
INTERVAL METHODS IN

MATHEMATICAL

PROGRAMMING

R. Baker Kearfott

Department of Mathematics

University of Southwestern Louisiana

Lafayette, LA

email rbk©ucs.us1.edu

and Wadi/c Krcz'nom'ch

Department of Computer Science

University of Texas at El Paso

El Paso, TX

email v1adik@cs.ep.utexas.edu
'

University of Texas at E1 Past Department of Computer Science

0 Problem:

Traditional methods of numerical mathematics

result in approximate solutions of numerical prob-

lems, often with no guaranteed estimates of the

solution’s inaccuracy.

o In many real applications, knowing such estimates

is really important.

0 Example.

If according to the (approximately computed) tra—

jectory of a spaceship it Will land in the desired

area, then Whether it Will actually land or crush

depends on the inaccuracy of this numerical pre—

diction.

University of Texas at El Past Department of Computer Science

0 Methods:

Inview of that, methods have been developed

that provide us with reliable (:guaranteed) esti—

mates. As a result of applying such methods, we

get an approximate number A with a guarantee

that the difference between the actual value and

A does not exceed some given number A.

o What does the name mean? In other words,

we guarantee that the actual value belongs to the

interval [A — A, A + A]. Because of that7 reliable

methods are also called methods of interval com—

putations.

University of Texas at El Past Department of Computer Science

Outline

In this short tutorial, we Will describe the main ideas

of this approach:

0 naive interval computations

o centered form

0 Hansen’s approach (and its relation to nonstan—

dard analysis)

0 approximate interval methods:

— methods based on sensitivity analysis

— Monte-Carlo type methods based on Cauchy

distribution (and Why Cauchy)

University of Texas at El Past Department of Computer Science

Main problem

We know:

0 an algorithm f that transforms 71 real numbers

5131,...,:En into a real number 3/ 2 ag, ...,;1:n);

This algorithm solves the desired problem in

case we know the eract values of the data.

0 the approximate values 531,..., a?” of the parame—

ters xi, and the accuracies Az- of these approxi—

mate values

(z'.e., numbers such that —— S At);

0 the only information we have about the actual

values of 5132-is that £132-belongs to an interval

University of Texas at El Past Department of Computer Science

We must nd:

a the interval Y of possible values of y = f (x1, ..., as”)

(or at least a good estimate F for that inter-

val

It is known: Even for polynomial f, the problem of

computing exactly is NP—hapd.

Therefore, we need fast methods of nding F such

that f (X) g F.

University of Texas at E1 Past Department of Computer Science

Naive interval computations: idea

0 Sum:

—

£131E [611,[)1]

—

$2 6 [612752]

—

£131+ 5132E?

Answer: £131+ x2 6 [a1+ (12,191+ [)2].

0 Difference:

—

231
— £1326?

Answer: 5131
—

$2 6 [a1 — b2,b1 —— a2].

0 Product: 231332 6?

Answer: 513151326 [29‘7p+], Where

P I min(a1b17a1b27a2blaa252)and

19+ maX(a1b1,CLle, @2191,@2192).

University of Texas at E1 Past Department of Computer Science

8

Naive interval computations: method

0 Example: = (a: — 2)(at+ 2)7 23 E [1,2].

0 How will the computer compute it?

0 Main idea: do the same operations, but With

intervals instead of numbers:

[172] — [272]Z [—170];

— R3 := [—1,0]* [3,4] = [—4,0].

0 Actual range: = [—3,0].

0 Comment. We always get a guaranteed estimate,

but often a too large one.

University of Texas at El Past Department of Computer Science

Centered form

0 Main idea:

—

represent as a function of Ax = a: — 5:,

Where :7: is a center of X
,

and

— apply naive interval computations to the re—

sulting expression.

0 Example:

_ {g z 1.57 55 2 Ag: + 1.5, A51: E [—0.5,0.5];
— (:c—Z)(a:+2) = (Ax—0.5)(Azc-l—35)= [$332+

3A2: — 1.75;

— For this expression, naive interval computa—

tions lead to [—35,0].

0 General property: asymptotically, when errors

——> 0, it gives the correct error estimate

(f (X) ~ F).

University of Texas at El Past Department of Computer Science

Hansen’s approach

a

0 Main idea:

on each step, we represent the result of our com—
‘

putations as a + aOAzcl —|— + anArn + A, Where

— sz- = 3:2-
— ii, and

— A is an interval that contains quadratic and

other terms

0 Example:

—a:=1.5—Aa:;

—7“1::a:——2=—0.5—Aa:;

—7“2:=a:+2:3.5—Ax;

_

703 :: 7‘1 >I<T2 2 _' _ Z

= _1.75 — 3A + [0,0.25];

— As a result, we get

F = —1.75—3[—0.5,0.5]+[0,0.25] = [—3.25,0].
University of Texas at El Past Department of Computer Science

0 Computational complexity:

— For naive interval computations:

g 4 times more computations

—— For Hansen’s method:

71 times more computations.

University of Texas at E1 Past Department of Computer Science

Approximate interval methods: main

idea

0 Main assumption:

These methods are based on the usual physical

assumption that we can neglect the terms that

are quadratic in errors.

Example: if we know the values 5132-with the pre-

cision 2% (0.02), then the quadratic terms are

prOportional to 0.0004 (0.04%), and can be often

safely neglected.

University of Texas at El Past Department of Computer Science

o Resulting formula for Ag: If we neglect quadratic

and higher order terms in the expansion of

Ag 2 y
— g I f<£131,— f(§31,=

f(§31— A5131, -— — f<§31,...,in),

we get the expression

Ag I fleail + + fmACIZn,

Where f-denotes the partial derivative

8f

(9562'.

o Resulting formula for A:

— We know: 3 Ai;

— We conclude: A = |f71|A1—l—.. +

University of Texas at El Past Department of Computer Science

Sensitivity analysis

0 Problem:

We are considering a complicated case, When an

algorithm f is not simply an explicit expression,

but a very complicated algorithm. So, it is im-

possible to differentiate f analytically.

o Idea:

To use numerical estimates based on the same

assumption (that the terms that are quadratic in

errors are negligible).

0 Method: Estimate faz-as

~

f(§31,..., £1241, + h, 5324.1,..., .513”)— g
h.

University of Texas at El Past Department of Computer Science

0 Computational complexity:

we apply f n + 1 times:

— rst, to compute g],

— and then 71 more times, to estimate the partial

derivatives.

— Then, we compute A.

0 Main drawback of sensitivity analysis:

— For many real—life problems '(e.g., for the anal-

ysis of a geophysical data), the number of in-

puts n can be in thousands, and

— each computation of f is (already) very time—

consuming.

— As a result, computing A takes too much time.

University of Texas at El Past Department of Computer Science

A Monte—Carlo-type method based

on Cauchy distribution

0 Main steps:

—— First, we simulate errors, i.e., use a computer

random number generator to generate random

numbers 5%-that are distributed according to

Cauchy distribution with a density

_

const

with 0 average and (scale) parameter Ago.

W?)

~

—Then, we compute Ag“) y
— y“), where

ya) 2 _ €17 _

University of Texas at El Past Department of Computer Science

Comment. In the case when we can neglect

terms that are quadratic in error, we can con—

clude that Ag“) is a Cauchy—distributed ran—

dom variable with 0 average and parameter

A = Zlf'lAi‘

— So, to determine A, we repeat this procedure

several times, obtaining N values

: g — y<1>7“'7 : g _ yy7

and then apply standard statistical techniques

(namely, Maximum Likelihood Method MLM)

to estimate A.

— For Cauchy distribution, MLM turns into solv—

ing an equation

2
1

__

N

k 1 + (MG/A)2
*

2

(it can be solved by bisection).
University of Texas at El Past Department of Computer Science

0 Results:

For N = 50, we get A with a 20% accuracy in

2 99.9% of cases.

Comment. A 20% accuracy is quite sufcient

if we take into consideration that this is a pre—

cision with which we know accuracy. There

is little difference between a measuring device

with a 2% accuracy and a device with a 2.1%

accuracy.

0 Computational complexity:

— this method executes f N —|—1 = 51 times.

— So7 for large n, this method is much faster than

sensitivity analysis.

University of Texas at El Past Department of Computer Science

0 Main advantage over naive and centered

interval methods:

— Naive and centered interval methods overesti—

mate f (X); often enormously;

— This Monte-Carlo method gives an interval that

(With a 99.9% guarantee) differs from the de—

sired interval by g 20%.

University of Texas at El Past Department of Computer Science

0 Both approximate methods may be easily

parallelized.

— Problem: In all these methods, the most time—

consuming part of the algorithm is applying a

time—consuming algorithm f to different data.

— Idea: 807 a natural idea to save time is to

make all these calls of f handled by separate

processors.

— Result: If we have several processors working

in parallel, then we may compute both the esti-

mate y and its accuracy in practically the same

time that we would have spent on an estimate

3] itself.

University of Texas at El Past Department of Computer Science

