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0 Problem:

Traditional methods of numerical mathematics

result in approximate solutions of numerical prob-

lems, often with no guaranteed estimates of the

solution’s inaccuracy.

o In many real applications, knowing such estimates

is really important.

0 Example.

If according to the (approximately computed) tra—

jectory of a spaceship it Will land in the desired

area, then Whether it Will actually land or crush

depends on the inaccuracy of this numerical pre—

diction.
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0 Methods:

Inview of that, methods have been developed

that provide us with reliable (:guaranteed) esti—

mates. As a result of applying such methods, we

get an approximate number A with a guarantee

that the difference between the actual value and

A does not exceed some given number A.

o What does the name mean? In other words,

we guarantee that the actual value belongs to the

interval [A — A, A + A]. Because of that7 reliable

methods are also called methods of interval com—

putations.
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Outline

In this short tutorial, we Will describe the main ideas

of this approach:

0 naive interval computations

o centered form

0 Hansen’s approach (and its relation to nonstan—

dard analysis)

0 approximate interval methods:

— methods based on sensitivity analysis

— Monte-Carlo type methods based on Cauchy

distribution (and Why Cauchy)
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Main problem

We know:

0 an algorithm f that transforms 71 real numbers

5131,...,:En into a real number 3/ 2 ag, ...,;1:n);

This algorithm solves the desired problem in

case we know the eract values of the data.

0 the approximate values 531,..., a?” of the parame—

ters xi, and the accuracies Az- of these approxi—

mate values

(z'.e., numbers such that —— S At);

0 the only information we have about the actual

values of 5132-is that £132-belongs to an interval
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We must nd:

a the interval Y of possible values of y = f (x1, ..., as”)

(or at least a good estimate F for that inter-

val

It is known: Even for polynomial f, the problem of

computing exactly is NP—hapd.

Therefore, we need fast methods of nding F such

that f (X) g F.
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Naive interval computations: idea

0 Sum:

—

£131E [611,[)1]

—

$2 6 [612752]

—

£131+ 5132E?

Answer: £131+ x2 6 [a1+ (12,191+ [)2].

0 Difference:

—

231
— £1326?

Answer: 5131
—

$2 6 [a1 — b2,b1 —— a2].

0 Product: 231332 6?

Answer: 513151326 [29‘7p+], Where

P I min(a1b17a1b27a2blaa252)and

19+ maX(a1b1,CLle, @2191,@2192).
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Naive interval computations: method

0 Example: = (a: — 2)(at+ 2)7 23 E [1,2].

0 How will the computer compute it?

0 Main idea: do the same operations, but With

intervals instead of numbers:

[172] — [272]Z [—170];

— R3 := [—1,0]* [3,4] = [—4,0].

0 Actual range: = [—3,0].

0 Comment. We always get a guaranteed estimate,

but often a too large one.
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Centered form

0 Main idea:

—

represent as a function of Ax = a: — 5:,

Where :7: is a center of X
,

and

— apply naive interval computations to the re—

sulting expression.

0 Example:

_ {g z 1.57 55 2 Ag: + 1.5, A51: E [—0.5,0.5];
— (:c—Z)(a:+2) = (Ax—0.5)(Azc-l—35)= [$332+

3A2: — 1.75;

— For this expression, naive interval computa—

tions lead to [—35,0].

0 General property: asymptotically, when errors

——> 0, it gives the correct error estimate

(f (X ) ~ F).
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Hansen’s approach

a

0 Main idea:

on each step, we represent the result of our com—
‘

putations as a + aOAzcl —|— + anArn + A, Where

— sz- = 3:2-
— ii, and

— A is an interval that contains quadratic and

other terms

0 Example:

—a:=1.5—Aa:;

—7“1::a:——2=—0.5—Aa:;

—7“2:=a:+2:3.5—Ax;

_

703 :: 7‘1 >I<T2 2 _' _ Z

= _1.75 — 3A + [0,0.25];

— As a result, we get

F = —1.75—3[—0.5,0.5]+[0,0.25] = [—3.25,0].
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0 Computational complexity:

— For naive interval computations:

g 4 times more computations

—— For Hansen’s method:

71 times more computations.
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Approximate interval methods: main

idea

0 Main assumption:

These methods are based on the usual physical

assumption that we can neglect the terms that

are quadratic in errors.

Example: if we know the values 5132-with the pre-

cision 2% (0.02), then the quadratic terms are

prOportional to 0.0004 (0.04%), and can be often

safely neglected.
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o Resulting formula for Ag: If we neglect quadratic

and higher order terms in the expansion of

Ag 2 y
— g I f<£131,— f(§31,=

f(§31— A5131, -— — f<§31,...,in),

we get the expression

Ag I fleail + + fmACIZn,

Where f-denotes the partial derivative

8f

(9562'.

o Resulting formula for A:

— We know: 3 Ai;

— We conclude: A = |f71|A1—l—.. +
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Sensitivity analysis

0 Problem:

We are considering a complicated case, When an

algorithm f is not simply an explicit expression,

but a very complicated algorithm. So, it is im-

possible to differentiate f analytically.

o Idea:

To use numerical estimates based on the same

assumption (that the terms that are quadratic in

errors are negligible).

0 Method: Estimate faz-as

~

f(§31,..., £1241, + h, 5324.1,..., .513”)— g
h.
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0 Computational complexity:

we apply f n + 1 times:

— rst, to compute g],

— and then 71 more times, to estimate the partial

derivatives.

— Then, we compute A.

0 Main drawback of sensitivity analysis:

— For many real—life problems '(e.g., for the anal-

ysis of a geophysical data), the number of in-

puts n can be in thousands, and

— each computation of f is (already) very time—

consuming.

— As a result, computing A takes too much time.
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A Monte—Carlo-type method based

on Cauchy distribution

0 Main steps:

—— First, we simulate errors, i.e., use a computer

random number generator to generate random

numbers 5%-that are distributed according to

Cauchy distribution with a density

_

const

with 0 average and (scale) parameter Ago.

W?)

~

—Then, we compute Ag“) y
— y“), where

ya) 2 _ €17 _
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Comment. In the case when we can neglect

terms that are quadratic in error, we can con—

clude that Ag“) is a Cauchy—distributed ran—

dom variable with 0 average and parameter

A = Zlf'lAi‘

— So, to determine A, we repeat this procedure

several times, obtaining N values

: g — y<1>7“'7 : g _ yy7

and then apply standard statistical techniques

(namely, Maximum Likelihood Method MLM)

to estimate A.

— For Cauchy distribution, MLM turns into solv—

ing an equation

2
1

__

N

k 1 + (MG/A)2
*

2

(it can be solved by bisection).
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0 Results:

For N = 50, we get A with a 20% accuracy in

2 99.9% of cases.

Comment. A 20% accuracy is quite sufcient

if we take into consideration that this is a pre—

cision with which we know accuracy. There

is little difference between a measuring device

with a 2% accuracy and a device with a 2.1%

accuracy.

0 Computational complexity:

— this method executes f N —|—1 = 51 times.

— So7 for large n, this method is much faster than

sensitivity analysis.
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0 Main advantage over naive and centered

interval methods:

— Naive and centered interval methods overesti—

mate f (X); often enormously;

— This Monte-Carlo method gives an interval that

(With a 99.9% guarantee) differs from the de—

sired interval by g 20%.
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0 Both approximate methods may be easily

parallelized.

— Problem: In all these methods, the most time—

consuming part of the algorithm is applying a

time—consuming algorithm f to different data.

— Idea: 807 a natural idea to save time is to

make all these calls of f handled by separate

processors.

— Result: If we have several processors working

in parallel, then we may compute both the esti-

mate y and its accuracy in practically the same

time that we would have spent on an estimate

3] itself.
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