INTERVAL METHODS IN MATHEMATICAL PROGRAMMING

R. Baker Kearfott
Department of Mathematics
University of Southwestern Louisiana
Lafayette, LA
email rbk@ucs.usl.edu
and Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso
El Paso, TX
email vladik@cs.ep.utexas.edu

Problem

- Problem:

Traditional methods of numerical mathematics result in approximate solutions of numerical problems, often with no guaranteed estimates of the solution's inaccuracy.

- In many real applications, knowing such estimates is really important.
- Example.

If according to the (approximately computed) trajectory of a spaceship it will land in the desired area, then whether it will actually land or crush depends on the inaccuracy of this numerical prediction.

- Methods:

In view of that, methods have been developed that provide us with reliable (=guaranteed) estimates. As a result of applying such methods, we get an approximate number A with a guarantee that the difference between the actual value and A does not exceed some given number Δ.

- What does the name mean? In other words, we guarantee that the actual value belongs to the interval $[A-\Delta, A+\Delta]$. Because of that, reliable methods are also called methods of interval computations.

Outline

In this short tutorial, we will describe the main ideas of this approach:

- naive interval computations
- centered form
- Hansen's approach (and its relation to nonstandard analysis)
- approximate interval methods:
- methods based on sensitivity analysis
- Monte-Carlo type methods based on Cauchy distribution (and why Cauchy)

Main problem

We know:

- an algorithm f that transforms n real numbers x_{1}, \ldots, x_{n} into a real number $y=f\left(x_{1}, \ldots, x_{n}\right) ;$

This algorithm solves the desired problem in case we know the exact values of the data.

- the approximate values $\tilde{x}_{1}, \ldots, \tilde{x}_{n}$ of the parameters x_{i}, and the accuracies Δ_{i} of these approximate values

$$
\text { (i.e., numbers such that }\left|\tilde{x}_{i}-x_{i}\right| \leq \Delta_{i} \text {); }
$$

- the only information we have about the actual values of x_{i} is that x_{i} belongs to an interval $\left[\tilde{x}_{i}-\Delta_{i}, \tilde{x}_{i}+\Delta_{i}\right]$.

We must find:

- the interval Y of possible values of $y=f\left(x_{1}, \ldots, x_{n}\right)$ (or at least a good estimate F for that interval).

It is known: Even for polynomial f, the problem of computing $f(X)$ exactly is NP-hard.

Therefore, we need fast methods of finding F such that $f(X) \subseteq F$.

Naive interval computations: idea

- Sum:

$$
\begin{aligned}
& -x_{1} \in\left[a_{1}, b_{1}\right] \\
& -x_{2} \in\left[a_{2}, b_{2}\right] \\
& -x_{1}+x_{2} \in ? \\
& \quad \text { Answer: } x_{1}+x_{2} \in\left[a_{1}+a_{2}, b_{1}+b_{2}\right] .
\end{aligned}
$$

- Difference:

$$
\begin{aligned}
& -x_{1}-x_{2} \in ? \\
& \\
& \text { Answer: } x_{1}-x_{2} \in\left[a_{1}-b_{2}, b_{1}-a_{2}\right] .
\end{aligned}
$$

- Product: $x_{1} x_{2} \in$?

$$
\begin{aligned}
& \text { Answer: } x_{1} x_{2} \in\left[p^{-}, p^{+}\right] \text {, where } \\
& p^{-}=\min \left(a_{1} b_{1}, a_{1} b_{2}, a_{2} b_{1}, a_{2} b_{2}\right) \text { and } \\
& p^{+}=\max \left(a_{1} b_{1}, a_{1} b_{2}, a_{2} b_{1}, a_{2} b_{2}\right) .
\end{aligned}
$$

Naive interval computations: method

- Example: $f(x)=(x-2)(x+2), x \in[1,2]$.
- How will the computer compute it?

$$
\begin{aligned}
& -r_{1}:=x-2 \\
& -r_{2}:=x+2 \\
& -r_{3}:=r_{1} * r_{2}
\end{aligned}
$$

- Main idea: do the same operations, but with intervals instead of numbers:

$$
\begin{aligned}
& -R_{1}:=[1,2]-[2,2]=[-1,0] \\
& -R_{2}:=[1,2]+[2,2]=[3,4] \\
& -R_{3}:=[-1,0] *[3,4]=[-4,0]
\end{aligned}
$$

- Actual range: $f(X)=[-3,0]$.
- Comment. We always get a guaranteed estimate, but often a too large one.

Centered form

- Main idea:

- represent $f(x)$ as a function of $\Delta x=x-\bar{x}$, where \bar{x} is a center of X, and
- apply naive interval computations to the resuiting expression.
- Example:

$$
\begin{aligned}
& -\bar{x}=1.5, x=\Delta x+1.5, \Delta x \in[-0.5,0.5] \\
& -(x-2)(x+2)=(\Delta x-0.5)(\Delta x+3.5)=\Delta x^{2}+ \\
& \quad 3 \Delta x-1.75 ;
\end{aligned}
$$

- For this expression, naive interval computatons lead to $[-3.5,0]$.
- General property: asymptotically, when errors $\rightarrow 0$, it gives the correct error estimate $(f(X) \sim F)$.

Hansen's approach

- Main idea:
on each step, we represent the result of our computations as $a+a_{0} \Delta x_{1}+\ldots+a_{n} \Delta x_{n}+A$, where
$-\Delta x_{i}=x_{i}-\tilde{x}_{i}$, and
- A is an interval that contains quadratic and other terms
- Example:

$$
\begin{aligned}
& -x=1.5-\Delta x ; \\
& -r_{1}:=x-2=-0.5-\Delta x ; \\
& -r_{2}:=x+2=3.5-\Delta x ; \\
& -r_{3}:=r_{1} * r_{2}=(-0.5-\Delta x)(3.5-\Delta x)= \\
& =-1.75-3 \Delta+[0,0.25] ;
\end{aligned}
$$

- As a result, we get

$$
F=-1.75-3[-0.5,0.5]+[0,0.25]=[-3.25,0] .
$$

- Computational complexity:
- For naive interval computations:
≤ 4 times more computations
- For Hansen's method: n times more computations.

Approximate interval methods: main

 idea- Main assumption:

These methods are based on the usual physical assumption that we can neglect the terms that are quadratic in errors.

Example: if we know the values x_{i} with the precision 2% (0.02), then the quadratic terms are proportional to $0.0004(0.04 \%)$, and can be often safely neglected.

- Resulting formula for Δy : If we neglect quadratic and higher order terms in the expansion of

$$
\begin{gathered}
\Delta y=y-\tilde{y}=f\left(x_{1}, \ldots, x_{n}\right)-f\left(\tilde{x}_{1}, \ldots \tilde{x}_{n}\right)= \\
f\left(\tilde{x}_{1}-\Delta x_{1}, \ldots \tilde{x}_{n}-\Delta x_{n}\right)-f\left(\tilde{x}_{1}, \ldots, \tilde{x}_{n}\right),
\end{gathered}
$$

we get the expression

$$
\Delta y=f_{, 1} \Delta x_{1}+\ldots+f_{, n} \Delta x_{n}
$$

where $f_{, i}$ denotes the partial derivative

$$
\frac{\partial f}{\partial x_{i}}
$$

- Resulting formula for Δ :
- We know: $\left|\Delta x_{i}\right| \leq \Delta_{i}$;
- We conclude: $\Delta=\left|f_{, 1}\right| \Delta_{1}+. .+\left|f_{, n}\right| \Delta_{n}$.

Sensitivity analysis

- Problem:

We are considering a complicated case, when an algorithm f is not simply an explicit expression, but a very complicated algorithm. So, it is impossible to differentiate f analytically.

- Idea:

To use numerical estimates based on the same assumption (that the terms that are quadratic in errors are negligible).

- Method: Estimate $f_{, i}$ as

$$
\frac{f\left(\tilde{x}_{1}, \ldots, \tilde{x}_{i-1}, \tilde{x}_{i}+h, \tilde{x}_{i+1}, \ldots, \tilde{x}_{n}\right)-\tilde{y}}{h .}
$$

- Computational complexity: we apply $f n+1$ times:
- first, to compute \tilde{y},
 derivatives.
- Then, we compute Δ.
- Main drawback of sensitivity analysis:
- For many real-life problems (e.g., for the analysis of a geophysical data), the number of inputs n can be in thousands, and
- each computation of f is (already) very timeconsuming.
- As a result, computing Δ takes too much time.

A Monte-Carlo-type method based on Cauchy distribution

- Main steps:
- First, we simulate errors, i.e., use a computer random number generator to generate random numbers ξ_{i} that are distributed according to Cauchy distribution with a density

$$
\rho(x)=\frac{\text { const }}{1+\left(x / \Delta_{i}\right)^{2}}
$$

with 0 average and (scale) parameter Δ_{i}.

- Then, we compute $\Delta y^{(1)}=\tilde{y}-y^{(1)}$, where $y^{(1)}=f\left(\tilde{x}_{1}-\xi_{1}, \ldots, \tilde{x}_{n}-\xi_{n}\right)$.

Comment. In the case when we can neglect terms that are quadratic in error, we can conclude that $\Delta y^{(1)}$ is a Cauchy-distributed random variable with 0 average and parameter

$$
\Delta=\sum_{i}\left|f_{, i}\right| \Delta_{i}
$$

- So, to determine Δ, we repeat this procedure several times, obtaining N values

$$
\Delta y^{(1)}=\tilde{y}-y^{(1)}, \ldots, \Delta y^{(N)}=\tilde{y}-y^{(N)}
$$

and then apply standard statistical techniques (namely, Maximum Likelihood Method MLM) to estimate Δ.

- For Cauchy distribution, MLM turns into solving an equation

$$
\sum_{k} \frac{1}{1+\left(y^{(k)} / \Delta\right)^{2}}=\frac{N}{2}
$$

(it can be solved by bisection).

- Results:

For $N=50$, we get Δ with a 20% accuracy in $\geq 99.9 \%$ of cases.

Comment. A 20% accuracy is quite sufficient if we take into consideration that this is a precision with which we know accuracy. There is little difference between a measuring device with a 2% accuracy and a device with a 2.1% accuracy.

- Computational complexity:
- this method executes $f N+1=51$ times.
- So, for large n, this method is much faster than sensitivity analysis.
- Main advantage over naive and centered interval methods:
- Naive and centered interval methods overestimate $f(X)$; often enormously;
- This Monte-Carlo method gives an interval that (with a 99.9% guarantee) differs from the desired interval by $\leq 20 \%$.
- Both approximate methods may be easily parallelized.
- Problem: In all these methods, the most timeconsuming part of the algorithm is applying a time-consuming algorithm f to different data.
- Idea: So, a natural idea to save time is to make all these calls of f handled by separate processors.
- Result: If we have several processors working in parallel, then we may compute both the estimate \tilde{y} and its accuracy in practically the same time that we would have spent on an estimate \tilde{y} itself.

