INTERVAL METHODS IN
MATHEMATICAL
PROGRAMMING

R. Baker Kearfott

Department of Mathematics
University ot Southwestern Louisiana,

Latayette, LA

email rbk@ucs.usl.edu

and Viadik Kreinovich

Department of Computer Science
University of Texas at El Paso
El Paso, TX

emaill vladik@cs.ep.utexas.edu

University of Texas at El Past ' Department of Computer Science

Problem

e Problem:
Iraditional methods of numerical mathematics
result in approximate solutions of numerical prob-

lems, often with no guaranteed estimates of the

solution’s inaccuracy.

- e In many real applications, knowing such estimates

1s really important.

e Example.

If according to the (approximately computed) tra-
jectory of a spaceship it will land in the desired

area, then whether it will actually land or crush

depends on the inaccuracy of this numerical pre-

diction.

University of lexas at El Past Department of Computer Science

e Methods:

In view of that, methods have been developed
that provide us with reliable (=guaranteed) esti-
mates. As a result of applying such methods, we
get an approximate number A with a guarantee
that the difterence between the actual value and

A does not exceed some given number A.

e What does the name mean? In other words,

we guarantee that the actual value belongs to the
interval [A — A, A+ AJ]. Because of that, reliable

methods are also called methods of interval com-

putations.

University of Texas at El Past Department of Computer Science |

Outline

In this short tutorial, we will describe the main ideas

of this approach:

e naive interval computations

e centered form

e Hansen’s approach (and its relation to nonstan-

dard analysis)
e approximate interval methods:

— methods based on sensitivity analysis

— Monte-Carlo type methods based on Cauchy
distribution (and why Cauchy)

University of Texas at El Past Department of Computer Science

Main problem

We know:

e an algorithm f that transforms n real numbers

r1, ..., Ty Into a real number y = f(z4,...,2,);

This algorithm solves the desired problem in

case we know the exact values of the data.

e the approximate values Z1, ..., %, of the parame-

ters x;, and the accuracies A; of these approxi-

mate values
(z’.e., numobers such that lf@ — le < Ai);

e the only information we have about the actual

values of z; is that x; belongs to an interval

Z— AL T+ A

University of Texas at El Past Department of Computer Science

We must find:

e the interval Y of possible values of y = f(x1, ..., z,)

(or at least a good estimate F for that inter-

val).

It 1s known: Even for polynomial f, the problem of

computing f(X) exactly is NP-hard.

Therefore, we need fast methods of finding F such
that f(X) C F.

University of Texas at El Past | Department of Computer Science

Naive interval computations: idea

e Sum:

— @1 € |ag, b

— 9 € |a9, by

— 1+ 19 €7
Answer: 1+ x2 € |a1 + a9, by + bs].

e Difference:

— 1 — To €7

Answer: 1 — xy € a1 — by, by — as)].

e Product: xizy €7

Answer: x1xs € [p~,pT], where

P = min(albl, albg, CLle, agbg) and

max(a,lbl, albg, agbl, CLng).

p-l-

University of Texas at El Past Department of Computer Science

3
Naive interval computations: method

e Example: f(x) =(x—2)(z+2), z €[1,2].

- e How will the computer compute it?

— 11 =x—2;
— 79 IZCC-I‘Q;
— T3 = T1 *xT9.

e Main i1dea: do the same operations, but with

intervals instead of numbers:

e Actual range: f(X)=1[-3,0].

o Comment. We always get a guaranteed estimate.

but often a too large one.

| University of Texas at El Past ' Department of Computer Science

Centered form

e Main 1dea:
—represent f(z) as a function of Ax = = — Z,
where T 1s a center of X, and
— apply naive interval computations to the re-

sulting expression.

e Example:

— T =15, = Az +1.5, Az € [-0.5,0.5];
3Ax — 1.75; '

— For this expression, naive interval computa-

tions lead to [—3.5,0].

- o General property: asymptotically, when errors

— 0, 1t gives the correct error estimate
(f(X) ~ F).

University of Texas at El Past Department of Computer Science

10

Hansen’s approach

o Main 1dea:
on each step, we represent the result of our com-
- putations as a + agAzxi + ... + a,Ax, + A, where
— ACL’@ — L; — .CE‘Z', and

— A 18 an interval that contains quadratic and

other terms

o lkxample:

—x = 1.5 — Aux;

—r =12 —2=-0.5 - Az;

—Ty:=x+ 2 =35 — Ax;

—r3:=r1*1ry = (—0.5 - Az)(3.5 - Ax) =
= —1.75 — 3A + [0, 0.25];

— As a result, we get

F = —1.75—3[—0.5,0.5]+[0, 0.25] = [—3.25, 0].

University of Texas at El Past Department of Computer Science

11

- e Computational complexity:

— For naive interval computations:

< 4 times more computations

— For Hansen’s method:

n times more computations.

University of Texas at El Past Department of Computer Science

12

Approximate interval methods: main

1idea

e Main assumption:
lhese methods are based on the usual physical

assumption that we can neglect the terms that

are quadratic in errors.

Example: if we know the values x; with the pre-

cision 2% (0.02), then the quadratic terms are

proportional to 0.0004 (0.04%), and can be often
sately neglected.

University of Texas at El Past Department of Computer Science

13

e Resulting formula for Ay: If we neglect quadratic

and higher order terms in the expansion of

Va4

Ay=y—9= flz1,...2,) — f(ZT1,...3,) =
f(fl?‘l — A[L‘l, fﬁn — ASBn) — f(fl, ...,Z%n),
we get the expression

Ay = f)lA.iUl + ... f,nA.CUn,

where f, denotes the partial derivative

of
85)5’2'.

e Resulting formula for A:

— We know: |Azx;| < Aj;

— We conclude: A = |f|A;+ ..+ |fa]A,.

University of Texas at El Past Department of Computer Science

14

Sensitivity analysis

e Problem:
We are considering a complicated case, when an
algorithm f is not simply an explicit expression,
but a very complicated algorithm. So, it is im-

possible to differentiate f analytically.

o Idea:

To use numerical estimates based on the same

assumption (that the terms that are quadratic in

errors are negligible).

e Method: Estimate f; as

e

f(fl, oo 533'_.1, T; + h, 533'_,_1, ool .Qi’n) — gj
h.

University ot Texas at El Past Department of Computer Science

1o

e Computational complexity:

we apply f n + 1 times:

— first, to compute 7,

—add tnew 7 mord times, to eSstumarte the partiil

derivatives.

— T'hen, we compute A.

e Main drawback of sensitivity analysis:

— For many real-life problems (e.g., for the anal-
ysis of a geophysical data), the number of in-

puts n can be in thousands, and

cach computation of f is (already) very time-

consuming.

— As a result, computing A takes too much time.

University of Texas at El Past Department of Computer Science

16

A Monte-Carlo-type method based

on Cauchy distribution

e Main steps:

— First, we simulate errors, i.e., use a computer
random number generator to generate random
numbers §; that are distributed according to

Cauchy distribution with a density

with O average and (scale) parameter A,.

— Then, we compute Ay = § — ¢y, where
y(l) — f(i'l T 617 75%71 T gn)

University of Texas at El Past Department of Computer Science

| University of Texas at El Past

17
Comment. In the case when we can neglect

terms that are quadratic in error, we can con-
clude that Ay'" is a Cauchy-distributed ran-

dom variable with 0 average and parameter
A =2\ filA
/)

— So, to determine A, we repeat this procedure

several times, obtaining N values
Ay =g -y, Ay =g -y,

and then apply standard statistical techniques
(namely, Maximum Likelihood Method MLM)

to estimate A.

— For Cauchy distribution, MLM turns into solv-
Ing an equation

.1 N
Fl1+ (y® /A2 T 9

(it can be solved by bisection).

Department of Computer Science

13

e Results:

For N = 50, we get A with a 20% accuracy in
> 99.9% of cases.

Comment. A 20% accuracy is quite sufficient

1f we take into consideration that this is a pre-
cision with which we know accuracy. There
1s little difference between a measuring device

with a 2% accuracy and a device with a 2.1%

accuracy.

e Computational complexity:

— this method executes f N 4+ 1 = 51 times.

— D0, for large n, this method is much faster than

sensitivity analysis.

University of Texas at El Past Department of Computer Science

19

e Main advantage over naive and centered

interval methods:
— Naive and centered interval methods overesti-
mate f(X); often enormously;

— 1'his Monte-Carlo method gives an interval that

(with a 99.9% guarantee) differs from the de-
sired interval by < 20%.

University of Texas at El Past Department of Computer Science

20

e Both approximate methods may be easily

parallelized.

— Problem: In all these methods, the most time-
consuming part of the algorithm is applying a

time-consuming algorithm f to different data.

— Idea: So, a natural idea to save time is to
make all these calls of f handled by separate

Processors.

— Result: If we have several processors working

1in parallel, then we may compute both the esti-

mate y and its accuracy in practically the same

time that we would have spent on an estimate

y itself.

University of Texas at El Past - Department of Computer Science

