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Abstract—We provide a summary of the goals, underlying
philosophy, work, decisions, product, and completion schedule
of the IEEE P-1788 working group on interval arithmetic.

I. INTRODUCTION

Interval arithmetic, invented several times during the early
twentieth century and rising to prominence with Ramon
Moore’s initial work [16], [17], [18], has had a consistent
presence within the scientific computing world during the
past 50 years. Publicly available software packages, as well
as several hardware implementations, have been available
throughout this time span, and continue to be developed,
for platforms and languages such as Fortran 66, Fortran 77,
Fortran 90 and 2003, C, C++, Matlab, Mathematica, Maple,
Java, etc. It also is not uncommon for developers of higher-
level packages to supply their own interval arithmetic. A
partial list of interval arithmetic software and packages using
or built upon interval arithmetic can be found on the web page
[12]. Some of our own work containing basic introductions to
interval arithmetic, as well as tutorials on certain packages and
further references, is in [10], [19]. Some articles describing
applications relating interval computations and soft computing
appear in [9].

Several hundred researchers presently identify themselves
as experts in interval computations. However, with a solid
scholarly literature and web presence, many others, initially
unknown to the core “interval community,” are experimenting
with interval arithmetic or are incorporating it into their
projects.

A basic goal of interval arithmetic is to take account of both
uncertainties in input data and roundoff errors in floating point
computations in a mathematically rigorous way1. This leads to
the ability to use floating point computations to provide math-
ematical proofs of appropriately posed assertions, to provide
guarantees that a system subject to manufacturing uncertainties
will remain within performance bounds, etc. Such proofs
are largely effected by computing mathematically rigorous
upper and lower bounds on the range of a function over

1However, some useful applications of interval arithmetic, such as [8],
among them fuzzy applications such as in [9] are non-rigorous computations.

hyper-rectangles, using the fundamental theorem of interval
arithmetic:

Theorem 1: (Fundamental Theorem of Interval Arithmetic)
Suppose f(x1, · · · , xn) is an expression of n variables built
from the four basic arithmetic operations addition, subtraction,
multiplication, and division, and other functions ϕ of one or
more variables, collectively called “library functions.” Suppose
interval evaluations ϕ(x) of the library functions ϕ are defined
such that ϕ(x) contains the range of ϕ over x. Then the
interval evaluation f(x) obtained by replacing each arithmetic
operation and library function by the corresponding interval
version contains the range of f over x.

Proofs utilizing the fundamental theorem of interval arith-
metic perhaps even have legal implications, but will be correct
only if the software utilizing interval arithmetic is bug-free.
Also, such software is more likely to be available if it is
reasonably portable. These goals are more easily attained if the
underlying system is standardized in a logical, complete way
that is as simple as possible. Furthermore, programmers and
implementers are less likely to make mistakes or misinterpret
results if different interval arithmetic systems behave in the
same, known way.

II. WHY ISN’T STANDARDIZATION TRIVIAL?

Basic interval arithmetic can be specified with simple, well-
defined rules. For example, addition and multiplication for
non-empty bounded intervals can be characterized by

[x, x] + [y, y] = [x+ y, x+ y] and (1)

[x, x] · [y, y] =
[
min

{
xy, xy, xy, xy

}
,

max
{
xy, xy, xy, xy

}]
,

with analogous operations for subtraction and division. Within
common floating environments, it is even straightforward to
unambiguously define the computer-generated results corre-
sponding to (1). For example, to ensure interval versions
of the four basic operations contain the actual ranges of
those operations, it is sufficient to round the floating point
computation of the lower bound (such as in (1)) down and
the upper bound up. In IEEE-754 arithmetic [14], this can be



effected in an optimally tight way with the standard rounding
modes: One simply sets the rounding mode to “down” when
computing the lower end point of the result and the rounding
mode to “up” when computing the upper end point.

Since this method of proceeding is seemingly so clear,
why are there challenges and controversy in standardization of
interval arithmetic? The following issues come to the forefront.

Evaluation over partial domains: Even though the result
of an individual arithmetic operation is a very close approx-
imation to the actual range of that operation (and rigorously
contains the range), combining a sequence of such operations
to evaluate an expression gives an interval that only contains
the range, often with considerable overestimation beyond that
due simply to roundoff error2. For example, suppose we wish
to evaluate

E(x) =
√
x2 + x+ 1

over x = [−1, 1]. The exact range of e(x) = x2 + x + 1
over [−1, 1] is [0.75, 3], while an interval evaluation, using
[−1, 1]2 = [0, 1], gives

e(x) = [−1, 1]2 + [−1, 1] + 1 = [−1, 3].

When we subsequently take the square root of this expression,
we are left with the problem of evaluating a square root over
an interval that contains zero. If we are interested only in
the range of E over x, we may ignore the negative part, and
return

√
[0, 3] = [0,

√
3] (or the smallest floating point interval

containing this interval) for E(x).
In many contexts, such continuation of the evaluation over

the intersection of the input interval with the domain is
permissible. However, in some contexts, it is not. For example,
the Brouwer fixed point theorem states that if G is a continuous
function over a compact set x (such as an interval vector)
and the range of G over x is contained in x, then there is a
fixed point x∗ ∈ x, x∗ = G(x∗). Since the interval evaluation
G(x) contains the range of G over x, G(x) ⊆ x leads to the
conclusion G has a fixed point in x. However, if, we take

G(x) =
√
x2 − 1 and x = [−2, 2],

we would obtain

G(x) =
√

[−1, 3] = [0,
√
3] ⊂ [−2, 2],

and we would conclude G had a fixed point in [−2, 2], an
incorrect conclusion. (To see this, note that

√
x2 − 1 = x

implies x2 − 1 = x2, from which −1 = 0; thus, G can have
no fixed points.)

The standard needs to somehow accommodate evaluation
over partial domains, while raising an exception when needed.

Exceptions in general: The working group has devoted a
significant amount of effort discussing the types of exceptions
that can occur, which must be tracked, and how to track them
efficiently; see the synopsis for Motion 36 in the next section.

Extended arithmetic: Conceptually, the result of a single
arithmetic operation is defined to be the range of that operation

2This is due to the dependency problem. See any good elementary introduc-
tion to interval arithmetic, such as [19, Section 5.2, p. 38] for an explanation.

over the input intervals. This is not a problem for interval
division when the denominator is an interval that does not
contain zero, but is a problem when it does. Furthermore, due
to overestimation, the actual range of a denominator may not
contain zero, while the interval evaluation does. If we consider
−∞ to be part of the number system, that is, if we consider
the underlying set to be the two-point compactification R of
the real numbers, the interval evaluation of, say, 1/[0, 1] might
be construed to be set of two disjoint intervals

[−∞,−∞] ∪ [1,∞].

In contrast, if the underlying system is simply the set of real
numbers R, the quantity 1/0 is not defined, and 1/[0, 1] can
only be defined over a partial domain. In this case, a logical
definition would be 1/[0, 1] = [1,∞). In the former case,
the single smallest interval containing the range would be the
entire set of extended reals [−∞,∞].

For other interval pairs, such as [1, 2]/[−1, 1], two disjoint
intervals, namely

(−∞,−1/2] ∪ [1/2,∞),

seem inevitable whether or not the underlying set is assumed
to be R or R. It is sometimes useful for the program or
application to know both parts of the range, but may also be
convenient to simply return an interval containing the union
of the parts, and it is appropriate in some contexts to raise
or signal an exception. For consistency but also utility, the
standard needs to specify interval division.

Extensions of the elementary functions: The functions
ϕ in Theorem (1) typically are the functions such as sin,
cos, exp, asin, etc. usually accessible with common scientific
programming languages such as C++ and Fortran. If ϕ is such
a function, the logical interval value for ϕ(x) (where x is an
interval vector) would be the narrowest floating point interval
containing the mathematical range of ϕ over x. However, for
some ϕ and x, it may be difficult to return this optimal range
with a reasonable cost. Furthermore, analogously to division,
standard functions such as the inverse trigonometric functions
and square roots have points where they are undefined and can
have inverse images consisting of more than one connected
component. A consistent, well-documented and universally
available way of handling such situations, flexible enough for
all common applications should therefore be defined.

Alternative systems: With one or two exceptional situa-
tions, the IEEE-754 standard data types and rounding modes
can be combined naturally with intervals represented in terms
of lower bound and upper bound and arithmetic defined
such as in (1), with the rules clearly and simply specified.
The IEEE 754 standard even provides specification for the
accuracy of elementary functions that can be used in an
interval standard (subject to the exception handling and need
for additional specification we have listed). However, other
representations and underlying systems are in use today in
various applications. Some of these are

• multiple and variable precision interval arithmetic such
as in [23],



• representation in terms of midpoint and radius (“mid-rad”
arithmetic)3 such as in [24], and

• modal or Kaucher arithmetic4 such as in [2], [6], [21],
[7], [7] or in fuzzy computing [25].

The standardization process has needed to decide how much
and how to standardize such systems, common features and
consistency of these systems, and conversion between repre-
sentations in these systems.

Reproducibility: Is it practical to specify the arithmetic in
the standard in such a way that the same computation carried
out on two different systems conforming to the standard
always give the same result? Is such reproducibility desirable?
The IEEE P-1788 working group discussed such issues in its
mailing list [13]. Two main sources that prohibit reproducibity
are compiler optimizations and accuracy requirements. Guar-
anteeing high accuracy in all cases can require either special
hardware or extensive computing time, while effcient software-
implementable methods exist that will guarantee the result
is within one or two floating point numbers of the exact
result; However, specifying an operation to such a relaxed
accuracy does not guarantee reproducibility. For example the
IEEE 754R floating point standard [14, Section 11] gives
requirements for reproducible results, to be available with an
optional reproducibility mode. This issue has been the subject
of P-1788 working group discussion.

Accurate dot product: A special (and controversial) op-
eration tied with tight enclosures of exact results in linear
algebra operations is the accurate dot product. In particular,
there are ways of computing the dot product v ◦ w such that
the computed result is the nearest machine number to the
exact result. Guaranteeing such accuracy in the worst case can
require either special hardware or extensive computing time,
while efficient software-implementable methods exist that will
guarantee the result is within one or two floating point numbers
of the exact result; however, specifying an operation to such a
relaxed accuracy does not guarantee reproducibility. The IEEE
P-1788 working group has dealt with inclusion of a dot product
specification of exact or relaxed accuracy; see the synopsis for
Motion 9 in the next section.

After giving a brief history of interval standardization
efforts, we present an overview of the present state of the
standards document and how these issues have been resolved.

III. A SHORT HISTORY

The author participated in a relatively early effort at stan-
dardization through a formally sanctioned committee in the
mid 1990’s, in the ANSI X3J3 / ISO WG5 working groups on
Fortran standardization. A working document was produced,
but a consensus could not be reached, particularly within the
community of experts on interval computation, and the Fortran
working group needed to focus on other issues.

3more efficient for certain matrix operations
4efficiently implemented and also useful for obtaining inner estimations,

that is, intervals guaranteed to be contained in the range, and a coherent
algebraic system

Slightly after and overlapping with the Fortran standardiza-
tion effort, Chenyi Hu, Jürgen Wolff von Gudenberg, Michael
Nooner and others produced a document in the BLAST forum,
an organization for standardizing the level-1, level-2, and level-
3 Basic Linear Algebra Subroutines for modern computer
architectures [5], [1]; a C++ implementation is described in
[20].

Somewhat later (in the mid 2000’s), Ulrich Kulisch led an
effort within the IFIP (International Federation for Information
Processing) Working Group 2.5 on Numerical Software to
develop a recommendation for interval arithmetic within the
eventual IEEE 754-2008 standard. Simultaneously, the Inter-
val Subroutine Library (ISL) working group studied interval
arithmetic standardization [22]. Due to timing and also the
inability of highly interested participants to attend certain cru-
cial working group meetings, action was not taken within the
P-754 working group. However, Prof. Kulisch’s efforts have
formed the basis for the present IEEE P-1788 working group,
officially approved to develop a separate interval standard in
2008.

Simultaneously with Prof. Kulisch’s effort, Hervé
Brönnimann, Guillaume Melquiond, and Sylvain Pion led
an effort within the ISO/IEC JTC1/SC22/WG21 committee
(International Standards Organization working group on stan-
dardization of C++) to specify a standard library for interval
arithmetic, based on the BOOST library for interval arithmetic
in C++ [15], [3]. The author of this article, along with
George Corliss, Ned Nedialkov, John Pryce, and Spencer
Smith participated in this as part of the focus of the ISL
(Interval Subroutine Library) project [4].

The IEEE P-1788 working group first planning meeting
occurred in January, 2008 at Schloss Dagstuhl Seminar 08021,
“Numerical Validation in Current Hardware Architectures,”
and the PAR (Project Authorization Request) was officially
approved on June 12, 2008, for a four year work period, with
Nathalie Revol as chair. A two-year extension was approved in
2012, for an completion-of-work date by December 31, 2014.

IV. CURRENT STATUS OF THE STANDARD

As of the writing of this article, the committee is still
processing motions, and the standards document is still under
development, and subject to change. However, we summarize
decisions (successful motions) that have been made as well
as the current state. We present the summary in the order in
which corresponding motions were made5.

1. Notation: The notation used in the standards docu-
ment will be as in [11].

2. Structure: An agreement on the overall structure of
the document, largely borrowed from the IEEE-754
standard.

3. Sets of reals: “The P1788 Interval arithmetic stan-
dard defines intervals as closed and connected sets
of real numbers.” That means that ±∞ may be used
as bounds of an interval but are never considered

5We also give motion numbers.



as members of an interval. In particular, this has
implications for the results of division by intervals
that contain zero, as explained in the introduction to
this article.

5. The basic operations: A four-page report giving
explicit rules for computing the results of the four
basic operations, including handling of unbounded
intervals such as [2, 3] · [1,∞) and explicitly pre-
scribing rounding modes to be used, was approved.

6. Formats (now “interval types”): An 8-page report
was adopted. Therein, it states that multiple formats
will be supported within the 1788 document, and
that an implementation must support at least one
format. A special 754-conforming format is defined,
as well as general terminology for formats. A basic
idea is that different interval formats correspond
to different floating point formats (such as single,
double, decimal), through the representation of their
end points. However, interval formats can go beyond
that, such as representation by a midpoint and radius
or representation of an interval [a, b] by [−a, b]. (In
this last format, operations on the lower and upper
bounds can proceed without a change of rounding
mode.) Clarifying definitions are made, and conver-
sions shall be provided between all supported interval
formats.

8. Exception handling: Exception handling will be
provided through the concept of decorations. A dec-
oration is an interval datum with extra bits giving
information about the computation leading to the
datum. For example, a decoration for the interval
[0,
√
3] resulting from computing

√
[−1, 3] would

carry information that at least one operation in the
chain leading to [0,

√
3] had an argument partially

outside its domain. The standard is to require “bare
intervals” (without decorations), “bare decorations,”
and decorated intervals. A rough analogue in IEEE
754 is the NaN: the NaN can be viewed as a
rudimentary form of a bare decoration.

9. Exact dot product: A standard-conforming interval
arithmetic implementation shall include an exact dot
product.

10. Elementary functions: A table of required elemen-
tary functions and a table of additional recommended
functions has been approved.

12. Inner addition and subtraction: In ordinary in-
terval arithmetic, [−1, 1] − [−1, 1] = [−2, 2] 6= 0,
since the first [−1, 1] doesn’t necessarily represent
the same interval as the second [−1, 1]. If we assume
it does, we get the cancellation or “inner” version
of subtraction, the result of which is [0,0]. Such
cancellation operations, useful in several contexts,
are approved to be required.

13. Comparison relations: A table of required com-
parison operations (number order relations and set
inclusion relations) has been approved.

16. On endpoint and midpoint-radius arithmetic: This
states that a standard-conforming implementation
shall have at least one “inf-sup” (representation in
terms of endpoints) data type with all required opera-
tions implemented, and that conversions between inf-
sup and midpoint-radius form shall be provided. The
conversions “shall preserve containment and return
the tightest representable interval in the target type.”

17. I/O: Syntax for intervals in text form is defined,
as well as conversions between text and internal
intervals that preserve enclosure in either direction.
This includes an exact text form for each interval
type, from which the interval value can be recovered
exactly.

18. A first requirement for an exception-handling dec-
oration: Basically, the decision is that a decoration
shall be provided to carry information on whether or
not there were points in an argument to an operation
that were outside of its domain.

19. Implicit and explicit data types: This clarifies
some details related to endpoint and midpoint-radius
arithmetic (as in item 16).

21. Overlapping detection: A function shall be pro-
vided to determine in which of 13 states (given in two
tables) of overlapping the two argument intervals are
found. For example, if x = [−1, 0] and y = [1, 2],
every element of x is less than every element of
y, while if x = [−1, 1] and y = [0, 2], y is to
the right of x but overlaps x. (There are 13 such
distinguishable states.)

24. Rounding of floating point operations: Every
1788-compliant system (regardless of whether it
implements an IEEE-754 data type) shall provide
rounding to nearest, rounding upwards to the next
floating point number, rounding downwards to the
next floating point number, and rounding to the
smallest floating point number.

29. Interchange data type: This requirement is to pro-
vide for standardized binary transfer of interval data
between different standard-conforming systems. It
requires an “interchange data type” and conversion
operations between each 754-conforming interval
data type and the interchange datatype. It also spec-
ifies that, aside from the interchange data type, the
bit-level representations of interval data types are not
specified in the standard.

30. Interval constructors: Functions that create bare
and decorated intervals from non-interval data shall
be provided. This requirement specifies construction
of bare and decorated intervals from two extended
real (floating point) values, as well as bare and
decorated intervals from a text string.

33. Underlying number formats: In the inf-sup as
well as mid-rad (or possible other) data types, the
bounds of the interval are represented by floating
point numbers, in a system F . General requirements



for F are specified.
34. Notation: Additional details (beyond Motion 1) con-

cerning notation to be used in the standards docu-
ment are specified.

36. “Flavors:” As we mentioned in §II, variants and
different extensions of the basic interval arithmetic
are in use. While these variants share properties
and operations that give identical results on subsets
of their domains of definition, they differ overall,
and including all variants in the standard within
the allotted time frame could be unwieldy. Here,
“flavors” are defined, essentially, as these variants.
The standard will specify a “set-based flavor” based
on work done by the working group to this point,
and the standard will define “common intervals” and
“common operations” to be shared by all flavors.
A conforming implementation shall support at least
one flavor, and a program shall be able to determine
which flavor is in effect. Additional flavors will
be developed by the interested parties, and, after
editorial review, will be included in the standard6

or in future revisions of the standard.
37. A detail on midpoints and radius: There was

a question on how to define the finite-precision
midpoint and radius of an interval for the empty
interval, an interval consisting of adjacent floating
point numbers, and semi-infinite or infinite intervals.
The definitions are specified (giving logically de-
duced reasons for the choices).

42. Details of decorations: A system of five decora-
tions, “defined and continuous,” “defined,” “trivial,”
“empty7,” and “ill-formed,” is given, along with
propagation rules and logical meanings.

In addition to these qualitative decisions, the working group
is required to pass motions on the actual wording of the
document text, with at least a 2/3 majority. As of the writing
of this article, the working group is processing such motions,
with several having passed. Remaining issues within the
working group (as of this article) are primarily completion
and ratification of the actual standards text.

V. THE WORKING GROUP, PROCESS AND RESOURCES

As of this article, the official P-1788 working group
presently consists of 89 official members, widely geograph-
ically distributed, mostly not from the United States. Most
participants are affiliated with academic institutions and gov-
ernment laboratories, although persons affiliated with IBM,
Intel, Oracle, and Sunfish Studios are active. Of the 89
registered members, 45 hold voting status. As of this article,
156 persons are subscribed to the mailing list [13] over which
discussions occur and official business is transacted.

The term of the working group ends in December, 2014 after
which, if the IEEE Standards Association formally approves

6if completed by the deadline
7From additional analysis, the committee may be able to abolish this

decoration.

it, the standard will be available for purchase from IEEE.
Prior to that, interested persons may join the working group
and participate in the standard’s development; part of the
participation includes access to the draft standard. See:

http://standards.ieee.org/develop/project/1788.html
After the document is delivered to the sponsor (the Mi-

croprocessor Standardization Committe, MSC), it enters the
“sponsor ballot” phase, during which the public can comment.
During this phase, a special balloting group is formed by
invitation and appointment from the sponsor; participants
are required to be either members of the IEEE Standards
Association or pay a per-ballot fee. The standard is submitted
for final review only if 75% of the balloting group participates,
and 75% of those vote “yes” for the standard. Regardless, all
negative comments must be addressed and either resolved, or
changes recirculated with a new ballot. After the ballot phase,
the ballot procedure is scrutinized for adherence to rules by
the IEEE Standards Association. The document becomes a
standard after such scrutiny.
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