
INTLIB: A Portable FORTRAN 77 Interval
Standard Function Library

R. B. Kearfott∗

Department of Mathematics
University of Southwestern Louisiana

U.S.L. Box 4-1010, Lafayette, LA 70504-1010 USA
email: rbkusl.edu

M. Dawande
Carnegie Mellon University

K. Du
University of Southwestern Louisiana

Ch. Hu
University of Houston–Downtown

Abstract
INTLIB is meant to be a readily available, portable, exhaustively

documented interval arithmetic library, written in standard FORTRAN
77. Its underlying philosophy is to provide a standard for interval op-
erations to aid in efficiently transporting programs involving interval
arithmetic. The model is the BLAS package, for basic linear algebra
operations. The library is composed of elementary interval arithmetic
routines, standard function routines for interval data and values, and
utility routines. The library can be used with INTBIS (Algorithm
681), and a Fortran 90 module to use the library to define an interval
data type is available from the first author.

Keywords: interval arithmetic, standard functions, BLAS, operator
overloading, FORTRAN 77, Fortran 90

Subject classifications: AMS: 65G10, 65D15, 26A09. CR: G.1.0
(Computer arithmetic), G.1.2 (standard function approximation), D.2.2
(Software libraries) D.2.7 (documentation, portability)

∗This work is partially supported by National Science Foundation Grant no. CCR-
9203730.

1



1 Introduction and Applicability of Interval Arith-
metic

Interval arithmetic, introduced in [1], [22] and other texts, is an extension
of arithmetic operations to intervals, such that the result of, e.g. a binary
interval operation is the set of all possible results of the corresponding oper-
ation on real numbers, choosing the first operand from the first interval and
the second operand from the second interval. Such arithmetic is useful to

• rigorously bound roundoff error in a variety of numerical computations,
and

• compute rigorous bounds on the range of functions.

Interval arithmetic lends certainty to computations through the use of
directed roundings, in which the exact result of an arithmetic operation1

is enclosed in a containing interval whose endpoints are machine numbers.
Such rigor, combined with tools such as fixed-point iteration, allows auto-
matic result verification and automatic theorem proving. For example, it is
well known among researchers in the field that interval Newton methods can
prove existence, uniqueness, or non-existence of roots of a nonlinear system
of equations within a given rectangular region in multidimensional space; see
[23]. With clever bounding of truncation errors, these computational tech-
niques can also be used in existence proofs for infinite-dimensional problems
such as partial differential equations, as described in [10] and more recent
work.

Interval arithmetic cannot be used naively (e.g. by replacing all floating-
point operations in a program by interval operations), since, due to interval
dependencies, the interval value of an arithmetic expression can sometimes
be a severe overestimation of the range of that expression. Nonetheless,
interval techniques have been successful in a variety of applications. For
example:

• If an approximate root of a linear or nonlinear system of equations
has been found by conventional means, it is often easy for interval
techniques to verify that an actual root of the system lies within a
small rectangular region (box) surrounding the approximate root.

• Rigorous computations of bounds on ranges of functions is a powerful
tool in global optimization algorithms, where such bounds can be used

1assuming the operands are exact

2



in exhaustive searches to reject subregions that cannot contain global
optima. In fact, even though the interval arithmetic implementation
itself may be much slower, interval algorithms can not only be rigorous
but also faster than alternate techniques, such as Monte Carlo methods
or simulated annealing.

• It has been shown recently ([16]) that use of interval arithmetic to
estimate the sensitivity of certain large sparse linear systems can not
only lead to tight but correct bounds on the sensitivity, but can, in
some cases, be computable with orders-of-magnitude less work than
the LINPACK condition estimator.

In fact, hundreds of researchers have made steady progress over the past
three decades2 in increasing applicability of interval techniques to practical
problems.

The package presented here originally grew out of the desire to extend
the root-finding package INTBIS of [11] to handle transcendental in addition
to polynomial systems. However, we have also made the package transparent
and have included standard capabilities, for general utility in the contexts
mentioned above.

2 Purpose and General Properties of the Package

Various packages have been made available for interval arithmetic support.
However, these lack portability, are in obsolete FORTRAN 66 (and thus
harder to understand and maintain), or have other undesirable features.
INTLIB is meant to be an up-to-date FORTRAN 77 package, quickly in-
stallable on most machines. It is not meant to be optimal on any particular
machine, but provides a template upon which optimized versions can be de-
signed. Thus, INTLIB is consistent with the BLAS philosophy (Algorithm
539, [20]). We also used Corliss’ BIAS proposal ([4]) as a guide in designing
INTLIB.

INTLIB does not assume IEEE arithmetic, nor does it assume anything
about the accuracy of the standard functions supplied with the Fortran
compiler. However, it is generally structured top-down so modifications
to higher-level routines will allow efficient use of accurate FORTRAN 77
supplied functions, when available.

2since the establishment of interval arithmetic, by Moore

3



INTLIB uses the machine’s intrinsic double precision floating point arith-
metic, and simulates directed roundings for rigor.

We took care when designing INTLIB to make it compatible with INT-
BIS (Algorithm 681), a package that uses an interval Newton method com-
bined with exhaustive search to rigorously find all roots of a nonlinear system
of algebraic equations. (See [11].) We provide instructions for incorporating
INTLIB into INTBIS in §5.3 below.

INTLIB contains a set of subroutines for support of an interval data type,
assuming operator overloading is available. We have designed a Fortran 90
module, described in [13], containing interfaces to INTLIB routines. This
module and INTLIB, without modification, provide an interval data type
in Fortran 90. The interface has been designed to be, as much as possible,
consistent with a simple design philosophy and consistent with the language
ACRITH-XSC (known earlier as FORTRAN-SC; see [25]).

INTLIB provides error handling through a set of flags in a common
block. Level of message printing, as well as level of error that terminates
execution, can be user-specified. Errors normally handled by the Fortran
system, such as overflows and underflows, are not trapped. However, we
make some effort in INTLIB to avoid overflows and destructive underflows
resulting from intermediate computations in INTLIB.

Alternatives to INTLIB exist in many cases. For example, the “XSC”
languages have been developed as a coordinated effort over the years at
the University of Karlsruhe. Using operator overloading and other object-
oriented concepts, they represent portable extensions to common languages.
The XSC languages include Pascal-XSC [7], C-XSC [19], and Fortran-XSC3

[24]. These commendable languages are complete, sophisticated systems
that, unlike INTLIB, feature maximal accuracy and an accurate dot product4,
and are available commercially. However, none of them is available in strict
FORTRAN 77 environments. Additionally, INTLIB is meant to be a simple
framework, suitable for many production-type computations, but transpar-
ent enough for the user to comprehend and improve.

INTLIB and the aforementioned languages represent interval computa-
tions within traditional programming environments. Interval computations
are also available within interactive systems such as Maple [3] and Mathe-

3Fortran-XSC is still under development at the time of writing; we briefly discuss it in
§6 below.

4Maximal accuracy and accurate dot products are useful in many contexts, especially
when dealing with ill-conditioned linear systems. However, they are not indispensable in
many situations.

4



matica [14]. Also, additional packages are mentioned in [12].

3 Package Contents

We have organized the package into

• elementary interval arithmetic subroutines,

• interval standard function subroutines,

• utility routines,

• an error-printing routine,

• a routine to set mathematical constants and machine-dependent con-
stants, and

• testing programs.

Calls to all routines in INTLIB are similar. For example, ADD, which
adds intervals A and B, returning the sum in RESULT, is structured as
follows.

SUBROUTINE ADD(A, B, RESULT)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION A(2), B(2), RESULT(2)

(Univariate routines have the argument list (A, RESULT).)
All routines are “safe” in the sense that they give the expected result

when input arguments and output arguments are the same. For example,
the statement

CALL MULT(A, B, A)

causes A to be replaced by A ∗ B. (The authors first saw this concept in
[6].)

We list the user-callable routines in INTLIB below.

5



3.1 Elementary Interval Arithmetic Subroutines

ADD, which adds two intervals;

CANCEL, which performs cancellation-type subtraction on an accumu-
lated sum.

IDIV, which does interval division of ordinary intervals;

MULT, which multiplies two intervals

RNDOUT, which performs simulated directed rounding;

SCLADD, which adds an interval to a point;

SCLMLT, which multiplies an interval by a point; and

SUB, which subtracts two intervals.

The simulated directed rounding in RNDOUT is done by multiplication of
computed results by (1 + ε), for appropriate ε; see §6 below and the source
files for RNDOUT and SIMINI.)

3.2 Interval Standard Function Subroutines

IACOS (Interval arc cosine)

IACOT (Single argument arc cotangent)

IASIN (Interval arc sine)

IATAN (Single argument arc tangent)

ICOS (Interval cosine)

IEXP (Interval ex)

IIPOWR (Nonnegative interval to an interval power)

ILOG (Interval natural logarithm)

ISIN (Interval sine)

ISINH (Hyperbolic sine)

ISQRT (Interval square root)

6



POWER (Integer power of an interval)

Additionally, the routines ASNSER, ATNRED, ATNSER, ISNRED,
ISHSER, ISNVAL, RRPOWR, RCOS, REXP, RLOG, and RSQRT are as-
sociated with the interval standard function routines, but are not normally
called by the user. These routines perform argument reductions or rigorous
(rounded out) evaluations at endpoints.

3.3 Utility Routines

These routines have simple functions, but are useful if one wants error check-
ing and assurance of proper rounding. They are also necessary if an interval
data type is to be defined through overloading.

ICAP (Intersection)

IDISJ (Two intervals disjoint)

IHULL (Convex hull)

IILEI (Set inclusion in closure of interval)

IILTI (Set inclusion in interior)

IINF (Return left endpoint)

IMID (Return approximation to midpoint using available floating point
arithmetic)

IMIG (Mignitude)

INEG (Unary negation)

INTABS (Interval absolute value – a double precision value)

IRLEI (Point inclusion in closure of interval)

IRLTI (Point inclusion in interior of interval)

ISUP (Return right endpoint)

IVL1 (Construct interval from a point)

IVL2 (Construct interval from its endpoints)

7



IVLABS (Range of ‖ ◦ ‖ over an interval)

IVLI (Assign one interval to another)

IWID (Outwardly rounded width)

3.4 Miscellaneous and Machine Dependent Routines

ERRTST: This routine is used for printing information about error condi-
tions as they occur. Since no files are attached here, there should be
no machine dependencies.

SIMINI: This routine is used to set parameters for a particular machine’s
arithmetic and mathematical constants. A quantity MAXERR, indi-
cating the number of units in the last place by which double precision
addition, subtraction, multiplication, or division may be in error must
be set. Additionally, some representations of mathematical constants
may need to be changed for unusual machines. (See §5 below.)

3.5 Arithmetic Query Routines

INTLIB uses the SLATEC routines D1MACH and I1MACH to obtain ma-
chine constants such as the maximum relative distance between two floating
point numbers. The target machine may have these routines already in-
stalled. Otherwise, they must be installed properly for INTLIB to give
correct results.

3.6 The Testing Routines

The test programs check the INTLIB routines at special points of the stan-
dard functions, at crossover points and extreme points in the argument
reduction, at points near the limits of the floating point system, and on a
set of fixed pseudo-random intervals. The test data is scaled according to
the particular floating point system, so output will differ from machine to
machine. However, the test output indicates widths of resulting intervals
and whether the intrinsic Fortran library function values are contained in
the corresponding interval bounds.

The test routines are driven by the program TSTDRV, which calls the
routines TIACOS, TIACOT, TIASIN, TIATAN, TICOS, TIEXP,
TIIPWR, TILOG, TINPWR, TISIN, TISINH, TISQRT, and TIU-
TIL. The test programs also include the auxiliary routines DACOT1, EVAL,

8



EVAL2, EVAL3, RPOWR, UOUT1, UOUT1B, UOUT1C, UOUT2, UOUT2B,
UOUTL, AND UOUTLB.

The paper [12] contains a brief discussion of the design principles for the
test routines. Also see §5.2 below.

4 Approximation and Argument Reduction Prin-
ciples

The routines are structured to determine ranges (i.e. interval values) from
rigorous lower and upper bounds of values at the endpoints5. However,
since specific accuracy of the Fortran intrinsic functions is not assumed6,
INTLIB contains routines to compute rigorous (and as sharp as possible,
without using extended precision) lower and upper bounds of the values
of the standard functions at points. Generally, these latter routines use
standard argument reduction techniques and Taylor polynomial evaluation.

The Taylor polynomials, though used only to obtain “point” values, are
evaluated in interval arithmetic to rigorously bound the roundoff errors, and
the (small-width) interval error term is then added. Similarly, the argument
reductions, though applied to “point” inputs, are carried out in interval
arithmetic. (However, see comments in §6 below.)

The routines for IASIN, IACOS, IATAN, IACOT and ISINH, for the arc-
sine, arccosine, arctangent, arccotangent and hyperbolic sine, respectively,
use special reductions and adaptive choice of Taylor series order; these tech-
niques are explained in [9]. The routines for the trigonometric, exponential,
and logarithm functions use fixed-order Taylor series, while the square root
function uses argument reduction, a low-order Taylor series approximation,
and an interval Newton method. The routine IIPOWR, to raise an interval
to an interval power, uses the interval exponential and logarithm functions.

Accuracy is limited in some cases by the restriction that the arithmetic be
based on the machine’s underlying double precision arithmetic. For example,
for large arguments, returned bounds for the values of the trigonometric
functions, given point input, are wider (sometimes even with relative widths
of 10−5) for large arguments; for arguments larger than Nπ, where N is
the largest representable integer, a warning is signalled, and the correct but
wide interval [−1, 1] is returned.

5This is straightforward for monotonic functions, but somewhat more involved for the
sine and cosine.

6and indeed, all Fortran standards are silent on this point

9



Details of the argument reduction, as well as details of the Taylor series
evaluations, are clearly marked in-line in the source.

5 Installation and Use

5.1 The Distribution Files

INTLIB is distributed in eight parts (or files), totalling around 721,018 bytes.
These parts are

D1I1MACH.FOR (approx. 28,380 bytes), containing the routines
D1MACH and I1MACH from the SLATEC package, used to set ma-
chine parameters7.

BASICOPS.FOR (approx. 32,773 bytes), containing the elementary in-
terval arithmetic subroutines as in §3.1. Documentation for these rou-
tines appears in their prologues.

UTILFUNS.FOR (approx. 31,964 bytes), containing basic utility func-
tions in §3.3.

ELEMFUNS.FOR (approx. 164,999 bytes), containing routines for the
standard functions in §3.2.

MISCMACH.FOR (approx. 30,122 bytes) which contains the routines of
§3.4.

TSTPROGS.FOR (approx. 166,618 bytes), containing the driver and the
test subroutines of §3.6.

INTLIBTS.OUT (approx. 266,162 bytes), an output file produced by
running TSTDRV on an MS-DOS system8 with the Microsoft Fortran
compiler version 4.1.

7These routines may be absent, depending on alternate availability and ACM and
copyright policy.

8INTLIB has also been tested on Sun SPARC systems, on an IBM 3090 with the VM
operating system and VS-Fortran, on a Convex, and on the MS-DOS and SPARC systems
using the NAG Fortran 90 compiler, versions 1.0, 1.2, and 2.0.

10



5.2 Steps for Installation

Installation consists of

1. Altering D1MACH and I1MACH for the particular machine in use.
As provided, these routines may be set for MS-DOS systems. They
will need to be changed for other systems, as indicated in their in-
line documentation. Also, D1MACH and I1MACH may not contain
machine constants for some newer machines; such machine constants
must be provided. D1MACH and I1MACH are possibly already on
the system; in that case, the file file D1I1MACH is not needed with
INTLIB.

CAUTION: Use of the machine constants in D1MACH is not rigor-
ous on machines that do not have guard digits. See Kulisch / Miranker
[18, pp. 5–6], On such machines INTBIS can be made rigorous by using
a larger value instead of D1MACH(4) (representing the largest relative
distance between floating point numbers). This is analogous to choos-
ing a larger ε∗ in the Kulisch / Miranker analysis (ibid.), and is equiv-
alent to assuming the computer’s wordlength is somewhat smaller. In
effect, the technique uses part of the computer word as guard digits, to
avoid the type of subtraction error illustrated in Kulisch / Miranker.
Sometimes, only one or two such guard digits are needed. For ex-
ample, on a hypothetical decimal machine with D1MACH(4) = 10−8,
use of 10−7 instead should do. Input data should then be stored into
intervals using the routines IVL1 and IVL2, which will round out in
this lower precision.

On some Cray machines, however, the situation is more complicated.
On such machines, division is implemented as an iterative algorithm,
and more than one bit is lost, depending on the numerator and denom-
inator. However, the authors have been informed (Hartmut Schwandt,
Peter Tang, private conversations) that it is safe to assume the elemen-
tary operations on Cray machines to be accurate to within 20 units
in the last place. Thus, INTLIB could be made rigorous on Cray
machines by using a value at least twenty times the value given by
D1MACH(4). However, see the comments in §6 below.

The authors would like to be contacted if there are any doubts.

2. Carefully reading the assumptions in the prologue to SIMINI (in file
MISCMACH.FOR), and possibly altering SIMINI. In particular, SI-

11



MINI stores mathematical constants as twenty-five digit decimal rep-
resentations. It is assumed that the arithmetic is not more accurate
than this, and that the conversion error from the decimal representa-
tion to the machine’s internal floating point is accurate to the same
relative error as the elementary operations. If these assumptions are
not valid, then the constants will need to be represented in a different
form. Also, SIMINI contains a data statement where MAXERR, the
maximum number of units in the last place by which double precision
addition, multiplication, subtraction, division can be in error, is set.
For IEEE machines, MAXERR = 1. However, approximation errors
in conversion of ASCII input data to floating point may may need to
be be taken into account in some contexts, as above.

3. Possibly altering the test driver TSTDRV.FOR of §3.6. The only
items that should require alteration are the OPEN statement, the
first executable statement, and the parameter IOUTUN, giving the
unit number for output.

4. No other files should need to be altered.

5. Compiling the files D1I1MACH.FOR, BASICOPS.FOR, UTILFUNS.FOR,
ELEMFUNS.FOR, and MISCMACH.FOR. The object code should be
made available as libraries or in other formats, so that the individual
routines in these files are available to user calling programs. Note that
D1I1MACH may already be installed on the system.

6. Compiling TSTPROGS.FOR.

7. Linking and running TSTPROGS. No input files are required. If pos-
sible, the system should be set so that execution continues after over-
flows and underflows. Underflows should be set to zero.

8. Carefully examining the output file. The philosophy underlying the
testing is explained in [12]. The file INTLIBTS.OUT serves as a guide
of what to expect. A test is successful provided the containing intervals
corresponding to point data contain the corresponding floating point
values from the compiler-supplied intrinsic functions. Successful tests
do not prove that the functions in the package will never give erroneous
results (though we have done our best to eliminate bugs, thus ensuring
that they never do). An unsuccessful test may have the following
causes:

12



(a) improper installation,

(b) inaccurate intrinsic functions supplied with the Fortran compiler,
or

(c) a bug or bugs in the package.

Though the output file from the testing can be compared with the
output files INTLIBTS.OUT, the output will vary from system to sys-
tem, especially for the last twenty data intervals. These intervals have
pseudo-random endpoints scaled to individual floating point systems.

Some of the evaluations will cause error messages to be printed. This
is normal, as is illustrated in the sample output file.

The summary sections in the output file should be interpreted care-
fully. In particular, the “maximum relative error with point input” and
“maximum absolute error with point input” are given. It is possible
that the routines are functioning correctly, yet both error measures
may be large. There are two reasons for this. First, some of the
“point” data actually consists of intervals with small relative widths.
Second, in some regions of the range of some of the functions, relative
error is a natural measure, whereas, in other regions, absolute error is
more appropriate. For sin and cos, absolute error is meaningful, but
relative error is reasonable for the exponential function. Also, in many
cases, the functions are tested very strictly, near the extremes of the
particular floating point system. Of course, both relative and abso-
lute accuracy could be improved if a higher precision data type were
assumed to be available. However, despite large relative or abolute
interval widths over parts of the range, the INTLIB functions provide
useful accuracy.

5.3 Installation for Use with INTBIS

If the package is to be used with INTBIS ([11]) then routines in INTBIS
of the same name as routines in this package should be deleted, and the
new routines (in this package) should be used instead. In particular, the
old versions of ADD, MULT, POWER, RNDOUT, SCLADD, SCLMLT,
SIMINI, and SUB should be deleted.

13



5.4 Installation with Optimally Accurate Intrinsics

If the return-values of the Fortran intrinsic functions are within one unit
in the last place of the corresponding mathematical values of the function,
then considerable simplification and speedup are possible. Basically, calls
to underlying routines like RCOS (routines R∗) can be replaced by calls
to corresponding standard functions. Such modifications will require some
study of the package structure, but the package is meant to be transparent.

Similarly, simplifications are possible in various places if IEEE arithmetic
is used. However, see §6 below.

5.5 An Interval Data Type

The authors have developed an interval data type using INTLIB and a
Fortran 90 interface. It is presently available for testing purposes.

5.6 Use

The most straightforward use involves simply calling the routines in INTLIB
from the application program. This requires only FORTRAN 77 and the
ability to link the INTLIB libraries. However, the INTLIB routine SIMINI
must be called once, at the beginning of the program, before computations
begin. Not doing so is a common error that, due to uninitialized constants,
leads to INTLIB signalling numerous seemingly unrelated warnings and er-
rors. The authors know of no portable way of checking in FORTRAN 77
whether SIMINI has been called.

It is strongly recommended to use the interval data type the authors
provide, if Fortran 90 is available. Doing so frees the program developer from
a large programming burden, makes the resulting code more transparent,
and does not incur a large run-time penalty.

6 Future Improvements

The present package’s simplicity and capabilities are constrained by require-
ments of

• FORTRAN 77 compatibility,

• total portability,

• no assumption of IEEE arithmetic,

14



• rigor (i.e. guaranteed results), and

• transparency (ease of reading) of the source code.

However, on a certain test battery (of [5]) and on various machines, INTLIB
arithmetic runs roughly twenty times slower than ordinary floating point
arithmetic. Thus, improvements are possible.

If some portability is sacrificed, then better accuracy and much better
speed can be achieved. For example, accurate standard functions, for re-
duced arguments, are available on 80486 and Pentium chips; these could be
used to directly build interval evaluations. Also, the IEEE standard dictates
an extended precision, beyond floating point, that can be used in argument
reductions, though this precision is not accessible through FORTRAN 77.

Non-trivial improvements are nonetheless possible, even while maintain-
ing total portability and simplicity. For example, to bound roundoff error,
INTLIB presently evaluates Taylor polynomials in interval arithmetic. How-
ever, as shown in [2] and [17], given the parameters in the floating point
system, the roundoff error in argument reduction and Taylor polynomial
evaluation can be bounded a priori. With such bounds, the Taylor poly-
nomials can then be evaluated using floating point arithmetic. Preliminary
experiments on the exponential function indicate this technique to be about
five times faster. However, significant additional analysis is necessary to
incorporate it into INTLIB. Similar speedups may be possible, using totally
different approximation techniques, as indicated in [21].

Significant execution time in INTLIB is spent in the routine RNDOUT
that simulates directed roundings by multiplying results x by 1 + ε, 1 − ε
or by setting results to zero or plus or minus the smallest machine number,
depending on the sign and size of x. However, true directed roundings are
available in IEEE arithmetic. In [15], such directed roundings are imple-
mented in C++ software for Sparc and 80X86 systems with a single assem-
bly language instruction. The rounding must be changed between “down”
and “up” to get lower bounds and upper bounds. Minimizing this chang-
ing in vector operations, the package of [15] is reported to execute interval
arithmetic no more than five times slower than floating point arithmetic.

Finally, Fortran 90 syntax could simplify the code. For example, environ-
ment inquiry functions would obviate some of the need for providing the ex-
plicit machines constants of the SLATEC routines D1MACH and I1MACH.
The cumbersome common blocks holding mathematical constants could be
replaced by modules. The standard function routines could also be written
with a subset of the interval data type, to replace long strings of subroutine

15



calls with arithmetic expressions. In fact, this design path has been taken
in [24], although that work is at present ongoing.

7 Summary

INTLIB is a portable, available, tested, well-documented and supported
FORTRAN 77 system for interval arithmetic. Its underlying design philos-
ophy includes rigor, transparency of the source code to the user, and total
portability. In conjunction with operator overloading in Fortran 90, the
authors are presently using it extensively in their own research on interval
arithmetic algorithms; various others have also tested and used it. It can
form the basis for machine-optimized and improved versions.

8 Credits

We wish to acknowledge George Corliss at Marquette University. Many
discussions with him both encouraged us and allowed us to improve the
package. We also wish to acknowledge Rebecca Yun, a one-time student at
the first author’s university, and Abdulhamid Awad, an undergraduate at
the University of Houston–Downtown who worked on several of the routines.

References

[1] Alefeld, Götz, and Herzberger, Jürgen, Introduction to Interval Com-
putations, Academic Press, New York, etc., 1983.

[2] Braune, K. D., Hochgenaue Standardfunktionen für reele und komplexe
Punkte und Intervalle in beliebigen Gleitpunktrastern, Ph.D. disserta-
tion, Universität Karlsruhe, 1987.

[3] Connell, A. and Corless, R. M., An Experimental Interval Arithmetic
Package in Maple, Interval Computations, in press.

[4] Corliss, G. F., Proposal for a Basic Interval Arithmetic Subroutines
Library (BIAS), preprint, 1990.

[5] Corliss, G. F., Comparing Software Packages for Interval Arithmetic,
talk presented at the IMACS / GAMM International Symposium on
Scientific Computing, Computer Arithmetic and Validated Numerics,
Vienna, Austria, September 26–29, 1993.

16



[6] Crary, F., The AUGMENT Precompiler , technical report no. 1470,
Mathematics Research Center, The University of Wisconsin, Madison,
1976.

[7] Hammer, R., Neaga, M., Ratz, D., PASCAL-XSC, New Concepts for
Scientific Computation and Numerical Data Processing , in Scientific
computing with automatic result verification, pp. 15–44, Academic
Press, New York, etc., 1993.

[8] Hansen, E. R., Global Optimization using Interval Analysis, Marcel
Dekker, Inc., New York, 1992.

[9] Hu, C. and Kearfott, R. B., On Bounding the Range of Some Elemen-
tary Functions in FORTRAN 77 , Interval Computations, in press.

[10] Kaucher, E. W. and Miranker, W. L., Self-Validating Numerics for
Function Space Problems, Academic Press, Orlando, 1984.

[11] Kearfott, R. B., and Novoa, M., INTBIS, A Portable Interval New-
ton/Bisection Package (Algorithm 681), ACM Trans. Math. Software
16 (2), pp. 152–157, 1990.

[12] Kearfott, R. B., Dawande, M., Du K.-S. and Hu, C.-Y., INTLIB: A
Portable FORTRAN 77 Elementary Function Library , Interval Com-
putations, in press.

[13] Kearfott, R. B., A Fortran 90 Environment for Research and Prototyp-
ing of Enclosure Algorithms for Constrained and Unconstrained Non-
linear Equations, submitted to the ACM Trans. Math. Software.

[14] Keiper, J. B., Interval Arithmetic in Mathematica, Interval Computa-
tions, in press.

[15] Knüppel, O., BIAS – Basic Interval Arithmetic Subroutines, talk pre-
sented at the IMACS / GAMM International Symposium on Scientific
Computing, Computer Arithmetic and Validated Numerics, Vienna,
Austria, September 26–29, 1993.

[16] C. F. Korn and Ch. Ullrich, Extending LINPACK by Verification Rou-
tines for Linear Systems, talk presented at the IMACS / GAMM In-
ternational Symposium on Scientific Computing, Computer Arithmetic
and Validated Numerics, Vienna, Austria, September 26–29, 1993.

17



[17] Krämer, W., Inverse Standardfunktionen für reelle und komplexe In-
tervallargumente mit a priori Fehlerabschätzungen, Ph.D. dissertation,
Universität Karlsruhe, 1987.

[18] Kulisch, Ulrich W., and Miranker, Willard L., A New Approach to
Scientific Computation, Academic Press, New York, 1983.

[19] Lawo, C., C-XSC A Programming Environment for Verified Scientific
Computing and Numerical Data Processing , in Scientific Computing
with Automatic Result Verification, pp. 71–86, Academic Press, New
York, etc., 1993.

[20] Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., Algo-
rithm 539: Basic Linear Algebra Subprograms for FORTRAN Usage,
ACM Trans. Math. Software 5 (3), pp. 308–325, 1979.

[21] Luther, W. and Otten, W., Computation of Standard Interval Functions
in Multiple-Precision Interval Arithmetic, technical report no. SM-DU-
233, Universität Duisburg, 1993.

[22] Moore, R. E., Methods and Applications of Interval Analysis, SIAM,
Philadelphia, 1979.

[23] Neumaier, A., Interval Methods for Systems of Equations, Cambridge
University Press, Cambridge, England, 1990.

[24] Walter, W. V., FORTRAN-XSC: A Portable Fortran 90 Module Library
for Accurate and Reliable Scientific Computing , Computing (Suppl.) 9,
pp. 265–286, 1993.

[25] Walter, W. V., ACRITH-XSC: A Fortran-Like Language for Verified
Scientific Computing , Academic Press, New York, etc., in Scientific
Computing with Automatic Result Verification, pp. 45–70, Academic
Press, New York, etc., 1993.

18


