying theorem is still valid, but acceleration
procedures may not work. The underlying theorem can be applied directly, without
the acceleration procedures, but then, the amount of computation would increase
exponentially (rather than cubically) with the number of variables. Nonetheless,
as our examples have hinted, it may be possible to arrange computations to avoid
excessive computational expense in specific non-smooth cases.
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Notes

1. If A is a slope matrix for F over x and centered at some point x̌ ∈ x, then it is possible that A
contains no singular matrices, even though the Jacobi matrix F ′(x) is singular at some x ∈ x.
However, it is happenstance when this occurs, and may not be easy to purposefully arrange

2. We have shown that d(Y F,x, 0) = 1. However, d(F,x, 0) = det(Y ) · d(F,x, 0). If we verify
that det(Y ) = −1, we will have shown that d(F,x, 0) = −1.

3. The theory underlying such non-smooth extensions is covered by cset theory, developed in [17].

4. Examples of the complex case have not been given here; such examples, fully worked out, have
significantly more computation, and require two one-dimensional searches.
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