
Interval Extensions of Non-Smooth Functions for
Global Optimization and Nonlinear Systems Solvers

R. Baker Kearfott∗

University of Southwestern Louisiana

February 29, 1996

Abstract

Most interval branch and bound methods for nonlinear algebraic
systems have to date been based on implicit underlying assumptions
of continuity of derivatives. In particular, much of the theory of inter-
val Newton methods is based on this assumption. However, derivative
continuity is not necessary to obtain effective bounds on the range of
such functions. Furthermore, if the first derivatives just have jump
discontinuities, then interval extensions can be obtained that are ap-
propriate for interval Newton methods. Thus, problems such as min-
imax or l1 approximations can be solved simply, formulated as un-
constrained nonlinear optimization problems. In this paper, interval
extensions and computation rules are given for the unary operation |x|,
the binary operation max{x, y} and a more general “jump” function
χ(s, x, y). These functions are incorporated into an automatic differen-
tiation and code list interpretation environment. Experimental results
are given for nonlinear systems involving max and |◦| and for minimax
and l1 optimization problems.

Die meisten herkömmlichen Intervallmethoden für Systeme von
nichtlinearen Gleichungen und nichlineare Optimierung basieren auf
die Stetigkeit der Ableitungen. Die Theorie von Intervall-Newton Meth-
oden ist hauptsächlich auf dieser Annahme basiert. Aber Stetigkeit der
Ableitungen ist nicht nötig, um wirkungsvolle Abschätzungen für den
Wertebereich solcher Funktionen zu erhalten. Ausserdem können in
vielen Fällen Intervallwerte gebildet werden, die für Intervall-Newton
Methoden geeignet sind. So, Probleme wie l∞ oder l1 Annäherungen

∗This work was supported in part by National Science Foundation grant CCR-9203730.

1

können einfacher gelöst werden, wenn sie als nichtlineares Optimierung-
problem ohne Nebenbedingungen formuliert sind. Hier werden Formeln
für die Berechnung von |x|, max{x, y} und eine allgemeinere “Sprung-
funktion” χ gegeben. Diese Funktionen werden gebraucht im Rahmen
der automatischen Diffrentiation usw. Es werden Ergebnisse von nu-
merischen Untersuchungen für nichtlineare Systeme mit max und | ◦ |
und für l∞ und l1 Optimierungsprobleme gegeben.

Key words. interval extensions, global optimization, nonsmooth op-
timization, nonlinear systems of equations, minimax approximation, l1 ap-
proximation

AMS subject classifications. 65K05, 90C30, 65H10, 62C20, 90C32

1 Introduction

Branch and bound methods coupled with traditional software for finding
approximate solutions, interval extensions of functions and derivatives, and
coupled with interval Newton methods to accelerate the search, can form
practical algorithms for rigorously finding all roots of nonlinear systems or
for global optimization. For introductions to such techniques, see [4], [6],
or [21], while for test results for such algorithms, see [6] or [12], [26], and
others. For an advanced introduction to the underlying techniques, see [7],
while for classic introductions to interval computations, see [1] or [19].

Traditionally, such methods have been implemented with subroutine
packages for interval extensions, ad-hoc packages, or special commercial lan-
guages, such as the “SC” family or the “XSC” family developed at Karlsruhe
([2], [5], [18], etc.). Recent work, such as described in [4, Ch. 5], combines
automatic differentiation for gradient computation to obtain Jacobi or Hes-
sian matrices for the interval Newton Methods. The author’s most recent
work has used his FORTRAN-77 package INTLIB [17], combined with the
Fortran 90 package described in [13] for operator overloading and automatic
differentiation and slope arithmetic.

Many important problems, such as minimax, l1 approximation, more
general problems involving absolute values, or problems in which the func-
tion is defined piecewise, such as splines, are non-smooth. Special codes,
such [25], or general but slow codes that do not use interval Newton meth-
ods, as [10], have been developed for non-smooth objective functions. How-
ever, except for the χ function of [13], interval extensions of functions such

2

as max and | ◦ | have not been prominent in interval packages1.
Furthermore, the theory of interval Newton methods, such as [20, Theo-

rem 5.2.12, p. 185] usually assumes that the function components are contin-
uously differentiable. The basic principle is that of a slope enclosure matrix
A ⊂ Rn×n for the function F : Rn → Rn, over X and centered at X̌:

For every X ∈ X, there exists an A ∈ A such that
F (X) = F (X̌) + A(X − X̌).

(1)

If there is then an X ∈ X with F (X) = 0, we must have X = X̌−A−1F (X̌)
for some A ∈ A, whence all roots of F in X must lie in the image X̌ −
[A]IF (X̌), where [A]IF (X̌) is the result of some interval Newton method;
see [20]. A condition that the derivatives of F be continuous seems natural,
due to the similarity of equation (1) to the mean value theorem.

Nonetheless, rigorous and effective A can be obtained when the deriva-
tives of the components of F have jump discontinuities, such as when F
contains terms involving | ◦ | or max. Interval Newton iteration can be ef-
fective in these cases, especially if extended interval arithmetic is allowed.
In such cases, the computations can often sharply locate critical points cor-
responding to non-differentiability.

In §2, formulas for relatively sharp interval extensions for | ◦ |, max and
our function χ are given. Furthermore, formulas appropriate for symbolic
differentiation of these functions, as well as for automatic differentiation (for
Lipschitz matrices, cf. [20, p. 174]) and automatic slope computation appear.
It is not hard to show that these formulas lead to matrices that obey the
Lipschitz condition in the case of derivatives, or condition (1) in the case of
slopes. Use of these formulas allows consideration of non-smooth approx-
imation problems, etc. in the same manner as smooth problems, without
special algorithms or constraints.

An example is worked in §3. Additional test examples are explained in
§4, while numerical results appear in §5.

2 Formulas for Interval Extensions

These formulas fall into the following groups:

1. rules for floating-point evaluation of the operation;
1The function |◦| is often defined to be that floating point value termed the magnitude.

3

2. rules for floating-point evaluation of the derivative of the operation.

3. rules for interval extensions of the operation;

4. rules for symbolic differentiation of the operation;

5. rules for interval evaluation of the derivative of the operation, assuming
the operation represents a continuous function, such as the absolute
value;

6. rules for interval evaluation of the derivative of the operation, assum-
ing the operation does not represent a continuous function, such as a
function defined by separate formulas in separate intervals, with un-
matching values at the break point;

7. rules for interval evaluation of slopes, assuming the operation repre-
sents a continuous function; and

8. rules for interval evaluation of slopes, assuming the operation does not
represent a continuous function.

Here, each of these rules is presented for each of the functions χ, | ◦ | and
max.

2.1 Formulas for xp = χ(xs, xq, xr)

The function xp = χ(xs, xq, xr) was first mentioned in [13] as a device to
program branches when generating code lists with operator overloading.
Though not standard, as | ◦ | or max is, it is more general, and is used in
the differentiation formulas for | ◦ | and max.

Formula 1 Floating-point evaluation

χ(xs, xq, xr) =

{

xq if xs < 0;
xr otherwise.

Formula 2 Floating-point evaluation of the derivative

∂χ(xs, xq, xr)
∂xq

=

{

1 if xs < 0;
0 otherwise.

∂χ(xs, xq, xr)
∂xr

=

{

0 if xs < 0;
1 otherwise.

4

Formula 3 Interval evaluation

χ(xs,xq,xr) =

xq if xs < 0;
xr if xs > 0;

xq∪xr otherwise.

Formula 4 Symbolic differentiation

χ′(xs, xq, xr) = χ(xs, x′q, x
′
r)

Formula 5 Interval evaluation of ∂χ/∂xq, ∂χ/∂xr and ∂χ/∂xs when χ is
continuous in xs, i.e. when xq = xr whenever xs = 0. (appropriate for a
backward automatic differentiation process).

∂χ(xs,xq,xr)
∂xq

=

1 if xs < 0;
0 if xs > 0;

[0, 1] otherwise.

∂χ(xs,xq,xr)
∂xr

=

0 if xs < 0;
1 if xs > 0;

[0, 1] otherwise.

∂χ(xs,xq,xr)
∂xs

= 0

Formula 6 Interval evaluation of ∂χ/∂xq, ∂χ/∂xr and ∂χ/∂xs when χ is
possibly discontinuous in xs i.e. when xq = xr whenever xs = 0. (appropri-
ate for a backward automatic differentiation process). The formulas are the
same as formula 5 except:

∂χ(xs,xq,xr)
∂xq

= (−∞,∞) if 0 ∈ xs

∂χ(xs,xq,xr)
∂xr

= (−∞,∞) if 0 ∈ xs

Formula 7 Interval evaluation of the slope S(χ,X, X̌) when χ is continuous
in xs (appropriate for a forward automatic differentiation process).

S(χ(xs, xq, xr),X, X̌) =

S(xq,X, X̌) if xs∪ x̌s < 0;
S(xr,X, X̌) if xs∪ x̌s > 0;

S(xq,X, X̌)∪S(xr,X, X̌) otherwise.

5

Formula 8 Interval evaluation of the slope S(χ,X, X̌) when χ is discon-
tinuous in xs (appropriate for a forward automatic differentiation process).
The formula is the same as Formula 7 when 0 6∈ xs∪ x̌s. When 0 ∈ xs∪ x̌s,
the following is used.

S(χ(xs(X), xq(X), xr(X)),X, X̌) =

S(xr(X),X, X̌)∪
{

1
xs(X̌)

(

xr(X)− xq(X)
)

S(xs(X),X, X̌)
}

if xs(X̌) > 0

S(xq(X),X, X̌)∪
{

−1
xs(X̌)

(

xr(X)− xq(X)
)

S(xs(X),X, X̌)
}

if xs(X̌) < 0
{[

1
xs(X̌)

,∞
)

∪
[

−1
xs(X̌)

,∞
)}

(

xr(X)− xq(X)
)

S(xs(X),X, X̌)

∪S(xq(X),X, X̌)∪S(xr(X),X, X̌) if 0 ∈ xs(X̌).

Formula 8 is explained in [15, §4] and [16]. Formula 8 is useful in opti-
mization with interval Newton methods to enclose critical points, since the
gradient of functions containing max and | ◦ | contains χ-expressions that
are discontinuous in xs.

2.2 Formulas for xp = |xq|

If x ∈ R, then |x| = χ(x,−x, x). However, χ(x,−x,x) overestimates the
range of | ◦ | over the interval x, so it is advantageous to consider | ◦ | as a
separate operation, with the following computation formulas.

Formula 9 Floating-point evaluation of the derivative (well-known; nothing
special is done at the break point)

d|xq|
dxq

=

{

−1 if xq < 0;
1 otherwise.

Formula 10 Interval evaluation

|x| =
{

[0, max{|x|, |x|}] if 0 ∈ x;
[min{|x|, |x|},max{|x|, |x|}] otherwise.

Formula 11 Symbolic differentiation

|xq|′ = χ(xq,−1, 1)xq
′

Formula 12 Interval evaluation of d|x|/dx (appropriate for a backward
automatic differentiation process).

d|xq|
dxq

=

−1 if xq < 0;
1 if xq > 0;

[−1, 1] otherwise.

6

Formula 13 Interval evaluation of the slope S(|xq|,X, X̌) (appropriate for
a forward automatic differentiation process).

S(|xq|),X, X̌) =

−S(xq,X, X̌) if xq∪x̌q < 0;
S(xq,X, X̌) if xq∪ x̌q > 0;

S(d)(|xq|,xq, x̌q)S(xq,X, X̌) otherwise,

where

S(d)(|x|,x, x̌) = h(x)∪h(x) with h(x) =

{

|x|−|x̌|
x−x̌ for x 6∈ x̌;

[−1, 1] otherwise.

The third branch of Formula 13 is an application of a generalization of [24,
Theorem 3.4]; see [15].

2.3 Formulas for xp = max{xq, xr}

For real values xq and xr, max{xq, xr} = χ(xr − xq, xq, xr), but χ(xr −
xq,xq,xr) overestimates the range of max for interval values xq and xr.
Formulas appropriate for max follow.

Formula 14 Floating-point evaluation of the derivative (well-known)

∂ max{xq, xr}
∂xq

=

{

1 if xq > xr;
0 otherwise.

∂ max{xq, xr}
∂xr

=

{

0 if xq > xr;
1 otherwise.

Formula 15 Interval evaluation

max{xq,xr} = [max{xq, xr}, max{xq, xr}]

Formula 16 Symbolic differentiation

max′(xq, xr) = χ(xr − xq, xq
′, xr

′)

Formula 17 Interval evaluation of ∂ max /∂xq and ∂ max /∂xr (appropri-
ate for a backward automatic differentiation process).

∂ max{xq,xr}
∂xq

=

1 if xq > xr;
0 if xq < xr;

[0, 1] otherwise.

∂ max{xq,xr}
∂xr

=

0 if xq > xr;
1 if xq < xr;

[0, 1] otherwise.

7

Formula 18 Interval evaluation of the slope S(max{xq,xr},X, X̌) (appro-
priate for a forward automatic differentiation process).

S(max{xq, xr},X, X̌) =

S(xq,X, X̌) if xq∪x̌q > xr∪ x̌r;
S(xr,X, X̌) if xq∪x̌q < xr∪ x̌r;

S(xq,X, X̌)∪S(xr,X, X̌) otherwise.

3 An Example

Consider
f(x) = |x2 − x| − 2x + 2 = 0. (2)

This function has both a root and a cusp at x = 1, with a left derivative of
−3 and a right derivative of −1 at x = 1. If 1 ∈ x, then a slope enclosure is
given by S(f,x, x) = [−1, 1](x+x−1)−2. We will proceed with an interval
Newton method

x̃ ← xi − f(xi)/S(f, xi,xi)

xi+1 ← xi ∩ x̃,

with xi equal to the midpoint of xi, and x0 = [0.7, 1.1].
From Formula 13 and other formulas for slopes, an initial slope enclosure

is computed to be

S(f, [0.7, 1.1], .9) = [−1, 0.7][0.6, 1]− 2 = [−3,−1.3],

so x̃ = 0.9 − 0.29
[−3,−1.3] ⊆ [0.996, 1.1231], and x1 = q[0.996, 1.1]. Subsequent

iterates are given in Table 1. Note that on iteration 3, existence was proven,
since x̃3 ⊂ [.9996, 1.0079] is strictly in the interior of x2 ⊃ [.996, 1.0293]. The
width tolerance of 10−6 was achieved after 9 iterations. The third column
of Table 1 gives approximate widths of the xi, and the fourth column gives
ratios of successive widths of the xi. Thus, the convergence appears to be
linear; in fact, there there appears to be a different convergence rate for
the left end point than for the right end point. (Note: if monotonicity of
the intermediate expression x2− x were taken into account, so exact ranges
for it were computed, then an exact inclusion for S(f, [0.7, 1.1], .9) could be
computed, and existence could be proven on the first iteration.)

8

i xi width ratios
0 [0.6999,1.1001] 4.0× 10−1 —
1 [0.9966,1.1001] 1.0× 10−1 .25
2 [0.9966,1.0293] 9.6× 10−2 .96
3 [0.9996,1.0079] 8.3× 10−3 .09
4 [0.9999,1.0022] 2.3× 10−3 .28
5 [0.9999,1.0007] 8.0× 10−4 .35
6 [0.9999,1.0001] 2.0× 10−4 .25

Table 1: Iterates (rounded out) and interval widths (rounded) of the interval
Newton method, for the example of equation (2)

4 Test Problems and Testing Environment

We wish to test the efficacy of these operations when used to represent
objective functions in global optimization and nonlinear algebraic systems.
The nonlinear systems problems are somewhat easier, since only first-order
derivatives are required, and the sharper formulas 5 and 7 may be used
instead of 6 and 8 when computing the iteration matrix (derivative or slope)
for the interval Newton methods2.

4.1 The Testing Software and Environment

The Fortran 90 environment of [13] with the interval arithmetic package
of [17] is used. The global optimization problems were tested essentially
with the code of [14], while the problems involving nonlinear systems of
equations were tested with the code of [12]; minor modifications had been
made to these codes subsequent to the experiments in [12] and [14]. In both
the optimization and nonlinear equations codes, an approximate solution
was computed (if possible) first3. If an approximate optimum or solution
was found, a box was constructed around it, and the algorithm attempted
to verify existence and uniqueness (of a critical point or root) within this
constructed box with ε-inflation [24].

2because symbolic differentiation of | ◦ | or max gives evaluations of χ that are discon-
tinuous across the branch

3with LANCELOT for the optimization code and with MINPACK 1 for the nonlinear equa-
tions code

9

In all of the test problems, a code list (ordered list of operations to
evaluate the function) was first produced, within the environment of [13].
The code list was then differentiated symbolically to obtain a code list for
both the objective and gradient. This derivative code list was then used in
the actual optimization or nonlinear equations routines to obtain objective
and gradient values, and to obtain slope matrix values when interval Newton
methods were employed.

The experiments were run on a Sparc 20 with version 2.1 of the NAG
Fortran 90 compiler; the debugging option, along with the lowest level of
optimization, was set. Timings are given in Standard Time Units (STU’s),
in the context explained in [12].

4.2 Test Problems for Global Optimization

The first three problems, relatively simple, are used as an initial test of the
ideas. Linear problems, they are based on fitting a line y = ax + b to the
data set

{(xi, yy)} = {(0, 1), (1, 4), (2, 5), (3, 8)} (3)

in the l2, l1 and l∞ sense, respectively, as follows.

l2 l2 approximation of the simple data set (3), for comparison purposes.
The function is programmed within the system [13] as follows, where
the objective function value is PHI(1), where (X(I),Y(I)) is the I-th
data point from (3) and where F(X) = aX+b, where a and b are the
independent variables.

SUM = 0
DO I = 1,NDATA

R = Y(I) - F(X(I))
SUM = SUM + R**2

END DO
PHI(1) = SUM

l1 l1 approximation of the simple data set (3). As in the previous example,
the central part of the Fortran 90 code for defining this function is

SUM = 0
DO I = 1,NDATA

SUM = SUM + ABS(Y(I) - F(T(I)))
END DO
PHI(1) = SUM

10

linfty l∞ approximation of the simple data set (3). The central part of the
Fortran 90 code for it is

VAL = 0
DO I = 1,NDATA

R = ABS(Y(I) - F(T(I)))
VAL = MAX(R,VAL)

END DO
PHI(1) = VAL

The above three functions were also defined in an alternate way, using
the χ function exclusively. However, preliminary numerical experiments re-
flected the fact that this resulted in overestimates for values and derivatives.

The final two objective functions are Problem 1 and Problem 2 in [27].
Here they will be denoted by zang1 and zang2.

All of these problems are two-dimensional. The starting boxes were
[−10, 10]× [−10, 10] in each case.

4.3 Test Problems for Nonlinear Systems

We devised two small problems to illustrate the behavior of the software,
including the interval Newton algorithms, on such systems, and to facilitate
checking correctness of the coding. In the first problem, the roots do not
occur at points of non-differentiability, while the roots do occur at such
points in the second problem.

nle-1 This one-dimensional problem is given by

f(x) = |x2 + 5x|+ x + 1 = 0.

Its roots are at x = −2 −
√

5 ∈ [−4.237,−4.236] and x = −3 −
√

8 ∈
[−5.829,−5.828].

nle-2 This two-dimensional problem is defined by (f1, f2) = (0, 0), where

f1(X) = max{sin(x1 + x2), cos(x1 + x2)}
−min{sin(x1 + x2), cos(x1 + x2)}

f2(X) = |x1| − |x2|,

and where min{A,B} was coded as −max{−A,−B}. It has 13 so-
lutions in [−10, 10], given by x1 = x2 = π/8 + kπ/2, k = −6,−5,
. . . , 0, . . . , 5, 6.

11

5 Experimental Results

Here, we report the CPU time in standard time units (STU), the total
number of boxes processed (NBOX) (not including those constructed dur-
ing ε-inflation), the number of objective function or residual evaluations
(NFUN), the number of interval Newton matrix evaluations (NMAT)4, and,
in the case of optimization, the number of gradient evaluations (NGRAD).
A minimum box size tolerance (explained in [12] and [14]) of 10−6 was used
in each case. As explained in [12], the CPU times do not reflect the mini-
mum possible with this kind of method, since the programming environment
was not meant to be optimally fast. However, they should be meaningful in
relative terms; also, the total number of boxes NBOX correlates highly with
the total amount of work. Floating point evaluations for the approximate
optimizer or root-finder are not represented; such additional statistics are
available upon request from the author.

Performance results appear in Table 2. In each case in the optimization
code, the exhaustive search was successful, and the final list consisted of a
single box containing the unique global optimizer. The exhaustive search
also completed for both of the nonlinear equations examples. In the case
of nle-1, the final list consisted of exactly two intervals, each of which was
verified to contain a unique root. In the case of nle-2, the final list consisted
of 13 boxes, each containing precisely one of the 13 roots of the function
within the region; however, uniqueness was verified in none of the boxes.

The performance on zang1 is roughly comparable to that of the heuristic,
non-interval algorithm of [27], while more effort was required for zang2.
We note, however, that inclusion of non-differentiabilities is conceptually
simple in this algorithm, does not require choices of parameters or smoothing
functions, and leads to rigorous, exhaustive search.

Since the formulas presented here are meant to be applied as an integral
part of computer codes that have been designed originally for smooth prob-
lems, a main advantage is their ease of use. That is, the formulas unify and
simplify the treatment of a variety of problems. However, there is a question
of how much efficiency, if any, use of the formulas offers over computer codes
for verified computations that do not use derivative information. To illus-
trate the difference approximately, two variants of the optimization code and
one variant of the nonlinear equations code were run. In the variant of the

4slope matrices for the Hessian matrix, in the case of optimization, and slope matrices
for the Jacobi matrix, in the case of nonlinear systems

12

Problem STU NBOX NFUN NMAT NGRAD
l2 0.9 5 24 2 8
l1 56.4 180 911 164 508

linfty 68.9 185 914 162 509
zang1 34.8 62 325 64 191
zang2 6005.3 6399 36742 7447 21293
nle1 0.0 2 21 29
nle2 11.0 268 927 552

Table 2: Performance data for non-differentiable problems

Problem STU NBOX
IN MT None IN MT None

l2 0.9 26.4 58.0 5 152 256
l1 56.4 41.5 47.4 180 180 194

linfty 68.9 52.8 66.6 185 185 208
zang1 34.8 24.6 24.1 62 66 66
zang2 6005.3 21748.8 21778.6 6399 8403 8403
nle1 0.7 1.8 2 24
nle2 65.5 83.1 268 867

Table 3: Performance measures with and without derivatives

nonlinear equations code, the interval Newton method was not applied to
the current box5, so derivatives or slope information was not used to reduce
the size of boxes. The first variant of the optimization code was similar:
an interval Newton method (and hence slope matrices) was not used on the
gradient system. In the second variant, not only was an interval Newton
method not used, but gradients were not used to determine if a box could
not contain critical points. (That is, the “midpoint test” was not used.)

The results for these algorithm variants appear in Table 3. There, the
subcolumns labeled IN denote the variant with the interval Newton meth-
ods, those labelled MT denote the variant with the monotonicity test, but
no interval Newton method,, and those labelled NONE represent the basic
algorithm without the monotonicity test. It is seen that first and second

5i.e. steps 1–4 of Algorithm 6 in [12] were not done

13

order information are useful in reducing the total number of boxes in the
nonlinear equation problems, but the second order information (correspond-
ing to slopes across discontinuities) only appears to be effective for zang2.
The CPU times are slightly more difficult to interpret, since, within the cur-
rent implementation in the environment of [13], all intermediate quantities
necessary for evaluation of gradients are computed whenever an objective
function value is computed. However, the STU values provide roughly the
same conclusions as NBOX.

Second-order information was used in all variants in the ε-inflation pro-
cess around approximate roots. This is not reflected in the tables. However,
the process was effective, since all roots or critical points except those for
nle2 could be verified.

Experimental studies of a derivative-free optimization code appear in
[3, 8, 9, 10], while tests of methods that involve derivatives appear in [3, 9,
11, 22, 23]. Comparisons with and without the monotonicity test appear
in [3]. Further work is necessary to completely compare all techniques in
these works with computer codes that incorporate extensions of non-smooth
functions and their derivatives.

6 Summary

Explicit formulas for interval extensions of functions and derivatives com-
monly occurring in non-smooth optimization problems have been presented.
With these extensions, non-smooth problems may be solved with the same
algorithms as smooth problems, thus greatly simplifying the process.

References

[1] G. Alefeld and J. Herzberger. Introduction to Interval Computations.
Academic Press, New York, 1983.

[2] J. H. Bleher, S. M. Rump, U. Kulisch, M. Metzger, C. Ullrich, and
W. Walter. FORTRAN-SC — A study of a fortran extension for en-
gineering scientific computation with access to ACRITH. Computing,
39(2):93–110, 1987.

[3] T. Csendes. Test results of interval methods for global optimization.
In E. Kaucher, S. M. Markov, and G. Mayer, editors, Computer Arith-

14

metic, Scientific Computing, and Mathematical Modelling, pages 417–
424, Basel, 1992. J. C. Baltzer AG.

[4] R. Hammer, M. Hocks, U. Kulisch, and D. Ratz. Numerical Toolbox
for Verified Computing I. Springer-Verlag, New York, 1993.

[5] R. Hammer, M. Neaga, and D. Ratz. PASCAL-XSC, New concepts
for scientific computation and numerical data processing. In E. Adams
and U. Kulisch, editors, Scientific Computing with Automatic Result
Verification, pages 15–44, New York, etc., 1993. Academic Press.

[6] E. R. Hansen. Global Optimization Using Interval Analysis. Marcel
Dekker, Inc., New York, 1992.

[7] J. Herzberger, editor. Topics in Validated Computations, Studies in
Computational Mathematics, Amsterdam, 1994. Elsevier Science Pub-
lishers.

[8] C. Jansson. A global optimization method using interval arithmetic. In
L. Atanassova and J. Herzberger, editors, Computer Arithmetic and
Enclosure Methods, pages 259–268, Amsterdam, Netherlands, 1992.
North-Holland.

[9] C. Jansson. On self-validating methods for optimization problems. In
J. Herzberger, editor, Topics in Validated Computations, pages 381–
439, Amsterdam, Netherlands, 1994. North-Holland.

[10] C. Jansson and O. Knüppel. A global minimization method: The multi-
dimensional case. Technical Report 92.1, Informathinstechnik, Technis-
che Uni. Hamburg–Harburg, 1992.

[11] C. Jansson and O. Knüppel. Numerical results for a self-validating
global optimization method. Technical Report 94.1, Technical Univer-
sity Hamburg–Harburg, February 1994.

[12] R. B. Kearfott. Empirical evaluation of innovations in interval branch
and bound algorithms for nonlinear algebraic systems, 1994. Accepted
for publication in SIAM J. Sci. Comput.

[13] R. B. Kearfott. A Fortran 90 environment for research and prototyping
of enclosure algorithms for nonlinear equations and global optimization.
ACM Trans. Math. Software, 21(1):63–78, March 1995.

15

[14] R. B. Kearfott. Test results for an interval branch and bound algo-
rithm for equality-constrained optimization. In C. Floudas and P. M.
Pardalos, editors, State of the Art in Global Optimization: Computa-
tional Methods and Applications, pages 181–200, Dordrecht, Nether-
lands, 1995. Kluwer.

[15] R. B. Kearfott. Treating non-smooth functions as smooth functions in
global optimization and nonlinear systems solvers. In G. Alefeld and
A. Frommer, editors, Scientific Computing and Validated Numerics,
Mathematical Research, Berlin, 1995. Akademie Verlag.

[16] R. B. Kearfott. Rigorous Branch and Bound Methods. Kluwer, Dor-
drecht, Netherlands, 1996.

[17] R. B. Kearfott, M. Dawande, K.-S. Du, and C.-Y. Hu. Algorithm 737:
INTLIB, a portable FORTRAN 77 interval standard function library.
ACM Trans. Math. Software, 20(4):447–459, December 1994.

[18] C. Lawo. C-XSC – a programming environment for verified scientific
computing and numerical data processing. In E. Adams and U. Kulisch,
editors, Scientific Computing with Automatic Result Verification, pages
71–86, New York, etc., 1993. Academic Press.

[19] R. E. Moore. Methods and Applications of Interval Analysis. SIAM,
Philadelphia, 1979.

[20] A. Neumaier. Interval Methods for Systems of Equations. Cambridge
University Press, Cambridge, England, 1990.

[21] H. Ratschek and J. Rokne. New Computer Methods for Global Opti-
mization. Wiley, New York, 1988.

[22] D. Ratz. Automatische Ergebnisverifikation bei globalen Opti-
mierungsproblemen. PhD thesis, Universität Karlsruhe, 1992.

[23] D. Ratz. An inclusion algorithm for global optimization in a portable
PASCAL-XSC implementation. In L. Atanassova and J. Herzberger,
editors, Computer Arithmetic and Enclosure Methods, pages 329–338,
Amsterdam, Netherlands, 1992. North-Holland.

[24] S. M. Rump. Verification methods for dense and sparse systems of
equations. In J. Herzberger, editor, Topics in Validated Computations,
pages 63–135, Amsterdam, 1994. Elsevier Science Publishers.

16

[25] Z. Shen, A. Neumaier, and M. C. Eiermann. Solving minimax problems
by interval methods. BIT, 30:742–751, 1990.

[26] G. W. Walster, E. R. Hansen, and S. Sengupta. Test results for a global
optimization algorithm. In P. T. Boggs, R. H. Byrd, and R. B. Schn-
abel, editors, Numerical Optimization 1984, pages 272–287, Philadel-
phia, 1985. SIAM.

[27] I. Zang. A smoothing-out technique for min-max optimization. Math.
Prog., 19(1):61–77, 1980.

17

