
A Comparison of Some Methods for Bounding

Connected and Disconnected Solution Sets of

Interval Linear Systems

R. Baker Kearfott∗

December 4, 2007

Abstract

Finding bounding sets to solutions to systems of algebraic equations
with uncertainties in the coefficients, as well as rapidly but rigorously lo-
cating all solutions to nonlinear systems or global optimization problems,
involves bounding the solution sets to systems of equations with wide in-
terval coefficients. In many cases, singular systems are admitted within
the intervals of uncertainty of the coefficients, leading to unbounded so-
lution sets with more than one disconnected component. This, combined
with the fact that computing exact bounds on the solution set is NP-hard,
limits the range of techniques available for bounding the solution sets for
such systems. However, the componentwise nature and other properties
make the interval Gauss–Seidel method suited to computing meaningful
bounds in a predictable amount of computing time. For this reason, we
focus on the interval Gauss–Seidel method. In particular, we study and
compare various preconditioning techniques we have developed over the
years but not fully investigated, comparing the results. Based on a study
of the preconditioners in detail on some simple, specially-designed small
systems, we propose two heuristic algorithms, then study the behavior of
the preconditioners on some larger, randomly generated systems, as well
as a small selection of systems from the Matrix Market collection.

Keywords: numerical linear algebra, global optimization, validated computing,
interval analysis
AMS Subject Classifications: 65F10, 65G20, 65K99

1 Introduction

It is sometimes appropriate to express uncertainties in the coefficients of linear
algebraic systems as intervals. Also, it is sometimes appropriate to express the

∗Department of Mathematics, University of Louisiana, U.L. Box 4-1010, Lafayette,
Louisiana, 70504-1010, USA (rbk@louisiana.edu).

1

Bounding Disconnected Solution Sets 2

effect of nonlinearities in a system as intervals of possible values1, also leading
to linear systems with interval coefficients. That is, we obtain an interval linear
system of equations

Ax = b, (1)

where A is an m by n matrix with interval coefficients and b is an m-vector
with interval coefficients. It is desirable to find sharp bounds on the solution
set to (1), where the solution set is defined as

Σ(A, b) = {x | Ax = b for some A ∈ A and some b ∈ b} . (2)

Even when A is a square (n by n) matrix and each A ∈ A is nonsingular (so that
the solution set Σ(A, b) is bounded), it is known (see, for example [10]) that,
in the general case, finding exact bounds xi = [xi, xi] on the components of the
points2 in Σ(A, b) is NP-hard. Furthermore, in many cases of interest, such as
when the system (1) arises during an interval Newton method, and the underly-
ing nonlinear system has more than one isolated solution with the domain, the
solution set Σ(A, b) contains two or more disjoint unbounded components.

In either case (bounded solution set or unbounded solution set), directly ap-
plying an interval version of a solution procedure, e.g. applying interval Gaussian
elimination or the interval Gauss–Seidel algorithm directly to (1) in general leads
to catastrophic overestimation in the bounds for the components of Σ(A, b). In
such instances, we precondition the system (1), forming3 the derived system

Y Ax = Y b i.e. Ãx = b̃, where Ã = Y A and b̃ = Y b. (3)

Although the solution set to (3) in general is not equal to the solution set to (1)
(but merely contains it), Y can often be chosen so that the overestimation in the
solution process4 for (3) is not catastrophic, and usable (although not optimal)
bounds on the components of Σ(A, b) can be obtained. (Here, and throughout
the paper, we say that computed bounds are usable if they do not contain
previously known bounds5; similarly, we say that a preconditioner is useful if
its application results in usable bounds.) This paper deals with designing and
choosing preconditioners that give practical results in as wide as possible a range
of cases.

The most common preconditioner Y in (3) has been the inverse midpoint

matrix, that is Y =
(

Ǎ
)−1

, where Ǎ is a floating point approximation to
m(A), where m(A), the “midpoint matrix,” is the matrix whose i, j-th en-
try is ai,j = (ai,j + ai,j)/2, where the (i, j)-th entry of A is ai,j = [ai,j , ai,j].
This preconditioner is relatively simple and inexpensive to compute, and is es-
pecially effective when the widths in the matrix A are small. However, the

1typically, during an interval Newton method
2The set Σ(A, b) is, in general, not a box of the form {x ∈ R

n : xi ≤ xi ≤ xi, 1 ≤ i ≤ n},
but is a star-shaped region or an unbounded region; see, for example [13, §3.4].

3in theory; in practice, the actual full matrix Y A need not always be formed and stored
at once.

4usually, interval Gaussian elimination or the interval Gauss–Seidel method
5or, in the case no known bounds are available, are not [−∞,∞]

Bounding Disconnected Solution Sets 3

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

x
x
x
x
x

x
x
x
x

xxxxx

xxxxx

xxx

xxx

x x

x

1 1

2

xxx

xxx

xx

x2xx

x2
xxx

x2

xx

~

~

Figure 1: Application of the interval Gauss–Seidel method when the solution
set is unbounded.

x
x
x
x
x

x
x
x
x

xxxxx

xxxxx

x x1 1xxx

xx

x2xx

x2
xx

x2xx

~

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx

(1)
x2

xx

~

(2)
xx

xxxxxxxxx

x
x
x
x
x
x
x

xx
xx

xx
xx
xx

x
x
x
x
x
x

xx
xx
xx
xx

xx

Figure 2: Application of the interval Gauss–Seidel method when the solution
set is disconnected.

preconditioner can be ineffective when the entries of A are wide (that is, when
the entries of A have much uncertainty). The inverse midpoint preconditioner
can be especially ineffective when A contains singular matrices (and Σ(A, b) is
thus unbounded), but we nonetheless desire to compute bounds on some of the
coordinates of the solution set that lie within a particular given set of bounds
x. See Figure 1: there, the solution set lies between the two oblique lines, the
original bounds are x1 ≤ x1 ≤ x1 and x2 ≤ x2 ≤ x2, and it may be possible with
the interval Gauss–Seidel method to narrow the bounds on x2 to x̃2 ≤ x2 ≤ x̃2.

In contrast, in Figure 2, the solution set is disconnected and unbounded;
in this case, the interval Gauss–Seidel method can compute bounds for each
component, thus eliminating a portion of the region described by the original
bounds. This computation is useful, for example, if an exhaustive search is being
used to rigorously bound all solutions to a nonlinear system of equations, the
initial bounds represent a portion of that region to (hopefully) be eliminated,
and the interval linear system has arisen from an interval Newton method for

Bounding Disconnected Solution Sets 4

the nonlinear system of equations.
In previous work ([7] and [8, Ch. 3]), we proposed preconditioners for the

interval Gauss–Seidel method for the cases illustrated in Figure 1 and Figure 2.
Specifically, if Ã and b̃ are as in (3), the interval Gauss–Seidel method is given
as

xk is given for 1 ≤ k ≤ n,

x̃k ←
1

ãk,k

b̃k −
k−1
∑

j=1

ãk,jx̃j −
n
∑

j=k+1

ãk,jxj

for k = 1, 2, . . . , n.
(4)

If 0 6∈ ãk,k, then x̃k is an interval of the form

x̃k = [x̃k, x̃k], (5)

as in Figure 1, whereas, if 0 ∈ ãk,k and the numerator in (4) does not contain
zero, then x̃k will consist of two semi-infinite intervals of the form

x̃k =
(

−∞, x̃
(1)
k

]

⋃

[

x̃
(2)
k ,∞

)

, (6)

as is illustrated in Figure 2.
For the case that x̃k is a single connected interval, the preconditioners we

described in [8, Ch. 3] are based on devising the k-th row Yk of the preconditioner
to attempt to:

• minimize the width w(x̃k) = x̃k − x̃k,

• maximize the left end point x̃k, or

• minimize the right end point x̃k

in (5). In [7], we examined in detail “width-optimal” preconditioners (in which
we attempt to minimize w(x̃k)); in the experiments there, we showed that, for
a particular test set, the width-optimal preconditioner resulted in less overall
processor time used in a branch and bound algorithm to find all solutions to non-
linear systems of equations, compared to the inverse midpoint preconditioner.

In the case 0 ∈ ãk,k (as in Figure 2), the “splitting preconditioners” are
based on devising the k-th row Yk to attempt to:

• maximize the gap x̃
(2)
k − x̃

(1)
k ,

• minimize x̃
(1)
k ,

• maximize x̃
(2)
k , or

• maximize min{|x̃
(1)
k |, |x̃

(2)
k |}.

Bounding Disconnected Solution Sets 5

The last criterion, which we call “mignitude optimality,” maximizes the distance
from 0 of the image components. This criterion is useful for systems arising from
interval Newton methods, in which x is centered about the zero-vector and we
may wish to make the volume of x̃ ∩ x as small as possible. Furthermore, the
corresponding computational preconditioner for mignitude optimality gives a
useful preconditioner even if a preconditioner that results in two semi-infinite
intervals of the form (6) does not exist; see Lemma 3.7, page 138 of [8].

We refer to preconditioners which lead to two disjoint solution components as
“splitting-” or “S-preconditioners.” Our early empirical experiments with our
“optimal S-preconditioners” gave ambivalent results, but were not complete,
and we did not attempt to publish them. However, others (such as [4], in the
context of parallel computation) have reported advantages to using “splits” in
the interval Gauss–Seidel method6. This has prompted us to revisit the issue
of optimal splitting preconditioners.

In §2, we review details of our formulations, which are linear programs with
complementarity constraints, while in §3, we define the specifics of the extended
arithmetic used to separate disconnected components of solutions. In §4, we
briefly review or work with illustrative examples designed to test specific as-
pects of our formulations, while in §5, we propose two heuristically-based algo-
rithms, designed from experience with our illustrative examples. In §6, we give
a fairly comprehensive set of experimental results, comparing our two heuristic
algorithms to use of the inverse midpoint preconditioner, to the previously stud-
ied width-optimal preconditioner, and to no preconditioner. We cite alternate
approaches to specialized linear systems in §6.3, and we summarize in §7.

2 Ideas Behind Optimal Preconditioners: Nota-

tion, Review and Analysis

Here, we review the derivation in [7] and [8, Ch. 3], placing it in somewhat more
general terms.

As in the introduction, we use boldface font for intervals, interval vectors,
and interval matrices; we use lower case to denote scalars and vectors and upper
case for matrices. Throughout, we formulate computation of the preconditioner
in terms of the positive and negative parts of the yi. In particular,

Definition 1 (Positive and negative parts) If r is a real number, then

r+ = max{yi, 0} and r− = max{−r, 0},

so r = r+ − r−.

In our computations for the optimal preconditioners for (3), we formulate the
computation in terms of the positive and negative components of Y . That is,

6Splits produce more boxes; however, in a parallel processing context in which each proces-
sor is given a box to process, more boxes may not be a disadvantage.

Bounding Disconnected Solution Sets 6

writing the k-th row of the preconditioner Y for (3) as

Yk = (y1, . . . , ym),

we rewrite
yi = y+

i − y−

i , (7)

for 1 ≤ i ≤ m. However, the optimality conditions for our preconditioners
lead to an optimization problem with a linear objective, linear constraints, and
complementarity constraints y+

i ⊥y−

i . For some of the preconditioners, we have
found it advantageous to include these complementarity conditions as a penalty
term in the objective (using a quadratic programming solver). However, if we
relax the optimization problem by dropping the complementarity constraints,
we obtain a linear program, which can sometimes be solved much more rapidly.
When we solve such relaxed problems, we form the preconditioner with

yi = Yi,+ − Yi,−, (8)

where Yi,+ and Yi,− are components corresponding to y+
i and y−

i of the solution
to the (possibly) relaxed problem. Although, in general, Yi,+ 6= y+

i and Yi,− 6=
y−

i , Yi,+ and Yi,− often result in good preconditioners; a theoretical basis for
this is given in the unpublished work [15], and we give some empirical evidence
in the technical report [9].

If we are not computing inverses, we don’t need to assume a square system,
so we may assume A is a general interval m by n matrix, and b is an interval
m vector7. We have

Theorem 1 Assume that no other x̃ℓ have been computed for ℓ 6= k (i.e. that
x̃i = xi for i 6= k), and assume that the components of the initial guess x are
centered at zero, that is, that xj = [−xj , xj], 1 ≤ j ≤ n, j 6= k. Then the
numerator in (4) is

νk = Ykb +
n
∑

j=1

j 6=k

{YkA:,j}xj

=

m
∑

i=1

yim(bi) +
1

2

m
∑

i=1

|yi|w(bi)[−1, 1] (9)

+
1

2

n
∑

j=1

j 6=k

w(xj)

∣

∣

∣

∣

∣

m
∑

i=1

yiai,j

∣

∣

∣

∣

∣

[−1, 1], (10)

and the denominator in (4) is8

dk = YkA:,k =

m
∑

i=1

yiai,k =

m
∑

i=1

yim(ai,k) +
1

2

m
∑

i=1

|yi|w(ai,k)[−1, 1]. (11)

7For certain existence verification arguments, we need m ≤ n, but this is not even necessary
if our interest is merely reducing the size of the set of all possible solutions.

8This expression was given incorrectly, omitting the factor of yi in front of the m
�
ai,k

�
in

[8, p. 130, (3.19)].

Bounding Disconnected Solution Sets 7

Proof: The proof proceeds from Lemma (3.4) of [8, p. 129], in a manner entirely
analogously to Lemma (3.5) of [8].

Now we have, as in the development in [8, pp. 130–131],

∣

∣

∣

∣

∣

m
∑

i=1

yiai,j

∣

∣

∣

∣

∣

=

{

m
∑

i=1

(

− y+
k ai,j + y−

k ai,j

)

}

+ v+
j (12)

=

{

m
∑

i=1

(

y+
i ai,j − y−

i ai,j

)

}

+ v−

j , (13)

where vj is defined to be equal to

vj =

m
∑

i=1

yiai,j +

m
∑

i=1

yiai,j , 1 ≤ j ≤ n, j 6= k. (14)

Thus, if the hypotheses of Theorem 1 hold, then, observing that |yi| = y−

i + y+
i

and letting δ ∈ [0, 1] be a parameter representing an arbitrarily chosen convex
combination of (12) and (13), we have

νk =

m
∑

i=1

yim(bi) +
1

2

m
∑

i=1

(y−

i + y+
i)w(bi)[−1, 1]

+
1

2

n
∑

j=1

j 6=k

w(xj)

(

δ

{

m
∑

i=1

(

− y+
i ai,j + y−

i ai,j

)

+ v+
j

}

(15)

+(1− δ)

{

m
∑

i=1

(

y+
i ai,j − y−

i ai,j

)

+ v−

j

})

[−1, 1],

and similarly,

dk =

[

m
∑

i=1

(

y+
i ai,k − y−

i ai,k

)

,
m
∑

i=1

(

y+
i ai,k − y−

i ai,k

)

]

. (16)

Now, continuing the derivation on page 133 of [8], the “width-optimal C-
preconditioner9” of [7] is based on minimizing the width w(x̃k) in (4),

find minYk
w(νk) = minYk

{νk − νk}
subject to dk = 1

(17)

We will now express (17) as an optimization problem with linear objective, linear
constraints, and complementarity constraints. In this problem, we let Yi,+ be
the variable corresponding to the positive part y+

i of yi, and similarly, we let
Yi,− correspond to y−

i , Vj,+ correspond to v+
i , and Vj,− correspond to v−

i . An

9We used the designation “C” to denote that the Gauss–Seidel operator “contracts” the
box x.

Bounding Disconnected Solution Sets 8

optimization problem corresponding to (17) is then

minimize
m
∑

i=1

(Yi,+ + Yi,−)w(bi)

+ δ

n
∑

j=1

j 6=k

w(xj)

{

Vj,+ +

m
∑

i=1

(

Yi,−ai,j − Yi,+ai,j

)

}

+(1− δ)
n
∑

j=1

j 6=k

w(xj)

{

Vj,− +
m
∑

i=1

(

Yi,+ai,j − Yi,−ai,j

)

}

(18)

subject to

m
∑

i=1

(

Yi,+ai,k − Yi,−ai,k

)

= 1,

Vj,+ − Vj,− −
m
∑

i=1

(Yi,+ − Yi,−)(ai,j + ai,j) = 0,

1 ≤ j ≤ n, j 6= k,

Yi,+,Yi,− ≥ 0, Yi,+⊥Yi,−, 1 ≤ i ≤ m,

Vj,+,Vj,− ≥ 0, Vj,+⊥Vj,−, 1 ≤ j ≤ n.

(cf. page 132 of [8]). Rearranging the objective (15) and the equality constraints,
we have the formulation as in Table 1.

Observe now

1. The formulation (18) is equivalent to (17).

2. The formulation (18) is a nonlinear problem (and thus may not be easy to
solve), due to the complementarity constraints Yi,+⊥Yi,− and Vj,+⊥Vj,−.

3. The formulation leads to a linear program if we relax the problem by re-
moving the complementarity constraints; however, then, the solutions for
Yi,+ and Yi,− may not necessarily correspond to the positive and nega-
tive parts of yi, and the linear program may be unbounded. Nonetheless,
the preconditioners representing solutions to these relaxed problems are
in many cases just as good. (See the unpublished analysis in [15], and the
experiments in [9]. In the previous computations for the width-optimal
preconditioner in [7], we ignored the complementarity constraints as a
heuristic to simplify the problem.)

Summarizing, we have

Definition 2 A traditional width-optimal LP is a linear program consisting
of the objective, equality constraints, and nonnegativity constraints in (18) (for
an arbitrarily selected δ ∈ [0, 1]), but without the complementarity constraints.
The linear program thus is as in Table 1, but without the complementarity con-
straints.

Bounding Disconnected Solution Sets 9

Table 1: Optimization problem for an optimal width contracting preconditioner

minimize

mX
i=1

Yi,+

8><>:w(bi) +

nX
j=1

j 6=k

w(xj)
�
(1− δ)ai,j − δai,j

�9>=>;
+

mX
i=1

Yi,−

8><>:w(bi) +
nX

j=1

j 6=k

w(xj)
�
δai,j − (1− δ)ai,j

�9>=>;
+

nX
j=1

j 6=k

Vj,+ {δw(xj)}+
nX

j=1

j 6=k

Vj,− {(1− δ)w(xj)}

subject to:

mX
i=1

Yi,+

�
ai,k

	
+

mX
i=1

Yi,− {−ai,k} = 1,

mX
i=1

Yi,+

�
−(ai,j + ai,j)

	
+

mX
i=1

Yi,−

�
ai,j + ai,j

	
+ Vj,+ − Vj,− = 0, 1 ≤ j ≤ n, j 6= k,

and Yi,+ ≥ 0, Yi,− ≥ 0, Yi,+⊥Yi,−, 1 ≤ i ≤ m,

Vj,+ ≥ 0, Vj,− ≥ 0, Vj,+⊥Vj,−, 1 ≤ j ≤ n, j 6= k.

In contrast, for a splitting preconditioner, we assume that the denominator
dk in (4) (and characterized in (11)) contains zero, and we normalize the nu-
merator νk (as characterized in (10)). In particular, the “mignitude-optimal”
preconditioner is based on the optimization problem

find minYk
|dk|

subject to νk = 1.
(19)

Using a derivation, as in [8] and similar to that above for the width optimal
C-preconditioner10, we obtain an optimization problem as in Table 2.

Definition 3 A mignitude-optimal optimization problem is a problem (for a
particular δ ∈ [0, 1]) as in Table 2 (obtained from (19) with Theorem 1 and
formulas (15) and (16)). If we drop the complementarity conditions in Table 2,
we call the corresponding linear program a mignitude optimal LP.

Among splitting preconditioners, we have chosen the mignitude optimal pre-
conditioner for further study for the following reason.

Theorem 2 (Lemma 3.7, page 138 of [8], and originally observed in unpub-
lished work by Manuel Novoa, such as [15]) Suppose a preconditioner row Yk

solves the optimization problem (19). Then the following are true.

10in particular, using (3.28) on page 132 and (3.36) on page 135 of [8]

Bounding Disconnected Solution Sets 10

Table 2: Optimization problem for a mignitude optimal preconditioner

minimize
mX

i=1

Yi,+

�
−δai,k + (1− δ)ai,k

	
+

mX
i=1

Yi,−

�
δai,k − (1− δ)ai,k

	
+ v

+
k {δ}+ v

−

k {1− δ}

subject to:
mX

i=1

Yi,+

8><>: m(bi)−
1

2
w(bi)

+

nX
j=1

j 6=k

w(xj)

�
δ

2
ai,j −

1− δ

2
ai,j

�9>=>;
+

mX
i=1

Yi,−

8><>:−m(bi)−
1

2
w(bi)

+

nX
j=1

j 6=k

w(xj)

�
−

δ

2
ai,j +

1− δ

2
ai,j

�9>=>;
+

nX
j=1

j 6=k

Vj,+

�
−

δ

2
w(xj)

�
+

nX
j=1

j 6=k

Vj,−

�
−

1− δ

2
w(xj)

�
= 1,

and
mX

i=1

Yi,+

�
−(ai,j + ai,j)

	
+

mX
i=1

Yi,−

�
ai,j + ai,j

	
+ Vj,+ − Vj,− = 0, 1 ≤ j ≤ n,

and Yi,+ ≥ 0, Yi,− ≥ 0, Yi,+⊥Yi,−, 1 ≤ i ≤ m,

Vj,+ ≥ 0, Vj,− ≥ 0, Vj,+⊥Vj,−, 1 ≤ j ≤ n.

Bounding Disconnected Solution Sets 11

1. If 0 ∈ dk, then x̃k consists of two semi-infinite intervals, and Yk solves

max
νk=1

min

{

−
1

dk

,
1

dk

}

,

and hence maximizes the minimum distance of x̃
(1)
k and x̃

(2)
k from 0 in (6).

2. If dk > 0, then x̃k is a single connected interval as in (5), and Yk maxi-
mizes the left end point x̃k.

3. If dk < 0, then x̃k is a single connected interval as in (5), and Yk mini-
mizes the right end point x̃k.

Thus, if xk is symmetric about 0, then the solution to the optimization problem
for the mignitude optimal preconditioner maximizes, in a sense, the possibility
that xk ∩ x̃k will contain half or less of the original interval.

In addition to the width-optimal preconditioner and the mignitude-optimal
preconditioner, we have formulated, in a way similar to the width-optimal and
mignitude-optimal preconditioners, two preconditioners that force the denomi-
nator to contain zero (and thus force two disjoint intervals if the numerator does
not contain zero). We have formulated a pair of such preconditioners because,
for different problems, we expect one of these to be infeasible.

The positive numerator S-preconditioner:

find maxYk
νk

subject to dk ≤ −1 and dk = 1.
(20)

The negative numerator S-preconditioner:

find minYk
νk

subject to dk = −1 and dk ≥ 1.
(21)

A formulation for the positive numerator S-preconditioner appears in Table 3,
while a formulation for the negative numerator S-preconditioner appears in Ta-
ble 4.

3 On Extended Arithmetic

In computing the quotient (4), the mignitude-optimal preconditioner and the
S-preconditioners lead to denominators that contain 0. Since there have been
various and conflicting operational definitions of extended interval arithmetic
(when zero is in the denominator of a quotient) in the past, we clarify here
what is appropriate in our context.

Our guiding principle in our use of extended intervals is cset theory as ex-
plained, for example, in [18]. In particular, we want to make certain that no
part of the solution set to Ax−b contained in the initial bounds x is discarded,

Bounding Disconnected Solution Sets 12

Table 3: Optimization problem for the positive numerator S-preconditioner

minimize

mX
i=1

Yi,+

8><>:−m(bi) +
1

2
w(bi) +

nX
j=1

j 6=k

w(xj)

�
−

1− δ

2
ai,j +

δ

2
ai,j

�9>=>;
+

mX
i=1

Yi,−

8><>: m(bi) +
1

2
w(bi) +

nX
j=1

j 6=k

w(xj)

�
−

δ

2
ai,j +

1− δ

2
ai,j

�9>=>;
+

nX
j=1

j 6=k

Vj,+

�
−

δ

2
w(xj)

�
+

nX
j=1

j 6=k

Vj,−

�
−

1− δ

2
w(xj)

�
subject to:

mX
i=1

Yi,+

�
ai,k

	
+

mX
i=1

Yi,− {−ai,k} ≤ −1,

mX
i=1

Yi,+ {ai,k}+
mX

i=1

Yi,−

�
−ai,k

	
= 1,

mX
i=1

Yi,+

�
−(ai,j + ai,j)

	
+

mX
i=1

Yi,−

�
ai,j + ai,j

	
+ Vj,+ − Vj,− = 0, 1 ≤ j ≤ n, j 6= k,

and Yi,+ ≥ 0, Yi,− ≥ 0, Yi,+⊥Yi,−, 1 ≤ i ≤ m,

Vj,+ ≥ 0, Vj,− ≥ 0, Vj,+⊥Vj,−, 1 ≤ j ≤ n, j 6= k.

but we otherwise want the result to be as small a set as possible. This leads to
the rules in Table 5.

One property of the cset arithmetic we are using is mathematically elegant
but not present in other implementations of extended arithmetic; that is the
fact that division of an interval that does not contain zero by any interval that
contains zero always results in two disjoint sets. This follows by considering ∞
to be a number, as part of the two-point compactification of the real numbers.
Thus, 1/[−ǫ, ǫ] = [−∞,−1/ǫ] ∪ [1/ǫ,∞], while 1/[0, ǫ] = [−∞,−∞] ∪ [1/ǫ,∞],
1/[0, 0] = [−∞,−∞]∪ [∞,∞], etc. For the mathematical underpinning to this,
see [18].

4 Experimental Setup and Examples

In this section, we present results from illustrative examples that have been
specifically designed, both to test correctness of our implementation and to
provide initial evidence of the effectiveness of the underlying ideas. In these
“toy” problems, exact bounds on the solution (to within roundout error) can
be computed easily enough by solving 2n linear programs (using the technique
explained in [19] and earlier in [16], based on inequalities presented in [17]),

Bounding Disconnected Solution Sets 13

Table 4: Optimization problem for the negative numerator S-preconditioner

minimize

mX
i=1

Yi,+

8><>: m(bi) +
1

2
w(bi) +

nX
j=1

j 6=k

w(xj)

�
1− δ

2
ai,j −

δ

2
ai,j

�9>=>;
+

mX
i=1

Yi,−

8><>:−m(bi) +
1

2
w(bi) +

nX
j=1

j 6=k

w(xj)

�
δ

2
ai,j −

1− δ

2
ai,j

�9>=>;
+

nX
j=1

j 6=k

Vj,+

�
δ

2
w(xj)

�
+

nX
j=1

j 6=k

Vj,−

�
1− δ

2
w(xj)

�
subject to:

mX
i=1

Yi,+ {−ai,k}+

mX
i=1

Yi,−

�
ai,k

	
≤ −1,

mX
i=1

Yi,+

�
ai,k

	
+

mX
i=1

Yi,− {−ai,k} = −1,

mX
i=1

Yi,+

�
−(ai,j + ai,j)

	
+

mX
i=1

Yi,−

�
ai,j + ai,j

	
+ Vj,+ − Vj,− = 0, 1 ≤ j ≤ n, j 6= k,

and Yi,+ ≥ 0, Yi,− ≥ 0, Yi,+⊥Yi,−, 1 ≤ i ≤ m,

Vj,+ ≥ 0, Vj,− ≥ 0, Vj,+⊥Vj,−, 1 ≤ j ≤ n, j 6= k.

so the quality of the bounds obtained with the various preconditioners can be
easily studied.

In these studies, we used MATLAB version 7 with INTLAB ([20]) version 5.2
to do the interval arithmetic. In all of these examples, we systematically tried
the optimal width contracting preconditioner, the mignitude optimal precon-
ditioner, the negative numerator S-preconditioner, and the positive numerator
S-preconditioner. In various experiments, the details of which appear in our
technical report [9], we tried ignoring the complementarity conditions in the
formulations of the above four preconditioners, using linprog from the MATLAB

optimization toolbox; we contrasted the results with including the complemen-
tarity conditions by explicitly introducing a penalty term in the objective, then
using quadprog from the MATLAB optimization. That is, we converted the lin-
ear programs with complementarity constraints given in Tables 1 through 4 to
quadratic programs by adding the penalty term

Q = ρ

m
∑

i=1

y+
i y−

i +
∑

j

v+
j v−

j

(22)

to the linear objectives, for a suitably large but fixed penalty parameter ρ, then
used the MATLAB optimization toolbox routine quadprog to solve the resulting

Bounding Disconnected Solution Sets 14

Table 5: Rules for extended interval division based on cset theory

[νk, νk]

[dk, dk]
=

[νk, νk]/[dk, dk] in the usual sense if 0 6∈ [dk, dk],

[−∞,∞] if 0 ∈ [νk, νk] and 0 ∈ [dk, dk],

[−∞, t1] ∪ [t2,∞]

if νk < 0, where:

t1 =

{

−∞ if dk = 0,

νk/dk otherwise
and

t2 =

{

∞ if dk = 0,
νk/dk otherwise

[−∞, t1] ∪ [t2,∞]

if νk ≥ 0, where:

t1 =

{

−∞ if dk = 0,
νk/dk otherwise

and

t2 =

{

∞ if dk = 0,

νk/dk otherwise.

quadratic program.
For each of these eight possibilities (the four preconditioners, with and with-

out the complementarity constraints), we tried the 11 equally spaced values of
δ: δ = 0, δ = .1, δ = .2, . . ., δ = 1.

We provide detailed descriptions of the results in the technical report [9].
The seven examples detailed in that report consist of

• a simple non-singular point system (ideal for the width optimal and pos-
sibly mignitude optimal, but not the S),

• An interval matrix and right-hand-side vector from Brown’s almost linear
function (a non-regular problem),

• Four simple singular problems, with properties such that different precon-
ditioners worked best with the different problems.

Although coordinate widths can be reduced through multiple sweeps of the
Gauss–Seidel method11, to focus on the details of the mechanisms associated
with particular preconditioners, we studied application of the various precon-
ditioners to reduce the width of x1. However, to underscore the fact that pre-
conditioners are necessary, we also did two complete sweeps of the interval
Gauss–Seidel method, solving for each variable in each equation, but without

11That is, the width of x1, for example, can possibly be reduced by first applying a Gauss–
Seidel step to one or more of the other coordinates, then using those reduced coordinate widths
in recomputing x1.

Bounding Disconnected Solution Sets 15

preconditioning, and observed whether or not that procedure resulted in a re-
duction in the coordinate widths; that is, we applied the following algorithm.

Algorithm 1 (Run through all equations and all variables twice, without precondi-
tioning.)
INPUT: the m by n interval matrix A, the interval m-vector b, and the initial bounds
x.
OUTPUT: new bounds x̃

(1) and x̃
(2) on the coordinates.

1. x̃
(1) ← x; x̃

(2)
i ← ∅, 1 ≤ i ≤ n. (This value for x̃

(2) is for initialization purposes
only; x̃

(2) is subsequently possibly set to a finite value later by intersection of
two semi-infinite intervals with x̃

(1) in step 2b below. Note that intersection of
this initial x

(2) always yields the empty set.)

2. DO for s = 1 to 2:

DO for j = 1 to m:

DO for i = 1 to n:

(a) Compute new bounds on xi by solving for xi in the j-the equation
of Ax = b.

(b) The new bounds may have one or two components z
(1)
i and z

(2)
i .

Intersect z
(1)
i ∪z

(2)
i with x̃

(1)
i ∪ x̃

(2)
i , and store the resulting inter-

vals12 back into x̃
(1)
i and x̃

(2)
i .

(c) IF the result from the previous step is the empty set THEN RE-
TURN .

In our tables of numerical experiments below, we will refer to Algorithm 1 as
“pivoting,” since, using our terminology in [6], Algorithm 1 amounts to applying
all possible “pivoting preconditioners.”

Although Algorithm 1 does not use heuristics for efficiency as in [4] or even
[5] or [6], it represents the best that can be achieved without preconditioning
other than by permutations of the identity matrix. For comparison purposes,
we just observed the first coordinate of x̃

(1) and x̃
(2) returned from Algorithm 1.

4.1 Some Preliminary Results

Comparing the use of Algorithm 1 to the various preconditioners on the seven
examples from [9], we find the following.

• For two of the examples, both running through all coordinates without
preconditioner and use of preconditioners gave optimal results, in the sense
that the bounds were sharp bounds on the actual solution set to Ax = b.

12If more than two intervals are produced in this process of intersecting the two intervals

z
(1)
i and z

(2)
i with two intervals x̃

(1)
i and x̃

(2)
i , then an error is signalled, x̃

(1)
i and x̃

(2)
i are

set to xi, and the routine returns. In principle, this can happen if, during one iteration, x(2)

is set to something other than ∅ because of the intersection of two semi-infinite intervals with
x(1), then, on the next step, intersection of these two finite intervals with two semi-infinite
intervals from an extended division could produce three finite intervals. However, production
of more than two intervals in this way has never been observed to happen.

Bounding Disconnected Solution Sets 16

• For three of the problems, use of no preconditioners gave narrower bounds
than those input, but not as narrow as the use of optimal preconditioners.

• For one of the problems, use of optimal preconditioners gave optimally
narrow bounds, but use of no preconditioner gave no improvement.

• For one of the problems, no improvement was achieved for any of the
preconditioners, as for no preconditioner.

The examples in [9] illustrate that the various preconditioners are comple-
mentary, with one working where the others do not. Along these lines, the
mignitude optimal preconditioner appears the most versatile, but its perfor-
mance depends more on δ than the other preconditioners. There is qualita-
tively no difference between the positive numerator S and negative numerator S
preconditioners, since one can be obtained from the other by geometrically re-
flecting xk about 0, but a difference in performance, necessarily due to selection
of the examples, was observed in [9]. In the tables, we see little difference in effec-
tiveness of the resulting preconditioners between ignoring the complementarity
constraints and not ignoring them; however, we have observed slightly more
predictability, more normal terminations in quadprog versus linprog (and pre-
sumably if other linear programming or linear programming with complemen-
tarity constraints solvers were used) and optima that are better scaled, when the
quadratic penalty function is used. Thus, if the computational cost is similar,
it is probably better not to ignore the complementarity constraints.

We make additional, more scientific comparisons to no preconditioner and
to the inverse midpoint preconditioner in §6 below.

5 Possible Procedures for Use of These Precon-

ditioners

There are various ways that use of these preconditioners can be combined to
result in algorithms that may be more effective, and yet do not suffer from ex-
ponential complexity when n is large, provided polynomial-time solvers are used
to find the preconditioners (such as when the complementarity conditions are
dropped and polynomial time solvers are used for the resulting linear programs).
In particular, the following procedure will result in an optimal reduction of x

in each of the examples in [9] except for Example 5, but the number of linear
or quadratic programs to be solved for a particular coordinate is constant with
respect to m and n. The choice of δ in each of the steps is based on an analysis
of the dependence of the successful computation of particular preconditioners
we observed in the seven examples in [9].

Algorithm 2 (Gives optimal width reductions for each of the examples in [9] except
Example 5).
INPUT: the m by n interval matrix A, the interval m-vector b, the initial bounds x,
a subdivision number L for δ, and the coordinate index k to be reduced.
OUTPUT: new bounds x̃k on the k-th coordinate.

Bounding Disconnected Solution Sets 17

1. x̃k ← xk.

2. Compute x̃
(w)
k using a Gauss–Seidel step with a width-optimal preconditioner

and a random δ ∈ [0, 1].

(a) x̃k ← x̃k ∩ x̃
(w)
k .

(b) IF x̃k = ∅ THEN RETURN

3. Compute x̃
(ns)
k using the negative numerator S-preconditioner13 and a random

δ ∈ [0, 1].

(a) x̃k ← x̃k ∩ x̃
(ns)
k .

(b) IF x̃k = ∅ THEN RETURN

4. Repeat step 3, but with the positive numerator S-preconditioner instead of the
negative numerator S-preconditioner.

5. DO for i = 0 to L.

• Compute x̃
(mig,i)
k using the mignitude-optimal preconditioner with δ = ih.

(a) x̃k ← x̃k ∩ x̃
(mig,i)
k .

(b) IF x̃k = ∅ THEN RETURN

END DO

END Algorithm 2

The following algorithm will give a successful, but perhaps not optimal,
reduction for each of the examples in [9] except for Example 5, but will often
complete more quickly than Algorithm 2.

Algorithm 3 (Gives successful width reductions for each of the examples except Ex-
ample 5).
INPUT: the m by n interval matrix A, the interval m-vector b, the initial bounds x,
a subdivision number L for δ, and the coordinate index k to be reduced.
OUTPUT: new bounds x̃k on the k-th coordinate.
Algorithm 3 is the same as Algorithm 2, except that each test

IF x̃k = ∅
is replaced by

IF x̃k 6= xk.
END Algorithm 3

Although Algorithm 3 is similar to Algorithm 2 at this level of explanation,
Algorithm 3 is somewhat simpler to implement, since, in principle, two or more
intervals can be produced from each stage of Algorithm 2, so that the returned
value x̃k in general would consist of a list of more than two intervals. However,
because of the nature of the semi-infinite intervals produced with the extended
arithmetic, we think this is unlikely, if not provably impossible.

In the experiments reported here, we used L = 10 for both Algorithm 2 and
Algorithm 3.

13x̃
(ns)
k

possibly consists of two disjoint semi-infinite intervals.

Bounding Disconnected Solution Sets 18

6 General Experiments

These general experiments include both randomly generated experiments and
experiments on selected matrices from the “Matrix Market” [3].

6.1 Experiments with Random Matrices

For an objective assessment, we designed and carried out some experiments
involving random matrices. In particular, we fixed m, n, B, and R, and gen-
erated random m by n interval matrices A, random right-hand-side vectors b,
and random initial bounding boxes x as follows:

1. Each entry of A is of the form

[ai,j − βi,j , ai,j + βi,j],

where ai,j is pseudo-uniformly distributed in the interval [−1, 1] and βi,j

is pseudo-uniformly distributed in the interval [0, B].

2. Each entry of b is of the form

[ωi + bi − γi, ωi + bi + γi],

where, as with the entries of A, bi is pseudo-uniformly distributed in
the interval [−1, 1], and γi is pseudo-uniformly distributed in the inter-
val [0, B], and where the offset ωi is pseudo-uniformly distributed in the
interval [0,Ω].

3. Each entry of x is of the form [−ri, ri], where ri is pseudo-uniformly
distributed in the interval [0, R].

We used the function rand from Matlab to generate the pseudo-uniform distri-
bution. With this scheme, we generated sets of problems for analysis; for each
such set of problems, we saved the initial state of rand, to be able to check
and reproduce the results. For each problem in a set, we attempted to use
the Gauss–Seidel method to produce narrower bounds14 on x1. For each set of
problems, we gathered statistics for each of the following five schemes:

1. the inverse midpoint preconditioner only;

2. the width-optimal preconditioner only;

3. algorithms 1, 2, and 3.

Based on our observations in [9], we ignored the complementarity constraints
for the width-optimal preconditioner, but used the quadratic formulation for
each of the other preconditioners15. The experimental variables and statistics
we gathered for each set of problems, for each of these schemes, are as follows:

14Even though we only examine progress with respect to x1 in the statistics, we update all
coordinates. For instance, we run through two complete sweeps of Algorithm 1.

15both when the width-optimal is used alone and within Algorithms 2 and 3

Bounding Disconnected Solution Sets 19

Table 6: Experiments with random problems, Ω = 0.
m n Nt B R Ω type Nw Ns NM ρ÷ T

3 3 100 1 1 0 Inv. mid.: 5 2 79 0.974 0.45
Opt. wid.: 11 0 85 0.959 3.22

Alg. 2: 22 2 100 0.871 76.48
Alg. 3: 22 1 92 0.888 55.97

pivoting: 6 0 82 0.981 9.04
10 10 100 1 1 0 Inv. mid.: 0 0 100 1.000 0.99

Opt. wid.: 0 0 100 1.000 22.61
Alg. 2: 0 0 100 1.000 409.63
Alg. 3: 0 0 100 1.000 406.46

pivoting: 0 0 100 1.000 200.52
10 10 100 0.1 1 0 Inv. mid.: 1 0 86 0.999 1.05

Opt. wid.: 11 0 93 0.961 23.66
Alg. 2: 14 0 100 0.943 492.11
Alg. 3: 14 0 93 0.956 436.62

pivoting: 0 0 86 1.000 211.33
10 10 100 0.1 100 0 Inv. mid.: 0 0 99 1.000 1.06

Opt. wid.: 1 0 100 0.998 24.07
Alg. 2: 1 0 100 0.998 522.66
Alg. 3: 1 0 100 0.998 515.92

pivoting: 0 0 99 1.000 213.75
50 50 10 0.01 10 1 Inv. mid.: 0 0 10 1.000 0.42

Opt. wid.: 0 0 10 1.000 54.46
Alg. 2: 0 0 10 1.000 4641.01
Alg. 3: 0 0 10 1.000 4650.73

pivoting: 0 0 10 1.000 2067.97

Nt: the total number of problems in the set;

Nw: the number of problems for which the scheme reduced the measure of the
image intersection x̃1 ∩ x1.

Ns: the number of problems for which the scheme returned a disconnected set
of two intervals.

NM : The number of problems for which the scheme resulted in the maximum
reduction of radius over all possible schemes.

ρ÷: The average, over all problems in the set, of the ratio of the radius of x1

to the sum of the radii of the (possibly two) components of x̃1 ∩ x1.

T : The total clock time in seconds to execute a Gauss–Seidel step for that
particular preconditioner for all of the problems in the set16.

In our first set of experiments, we set Ω = 0. In these experiments, it is
likely that the solution set contains points near the origin in R

n, making it
unlikely that the solution set contains disconnected components (and less likely
that a preconditioner will produce a split), and also less likely that Algorithm 2
will exit due to x̃1 ∩ x1 = ∅ before all steps have been completed. The results
appear in Table 6. We note that all preconditioner schemes seem to have failed
when n is large and B is large, or when R is large. Such cases do not give us

16We ran the experiments on a dual-processor Dell Optiplex GX-280 with dual 3.2 gigahertz
processors and 2 gigabytes of RAM. Since nested loops were used in Matlab at several places,
loop overhead may be a significant component of the overall time.

Bounding Disconnected Solution Sets 20

Table 7: Experiments with random problems, Ω 6= 0.
m n Nt B R Ω type Nw Ns NM ρ÷ T

10 10 100 1 1 1.0 Inv. mid.: 0 0 100 1.000 0.99
Opt. wid.: 0 0 100 1.000 22.76

Alg. 2: 0 0 100 1.000 424.43
Alg. 3: 0 0 100 1.000 420.02

pivoting: 0 0 100 1.000 199.35
10 10 100 0.1 1 1.0 Inv. mid.: 6 0 40 0.960 1.01

Opt. wid.: 19 0 40 0.945 22.88
Alg. 2: 62 0 100 0.512 395.69
Alg. 3: 62 0 58 0.708 242.89

pivoting: 0 0 38 1.000 201.96
10 10 100 1 1 2.0 Inv. mid.: 0 0 99 1.000 0.99

Opt. wid.: 0 0 99 1.000 22.60
Alg. 2: 1 0 100 0.998 439.35
Alg. 3: 1 0 100 0.998 437.89

pivoting: 0 0 99 1.000 200.52
10 10 100 1 1 5.0 Inv. mid.: 0 0 19 1.000 0.97

Opt. wid.: 14 0 24 0.915 22.40
Alg. 2: 81 3 100 0.227 277.58
Alg. 3: 81 9 54 0.416 168.56

pivoting: 4 2 19 0.986 146.23
10 10 100 0.1 1 5.0 Inv. mid.: 57 0 49 0.468 0.99

Opt. wid.: 75 0 50 0.356 22.21
Alg. 2: 100 0 100 0.000 84.27
Alg. 3: 100 0 64 0.170 40.35

pivoting: 1 0 0 0.996 26.26
50 50 10 0.1 1 5.0 Inv. mid.: 0 0 0 1.000 4.14

Opt. wid.: 0 0 0 1.000 531.42
Alg. 2: 100 0 100 0.000 6263.93
Alg. 3: 100 3 11 0.441 2786.64

pivoting: 0 0 0 1.000 20422.64

much information, since it is possible (but we do not know) in those cases that
the exact solution set contains the original bounds x for all of the generated
problems. However, the relative performance of the different preconditioner
schemes gives us some information in the other cases.

Runs with Ω 6= 0 appear in Table 7. There, we observe more success,
especially for the composite algorithms, for larger values of Ω and smaller values
of B. This is to be expected, since the solution set to Ax = b is more likely to
lie outside x, and hence splitting preconditioners are more likely to be effective
in such cases.

Finally, we did some experiments with no uncertainty in the right-hand-side
vector b (that is, with b a point vector); this corresponds to use of these tech-
niques in interval Newton methods. The results appear in Table 8. Comparing
Table 8 with Table 7, we see that all preconditioner schemes except using no
preconditioner (or using “pivoting” preconditioners) do a better job when there
is a point right side vector, although some problems (especially with larger m
and n) are still difficult.

The Matlab “m” files for running all of these experiments are available at
http://interval.louisiana.edu/misc/m_files_precond_ivl_lin.zip.

Bounding Disconnected Solution Sets 21

Table 8: Experiments with random problems, no uncertainty in b.
m n Nt B R Ω type Nw Ns NM ρ÷ T

10 10 100 0.1 1 0.0 Inv. mid.: 0 0 100 1.000 0.96
Opt. wid.: 0 0 100 1.000 22.28

Alg. 2: 0 0 100 1.000 410.73
Alg. 3: 0 0 100 1.000 407.30

pivoting: 0 0 100 1.000 193.73
50 50 10 0.1 1 0.0 Inv. mid.: 0 0 10 1.000 0.41

Opt. wid.: 0 0 10 1.000 52.43
Alg. 2: 0 0 10 1.000 4801.41
Alg. 3: 0 0 10 1.000 4814.27

pivoting: 0 0 10 1.000 2010.78
50 50 10 0.01 1 0.0 Inv. mid.: 5 0 2 0.691 0.41

Opt. wid.: 6 0 0 0.709 52.26
Alg. 2: 10 0 10 0.000 434.68
Alg. 3: 10 0 4 0.363 119.03

pivoting: 0 0 0 1.000 2005.18
10 10 100 1.0 1 1.0 Inv. mid.: 0 0 99 1.000 0.97

Opt. wid.: 0 0 99 1.000 22.40
Alg. 2: 1 1 100 0.997 428.22
Alg. 3: 1 1 99 1.000 417.46

pivoting: 0 0 99 1.000 192.63
10 10 100 0.1 1 1.0 Inv. mid.: 59 0 32 0.543 0.97

Opt. wid.: 79 0 18 0.508 22.07
Alg. 2: 100 0 100 0.021 200.23
Alg. 3: 100 0 29 0.358 45.13

pivoting: 3 0 0 0.991 185.08
10 10 100 1.0 1 2.0 Inv. mid.: 0 0 99 1.000 0.97

Opt. wid.: 0 0 99 1.000 22.40
Alg. 2: 1 1 100 0.997 428.22
Alg. 3: 1 1 99 1.000 417.46

pivoting: 0 0 99 1.000 192.63
10 10 100 1.0 1 5.0 Inv. mid.: 9 2 14 0.925 0.98

Opt. wid.: 21 0 22 0.840 22.25
Alg. 2: 92 1 100 0.094 218.51
Alg. 3: 92 2 47 0.351 154.11

pivoting: 2 1 8 0.989 94.90

6.2 Experiments with Selected Matrix Market Matrices

Experiments with random matrices do not always reflect problems that occur in
practice, such as problems with high condition numbers. To study an example
with a high condition number and examples of problems occurring in practice,
we have selected several problems from the Matrix Market collection [3].

In these experiments, we formed matrices with midpoints the corresponding
matrix in the Matrix Market set, then perturbed it randomly with the para-
meter B as above chosen with various values consistent with the magnitudes of
the entries in the midpoint matrix; in the case of non-regular interval matrices
(present with larger values of B, depending on the condition number of the mid-
point matrix), larger values of Ω (leading to entries of b with larger magnitudes),
combined with larger values of R (leading to larger initial guess boxes), make it
more likely that the intersection of the solution set with the original x ∈ [0, R]n

will have more than one disjoint component. This is because, in a Gauss–Seidel
step (4), the numerator will not contain zero provided b̃k is sufficiently large, so
that a split (the union of two disjoint intervals as in Table 5) will occur when
ãk,k contains 0.

Bounding Disconnected Solution Sets 22

Table 9: Experiments with the Hilbert matrix.
n κ Nt B R Ω type Nw Ns NM ρ÷ T

10 1.6 · 1013 100 0.1 1 10 Inv. mid.: 7 2 5 0.943 1.23
Opt. wid.: 50 0 8 0.713 26.74

Alg. 2: 100 0 100 0.000 276.22
Alg. 3: 100 0 23 0.383 97.50

pivoting: 6 0 0 0.992 98.22

10 1.6 · 1013 100 0.1 1 102 Inv. mid.: 99 0 99 0.010 1.44
Opt. wid.: 98 0 97 0.023 26.41

Alg. 2: 100 0 100 0.000 28.19
Alg. 3: 100 0 100 0.000 27.00

pivoting: 0 0 0 1.000 1.50

10 1.6 · 1013 100 0.1 1 104 Inv. mid.: 100 0 100 0.000 1.48
Opt. wid.: 100 0 100 0.000 26.78

Alg. 2: 100 0 100 0.000 26.95
Alg. 3: 100 0 100 0.000 26.98

pivoting: 0 0 0 1.000 1.27

50 > 1.6 · 1016 10 0.1 1 1 Inv. mid.: 0 0 2 1.000 0.50
Opt. wid.: 0 0 2 1.000 61.33

Alg. 2: 8 0 10 0.261 812.36
Alg. 3: 8 1 5 0.472 474.47

pivoting: 0 0 2 1.000 1486.48

In all cases, for simplicity in the experiments, we chose to not to utilize the
parameter γ, so each right-hand-side b is actually a point vector, dependent
only on the random numbers chosen according to B and Ω.

In the tables for the results, we did not list m since all matrices were square,
but we listed the condition number κ (or estimate thereof).

The chosen matrices are as follows:

the Hilbert matrix, to probe the effects of ill-conditioning in the midpoint
matrix;

IMPCOL B, Cavett’s process, from the chemical engineering plant models
collection, included as a small instance of a practical problem;

WEST0067, the Cavett problem with five components from the chemical en-
gineering plant models collection;

BCSSTRUC1, a small test problem in structural engineering;

Although these test problems include sparse problems and symmetric prob-
lems, we handled the systems as general dense systems. However, when adding
interval uncertainty to the matrix entries, we only added uncertainties to those
entries that were not exactly zero.

We see the results for the Hilbert matrix in Table 9. For matrix perturbations
on the order of the size of the entries (B = .1), and relatively small R compared
to the probable size of the actual solution to Ax = b, where A is the midpoint
matrix, we see that the inverse midpoint matrix led to a reduction in only 9%
of the cases, the best possible result using no preconditioner (also known as
“pivoting preconditioners” in [5]) led to a reduction of width in only 6% of the
cases, and the optimal width preconditioner alone led to a reduction of width

Bounding Disconnected Solution Sets 23

Table 10: Experiments with IMPCOL B.
n κ Nt B R Ω type Nw Ns NM ρ÷ T

59 1.6 · 105 10 0.1 10 1 Inv. mid.: 5 0 5 0.500 0.59
Opt. wid.: 9 0 7 0.246 85.42

Alg. 2: 10 0 10 0.000 175.23
Alg. 3: 10 0 7 0.207 125.93

pivoting: 0 0 0 1.000 474.39

59 1.6 · 105 10 1.0 10 1 Inv. mid.: 0 0 0 1.000 0.61
Opt. wid.: 4 0 1 0.727 85.75

Alg. 2: 10 0 10 0.000 367.14
Alg. 3: 10 0 6 0.177 248.27

pivoting: 0 0 0 1.000 1125.14

59 1.6 · 105 10 1.0 10 100 Inv. mid.: 5 0 5 0.500 0.63
Opt. wid.: 9 0 8 0.123 86.29

Alg. 2: 10 0 10 0.000 109.48
Alg. 3: 10 0 9 0.023 97.91

pivoting: 0 0 0 1.000 7.38

in only 50% of the cases. In contrast, both Algorithm 2 and Algorithm 3 gave
width reductions in all cases, but Algorithm 2 gave wider reductions in 77%
of the cases. For larger Ω, every preconditioner scheme except the “pivoting
preconditioners” gave optimal results; this is probably because the numerator
in the Gauss–Seidel equation (4) is so large due to the elements of b that the
iteration proves that the solution lies outside the initial box [−R,R]n; note
that, in this case, Algorithm 2 and Algorithm 3 can dispatch with the problem
quickly, using no more time than a single application of the optimal width
preconditioner. (Increasing R may change the results.)

To get a hint of how the results depend on dimension, everything else being
the same, we tried the 50-dimensional Hilbert matrix, and adjusted Ω until the
results corresponded roughly to the B = 0.1, n = 10, Ω = 10 case. With Ω = 10,
the inverse midpoint preconditioner was dominant, while the results for Ω = 1
are seen in the last block in Table 9. Because the behaviors of Algorithm 2
and Algorithm 3 depend so strongly on the problem, it is not possible to get a
precise measure of dimension dependence. However, the last block of Table 9
corresponds roughly to the first block in the sense that the inverse midpoint
preconditioner and optimal width preconditioner are relatively ineffective. If
the time increased cubically (as should be the case for the inverse midpoint
preconditioner), then the times in the last block should be the times in the first
block multiplied by 12.5 = (10/100 · (50/10)3). In fact, for the inverse midpoint
preconditioner, the ratio is less than 1, whereas, for the optimal width precon-
ditioner, the ratio is 61.33/26.74 ≈ 2.3 < 12. Algorithm 2 and Algorithm 3
similarly correspond to ratios less than 12, and the relative difference between
Algorithm 2 and Algorithm 3 is less for n = 50; perhaps Algorithm 2 is more
desirable for larger, more uncertain problems.

Results for IMPCOL B appear in Table 10. For uncertainties on the order of
10% of the matrix elements, we se that, although the inverse midpoint precon-
ditioner resulted in a width reduction in 5/10 of the cases, the optimal width
preconditioner resulted in a reduction in 9/10 of the cases, and only Algorithm 2
and Algorithm 3 resulted in a width reduction for all cases, while Algorithm 2

Bounding Disconnected Solution Sets 24

Table 11: Experiments with WEST0067.
n κ Nt B R Ω type Nw Ns NM ρ÷ T

67 1.6 · 102 10 0.1 10 0 Inv. mid.: 0 0 9 1.000 0.71
Opt. wid.: 1 0 10 0.998 109.86

Alg. 2: 1 0 10 0.998 6209.82
Alg. 3: 1 0 10 0.998 5607.79

pivoting: 0 0 9 1.000 5853.95

67 1.6 · 102 10 0.1 10 1 Inv. mid.: 0 0 8 1.000 0.69
Opt. wid.: 1 0 9 0.968 109.67

Alg. 2: 2 0 10 0.868 4724.11
Alg. 3: 2 0 9 0.918 4166.21

pivoting: 0 0 8 1.000 5296.61

67 1.6 · 102 10 0.1 10 10 Inv. mid.: 1 0 1 0.900 0.66
Opt. wid.: 10 0 10 0.000 109.31

Alg. 2: 10 0 10 0.000 109.36
Alg. 3: 10 0 10 0.000 110.39

pivoting: 0 0 0 1.000 411.95

67 1.6 · 102 10 0.01 10 1 Inv. mid.: 8 0 2 0.523 0.66
Opt. wid.: 8 0 0 0.569 109.42

Alg. 2: 10 0 10 0.000 922.15
Alg. 3: 10 0 1 0.388 161.92

pivoting: 0 0 0 1.000 5505.00

67 1.6 · 102 10 0.1 10 10 Inv. mid.: 10 0 9 0.040 0.66
Opt. wid.: 10 0 10 0.000 109.26

Alg. 2: 10 0 10 0.000 110.87
Alg. 3: 10 0 10 0.000 109.72

pivoting: 0 0 0 1.000 197.56

did better than Algorithm 3 in 3/10 of the cases. Using all possible “pivoting”
preconditioners did not lead to any width reduction, so a more advanced precon-
ditioner scheme is necessary here. When the uncertainty intervals were on the
order of the size of the matrix entries, results were similar for Algorithm 2 and
Algorithm 3, but there was less success with the optimal width preconditioner,
and the inverse midpoint preconditioner was useless. With results similar to
those for the Hilbert matrix, for larger Ω but fixed R, the inverse midpoint
matrix becomes better, (but not as good as the optimal width or Algorithm 2
and Algorithm 3); pivoting preconditioners were useless in all cases tried.

The experiments with WEST0067 appear in Table 11. We for both uncer-
tainties, we observe a phenomenon in common with the results for the Hilbert
matrix and IMPCOL B: the inverse midpoint preconditioner becomes more use-
ful when Ω (determining the size of the right-hand-side vector b) becomes larger,
but the pivoting preconditioner is useless in all cases. For uncertainty intervals
on the order of 10% of the largest matrix element and small Ω, there was limited
success with any algorithm, although the width-optimal preconditioner gave a
width reduction in one case (Ω = 0), and Algorithm 2 and Algorithm 3 did
better than the width-optimal preconditioner in one case for Ω = 1. For smaller
uncertainty intervals (B = .01, representing about 1% of the largest matrix
element), the inverse midpoint preconditioner worked in 80% of the cases, but
Algorithm 2 worked in all cases and gave a much better average width reduction
for Ω = 1; for Ω = 10, all preconditioner schemes except pivoting precondition-
ers worked, and there was only a minor difference in the average width reduction
between the inverse midpoint preconditioner and other preconditioners.

Bounding Disconnected Solution Sets 25

Table 12: Experiments with BCSSTRUC1.
n κ Nt B R Ω type Nw Ns NM ρ÷ T

48 8.8 · 105 10 1 10 10 Inv. mid.: 10 0 10 0.012 0.48
Opt. wid.: 10 0 10 0.012 56.48

Alg. 2: 10 0 9 0.018 1266.26
Alg. 3: 10 0 10 0.012 84.05

pivoting: 0 0 0 1.000 2186.22

48 8.8 · 105 10 1 10 102 Inv. mid.: 10 0 10 0.002 0.48
Opt. wid.: 10 0 10 0.002 57.42

Alg. 2: 10 0 10 0.002 1184.69
Alg. 3: 10 0 10 0.002 85.29

pivoting: 0 0 0 1.000 2208.58

48 8.8 · 105 10 105 10 102 Inv. mid.: 0 0 4 1.000 0.49
Opt. wid.: 6 0 10 0.626 59.94

Alg. 2: 3 0 6 0.846 1418.66
Alg. 3: 2 0 4 0.932 1306.35

pivoting: 1 0 4 0.985 2191.72

48 8.8 · 105 10 105 10 105 Inv. mid.: 0 0 6 1.000 0.48
Opt. wid.: 4 0 10 0.775 57.46

Alg. 2: 1 0 6 0.993 1308.53
Alg. 3: 1 0 6 0.993 1211.14

pivoting: 0 0 6 1.000 2190.85

In Table 12, we see the results for the small structural analysis test problem.
For a very small level of uncertainty (with B = 1, on the order of 10−9 of the size
of the entries of the midpoint matrix), we see that the inverse midpoint, optimal
width, Algorithm 2, and Algorithm 3 do equally well, for small Ω, but the pivot-
ing preconditioners are useless. For larger uncertainty (B = 105, corresponding
to 0.01% uncertainty in relation to the matrix entry with maximum magni-
tude), the inverse midpoint preconditioner is useless, but the width-optimal
preconditioner is successful in half of the tries. Surprisingly, the width-optimal
preconditioner seems to do better than either Algorithm 2 or Algorithm 3. This
is probably because, first, width-optimal preconditioners are probably most ap-
propriate for this problem and, second, because we chose δ = 0.5 (a “classic”
choice) when only the width-optimal preconditioner was used, but we chose ran-
dom δ in the width-optimal preconditioners for Algorithm 2, and Algorithm 3;
δ = 0.5 may lead to more easily solvable linear programs (such as well-posed
ones) for this problem. (The results are similar for larger Ω.)

6.3 Comparison with Alternate Techniques

Most general-purpose solvers do not handle the case when A is not regular. For
example, verifylss, distributed with INTLAB, gives an optimal enclosure17 to
x1 for Example 1 of [9], but gives all components of x1 equal to [NaN, NaN] for
the other six examples.

The techniques described in this work are for general, non-structured, non-
symmetric systems. In many cases, much better results can be obtained if
properties of a particular problem are taken into account. For example, tech-
niques from [1] and [2] might be used (possibly in conjunction with the optimal

17to within rounding error

Bounding Disconnected Solution Sets 26

preconditioner formulations in this work), to enable more efficient bounding of
solution sets with symmetric matrices or matrices with other structure. Also,
in certain applications, alternate techniques can yield very good results in the
presence of large uncertainties. An example of this is in the analysis of truss
structures [14] or the earlier work of Muhanna and Mullen, e.g. [12]. However,
the work [14] and that of Muhanna and Mullen do not address uncertainties
that are so large that the solution set is disconnected.

7 Summary and Future Work

Sharply bounding the solution sets of linear systems with large uncertainties in
the coefficients and right-hand-side vectors is an NP-hard problem, but various
heuristics, including preconditioning, can be used. We have presented details
of linear programming formulations with complementarity constraints for such
preconditioners for cases where the solution set is unbounded or contains more
than one component. Based on detailed studies of examples specially designed
to illustrate the contexts in which each of these are advantageous, we have pro-
posed two composite polynomial time algorithms which incorporate all of these
preconditioners. We have tested these algorithms with randomly generated ma-
trices, as well as with selected matrices from the Matrix Market collection.

Our results illustrate that preconditioning other than merely choosing a pivot
variable and equation is in general necessary, that the inverse midpoint precondi-
tioner is inadequate in many cases, but our optimal preconditioners sometimes
perform well or adequately. In particular, our linear programming (or linear
programming with complementarity constraint) based splitting preconditioners
and the mignitude optimal preconditioner have been formulated but not previ-
ously examined from a practical point of view18; here, we have seen that these
formulations complement the width-optimal preconditioner, and are worth in-
corporating into solution algorithms, in various contexts.

It may be possible to improve the performance, particularly for specific
classes of problems, by heuristically identifying which preconditioners may be
most appropriate and only using those, rather than a sequence of all precondi-
tioners19. Furthermore, theory as observed in [5] can be used to inexpensively
determine a priori non-existence of S-preconditioners, obviating the need to for-
mulate and solve the linear programs in such cases. Moreover, use of recent
developments in the solution of complementarity constrained problems, such as
in [11] and the references therein, may help. Also, to solve many larger problems
occurring in practice, the implementation should be modified to take account
of sparsity, and the efficiency of the overall implementation can be improved by
pre-compiling important parts of the m-files.

The various steps of Algorithm 2 are completely independent, and thus can
be done in parallel, with the intersection of the various x̃k with xk computed

18Splitting not involving linear programming was also examined in [5], [6], and in practice
in [4].

19This has been done, for example, in [4].

Bounding Disconnected Solution Sets 27

afterwards.
The techniques in this work can possibly be combined with branch and

bound techniques (even in the linear case), or change of basis techniques, to
obtain sharp bounds on solution sets.

Finally, it is noteworthy that these techniques, in their basic form, are for
general matrices; alternate techniques proposed by others are superior for spe-
cific classes of problems.

Acknowledgement

The author wishes to acknowledge Siripawn Winter, whose preliminary exper-
iments and discussions were quite helpful. I also wish to thank both of the
referees; each of them read the paper with care and understanding, resulting in
numerous minor corrections and overall suggestions that have made the work
correct, stronger and easier to comprehend. Finally, I wish to thank the editor,
Dietmar Saupe, for his patience and diligence.

References

[1] G. Alefeld, V. Kreinovich, and G. Mayer, The shape of the symmet-
ric solution set, in Applications of interval computations: Papers presented
at an international workshop in El Paso, Texas, February 23–25, 1995, R. B.
Kearfott and V. Kreinovich, eds., vol. 3 of Applied Optimization, Norwell,
MA, USA, and Dordrecht, The Netherlands, 1996, Kluwer Academic Pub-
lishers Group, pp. 61–80.

[2] , On the solution sets of particular classes of linear interval systems,
J. Comput. Appl. Math., 152 (2003), pp. 1–15.

[3] R. F. Boisvert, R. Pozo, K. Remington, R. Barrett, and J. J.

Dongarra, The Matrix Market: A web resource for test matrix collections,
in Quality of Numerical Software, Assessment and Enhancement, R. F.
Boisvert, ed., London, 1997, Chapman and Hall, pp. 125–137.

[4] C.-Y. Gau and M. A. Stadtherr, Reliable high performance comput-
ing strategies for chemical process modelling, 1999. http://www.nd.edu/

~markst/dallas99/slides213c.pdf.

[5] C.-Y. Hu, Splitting Preconditioners for the Interval Newton Method, PhD
thesis, University of Southwestern Louisiana, 1990.

[6] C.-Y. Hu and R. B. Kearfott, A pivoting scheme for the interval
Gauss–Seidel method: Numerical experiments, in Approximation, Opti-
mization and Computing: Theory and Applications, Amsterdam, 1990,
Elsevier Science Publishers, pp. 97–100.

Bounding Disconnected Solution Sets 28

[7] R. B. Kearfott, Preconditioners for the interval Gauss–Seidel method,
SIAM J. Numer. Anal., 27 (1990), pp. 804–822.

[8] , Rigorous Global Search: Continuous Problems, Kluwer, Dordrecht,
Netherlands, 1996.

[9] R. B. Kearfott and S. Hongthong, On preconditioners and splitting
in the interval Gauss–Seidel method, tech. report, University of Louisiana
at Lafayette, 2005. http://interval.louisiana.edu/preprints/2005_

new_S_preconditioner.as_submitted.pdf.

[10] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational
Complexity and Feasibility of Data Processing and Interval Computations,
Kluwer, Dordrecht, Netherlands, 1998.

[11] S. Leyffer, G. Lopez-Calva, and J. Nocedal, Interior methods for
mathematical programs with complementarity constraints, SIAM J. Optim.,
17 (2006), pp. 52–77.

[12] R. L. Muhanna and R. L. Mullen, Uncertainty in mechanics problems,
Journal of Engineering Mechanics, 127 (2001), pp. 557–566.

[13] A. Neumaier, Interval Methods for Systems of Equations, Cambridge Uni-
versity Press, Cambridge, England, 1990.

[14] A. Neumaier and A. Pownuk, Linear systems with large uncertain-
ties, with applications to truss structures, Reliable Computing, 13 (2007),
pp. 149–172.

[15] M. Novoa, Theory of preconditioners for the interval Gauss-Seidel method
and existence/uniqueness theory with interval newton methods., technical
report, Dept. Mathematics, Univ. Southwestern Louisiana, 1993.

[16] W. Oettli, On the solution set of a linear system with inaccurate coeffi-
cients, SIAM J. Numer. Anal., 2 (1965), pp. 115–118.

[17] W. Oettli and W. Prager, Compatibility of approximate solution of lin-
ear equations with given error bounds for coefficients and right-hand sides,
Numer. Math., 6 (1964), pp. 405–409.

[18] J. D. Pryce and G. F. Corliss, Interval arithmetic with containment
sets, Computing, 78 (2006), pp. 251–276.

[19] J. Rohn, Solving systems of linear interval equations, in Reliability in
Computing, Perspectives in Computing, New York, 1988, Academic Press,
pp. 171–182.

[20] S. M. Rump, INTLAB – INTerval LABoratory (INTLAB home page),
2005. http://www.ti3.tu-harburg.de/~rump/intlab/.

