Chapter 1

Mathematically Rigorous Global Optimization
and Fuzzy Optimization

A brief comparison of paradigms, methods, similarities
and differences

Ralph Baker Kearfott

Abstract Mathematically rigorous global optimization and fuzzy optimization have
different philosophical underpinnings, goals, and applications. However, some of
the tools used in implementations are similar or identical. We review, compare and
contrast basic ideas and applications behind these areas, referring to some of the
work in the very large literature base.

1.1 Introduction

Mathematical optimization in general is a huge field, with numerous experts working
in each of the plethora of application areas. There are various ways of categorizing
the applications, methods, and techniques. For our view, we identify the following
areas in which computer methods for optimization are applied:

1. Computation of parameters in a scientific model, where the underlying physical
laws are assumed to be well-known and highly accurate.

2. Computation of an optimal engineering design, where the underlying physical
laws are assumed to be exact, but where there may be uncertainties in measure-
ments of known quantities.

3. Estimation of parameters in statistical models, where a fixed population is known,
a subset of that population is well-defined, and we want to estimate the proportion
of the whole population in the sub-population.

4. Decision processes in the social and managerial sciences.

5. Learning in expert systems.

We have put these application areas roughly in order of decreasing “hardness" of
the underlying science and formulas. In addition to particular algorithmic techniques
that take advantage of problem structure in specific applications in each of these areas,
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these five areas admit differing underlying guiding paradigms. We give the following
three such contrasting philosophies.

For scientific and engineering computing in the hard sciences (fields 1 and 2), a
philosophy has been that equations would give the results (outputs) exactly, provided
known quantities (inputs) are known exactly. In traditional floating point computa-
tion, best guesses for the inputs are made, the floating computations are done, and
the result (output) of the floating point computations is taken in lieu of the exact
answer. With the advent of modern computers, numerical analysts have recognized
that small inaccuracies in the model, errors or uncertainties in the inputs, and errors
introduced during the computation may have important effects on the result (output),
and thus should be taken into account. Various ways of estimating or bounding the
effects of these uncertainties and errors are being investigated, and such handling
this kind of uncertainty has been the subject of a number of prestigious conferences.
Here, we focus on interval analysis for handling this kind of uncertainty.

Statistical computations (field 3) contrast only slightly with scientific and engi-
neering computations. In statistical computations, there aren’t deterministic equa-
tions that give a unique output (optimum) given unique inputs (parameters in the
objective and constraints), but the underlying laws of probability, as well as assump-
tions about the entire population and the sub-population, can be stated precisely.
Thus, we end up with a statistical model whose optimum has certain statistical prop-
erties, assuming the model and population assumptions are correct. In this sense,
statistical computations are the same as computations stemming from fields 1 and 2.
Uncertainty enters into statistical computations in a similar way.

In recent decades, there has been a push to develop models for some problems
in the managerial sciences that are similar to scientific and engineering models
or statistical models. Linear models (linear programming) have had phenomenal
success in managed environments where inputs and model assumptions are precisely
known; such environments include military or government procurement and supply,
or optimizing operations in a large corporation.

Equation-based models have also been applied to more fundamentally compli-
cated situations in management and economics, such as stock market prediction and
portfolio management, in free-market economies. However, certain simplifying as-
sumptions, such as market efficiency (all participants immediately have full current
information) and each player acting in their own best interest (e.g. the assumption
that pure altruism and ethics are not factors) have been shown to not be universally
valid. Furthermore, nonlinearities due to many players acting according to the same
model are not well-understood. Thus, even if current inputs are precisely known and
the objective is precisely defined, the “physical law" paradigm for analyzing such
situations is debatable.

A different type of managerial or every-day decision process is where an un-
ambiguous quantitative statement of the inputs and goals is not well-defined. An
example of such a specification might be design of a customer waiting room at a ser-
vice center, where the manager doesn’t want an unneeded expense for an excessively
large room, but also doesn’t want the customers to feel too crowded, that is, the room
shouldn’t be too small. Here, “too small” is subjective, and depends on individual
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customers, but there are sizes that most people would agree are “too small" for the
anticipated number of customers, and there sizes most people would agree are “more
than large enough." This is not the same as well-defined inputs but with uncertainty
in their measurements. Also, there is no defined subset of “small rooms" among
an existing set of “all rooms" for which a statistical estimate of “smallness" can be
made. This is ambiguity, rather than uncertainty or randomness. Nonetheless, people
routinely make decisions based on this type of ambiguity. A goal of fuzzy set theory
is to model and automate decision making based on this kind of ambiguity.

In what follows, we review interval methods for handling uncertainty, and fuzzy
set theory and technology for handling ambiguity. The basic ideas, fundamental
equations, scope of applicability, and references for interval analysis appear in Sec-
tion 1.2, while fuzzy set technology is similarly treated in Section 1.3.

We introduce our notation and basic ideas for branch and bound algorithms in
Section 1.4. Ubiquitous in mixed integer programming, branch and bound algo-
rithms are a mainstay in interval arithmetic based global optimization, are almost
unavoidable in general deterministic algorithms for non-convex problems, and are
also used in a significant number of algorithms based on the fuzzy paradigm.

In Section 1.5, we relate some branch and bound techniques to interval compu-
tations, while we do the same for fuzzy technology! in Section 1.6. There is a huge
amount of published and on-going scholarly work in both interval analysis and fuzzy
set theory and applications. Here, rather than try to be comprehensive, we restrict the
references to a few well-known introductions and some of the work most familiar to
us. We apologize to those we have left out, and would like to hear from them. We also
realize that we have not comprehensively mentioned all subtleties and terminologies
associated with these two areas; please refer to the references we give as starting
points.

We contrast the two areas in a concluding section.

1.2 Interval Analysis: Fundamentals and Philosophy

For interval arithmetic, the underlying assumptions are:

¢ The inputs are well-defined quantities, but only known to within a certain level
of uncertainty, such as when we have measurements with known error bars.
* The output is exactly defined, and

— either the output can be computed exactly, or

— an exact output can be computed, but with known error bars in the model
equations, provided the arithmetic used in producing the output from the
inputs is exact.

! Our interval details are more comprehensive, since fuzzy technology is such a large field, and
since our primary expertise lies in interval analysis.
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— If the computer arithmetic is not exact, the computer can provide mathe-
matically rigorous bounds on the roundoff error resulting from an arithmetic
operation?.

1.2.1 Overview

The idea behind interval arithmetic is to encompass both measurement errors in
the input and roundoff errors in the computation, to obtain the range of all possible
outputs. Specifically, the logical definition of interval arithmetic is, for for © €
{+ - X% +},

xO0y={xOy|xexandyey}, (1.1)
for intervals x = [x,x] and y = [y, y]; interval evaluation of a univariate operation
or function is defined as B

Sx)={f(x) | x€x}. (1.2)

Computer implementations are practical because

e it is usually sufficient to relax (1.1) to
x0y2{x0y|xexandyey}, (1.3)

and to relax (1.2) to
fx)2{f(x) [ x €x}, (1.4)

provided the containments in (1.3) and (1.4) aren’t too loose.
* The definition (1.1) corresponds to the operational definitions

x+y=[x+yx+y]
X—-y= [E_y7x_y]a

x Xy = [min{xy, xy, Xy, Xy}, max{xy, xy, Xy, Xy }|

| - (1.5)
= =[=-] ifx>00rx<0
x X x
1
X+y=xX—
y

* On a computer with control of rounding modes, such as those adhering to the
IEEE 754 Standard for Floating Point Arithmetic3, the operational definitions
(1.5) may be relaxed in a mathematically rigorous way, to (1.3), by rounding
the lower end point of the result down and the upper end point of the result

2 typically, through control of the rounding mode, as specified in the IEEE 754 standard for floating
point arithmetic [19].

3 Most desktops and laptops with appropriate programming language support, and some supercom-
puters, adhere to this standard.
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up. Similarly, using such directed rounding, known error bounds, and common
techniques for evaluating standard functions, (1.4) may be implemented in a
mathematically rigorous way with floating point arithmetic.

These basic ideas make interval arithmetic highly attractive. However, there are
subtleties that can cause problems for the naive, such as interval dependency [63],
the wrapping effect when solving differential equations#, and the clustering effect in
global optimization® (see [13, 29, 12] and subsequent work of other authors).

Furthermore, the above definitions leave some ambiguity concerning opera-
tional definition and semantic interpretation in cases such as [10,100]/[-1,0],
[10,100]/[-1,2] or [-1,1]/[-1, 1]. Various alternatives have been proposed and
extensively discussed; consensus has resulted in IEEE 1788-2015, the IEEE stan-
dard for interval arithmetic [18].

1.2.2 Interval logic

Logical computations figure prominently in implementations of branch and bound
algorithms, and traditional, interval, and fuzzy logic differ significantly.

Logic is often is based on sets. In traditional such logic, we define “true” (T),
“false” (F), the binary logical operators “and” (A) and “or” (V) , and the unary logical
operator“not” (—):

Definition 1 (often-taught traditional logic based on sets) Let r and s be objects and
let 7~ be the set of true objects for which a property is true. Furthermore, denote the
truth value of an object r by r = T(r).

e Truth values: T(r) =Tifr e 7T and T(r) =Fifr ¢ 7.

e The “and” operator: T(rAs) = Tifr € 7 and s € 7, and T(rAs) = F otherwise.
e The “or” operator: T(rvs) =T if r € T ors € 7, and is T(rVs) = F otherwise.
e “not” operator: T(—r) = T if and only if » ¢ 7.

Once logical values rhave been assigned to objects r, boolean expressions, analogous
to arithmetic expressions, may be formed from the logical values r, with operators A
and V corresponding to multiplication and addition, and operator — corresponding
to negation; this leads to well-known truth tables defining these operations. We see
truth tables for traditional logic in Table 1.1; such a truth table would be useful, for
example, in searching through individual constraints to determine feasibility of an
entire system of constraints. In the context of numerical computation, and branch and
bound algorithms for optimization in particular, we may without loss of generality
think of the logical statements r and s as numerical values and the set 7 as [0, 00),
so we have:

4 first observed in [39, pp. 90-93] and treated by many since then

5 The clustering effect is actually in common to most basic branch and bound algorithms, whether
or not interval technology is used. However, its cause is closely related to the interval dependency
problem.
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Table 1.1: Truth tables for standard logic

T

A \%
T F T F —(r)
T F T T T
F F F T F

= =
“n

= o= R
5]

Definition 2 (traditional logic in a simplified numerical context)

e Truth values: ¥(r) = Tif r > 0. and T(r) = Fif r <O.

e The “and” operator: T(rAs) = Tif r > 0 and s > 0, T(rAs) = F otherwise.
e The “or” operator: T(rvs) = Tif r > 0ors > 0, and T(rVvs) = F otherwise.
¢ The “not” operator: T(—r) = T if r < 0, and T(—r) = F otherwise.

In the context of Definition 2, the values r and s are known only to lie within
sets that are intervals, that is, r € r = [r,7] and s € § = [s,5]. In this context,
what does it mean for r to be true, that is, for r > 0? Addressing this question
reveals various subtleties associated with defining logic based on intervals, when
the underlying philosophy is making mathematically rigorous statements. These
subtleties are codified, for example, in [18, Table 10.7]. In short, the following three
cases can occur:

1. 7 <0, and it is certain r cannot be non-negative;
2. r > 0, and it is certain r is non-negative;
3. r <0,and 7 > 0, and » may or may not be non-negative.

This leads to the following three-valued logic with values T, F, and U (“unknown”).

Definition 3 (interval set-based logic in simplified form)
* Truth values:

- X(r)=Tifr >0.
- %(r)=Fifr <0.
— %(r) = U otherwise.

e The “and” operator: T(rAs) = T(r N s).
e The “or” operator: Lett = r Us. T(rvs) = T(r Us).
e The “not” operator:

— F(-r)=Tifr <0.
- %(-r)=Fif7 > 0.
- ¥(-r)=UifOer.

Notably, interval logical expressions differ from traditional logical expressions in
the sense that T(—r) # (=%(r)). This is important in implementations of branch
and bound algorithms where the reported results are meant to be mathematically
rigorous. Truth tables for our simplified interval logic appears in Table 1.2.
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Table 1.2: Truth tables for interval logic

A \Y% -
r/sf] T F U r/[sf] T F U [ =(r)
T T F U T T T T T U°
F F F F F T F U F| T
U U F U U T U U U U

* This can be made more precise if it is known whether or not r corresponds to » with O ¢ r.

1.2.3 Extensions

There is significant literature and practice on improving interval arithmetic with
similar alternatives and extensions of it. Among these are:

» affine arithmetic [54, 50] to better bound expressions with almost-linear sub-
expressions;

» Taylor arithmetic to produce notably tighter bounds in various contexts; see, for
example, [35, 11, 9] and especially [8] if available.

* random interval arithmetic, that discards mathematical rigor but has advantages
if certainty is not needed [60];

* algebraic completion of the set of intervals® [6]

» others, with theoretical, practical, and algorithmic goals.

1.2.4 History and references

The ideas underlying interval arithmetic are sufficiently basic that they have been
independently discovered, in various contexts, various times, as evidenced in [64],
[61], [55], [14], etc.; based on an entry in an 1896 periodical for beginning high
school pedagogy, Siegfried Rump even claims interval arithmetic was common
knowledge in Germany before the turn of the twentieth century.

The most complete beginning of interval arithmetic in the twentieth century is
generally recognized to be Ramon Moore’s dissertation [39], and subsequent mono-
graph [40]. Outlines of most current applications to interval arithmetic occur in
Moore’s dissertation. Moore published a 1979 revision [41]. For an elementary in-
troduction to interval arithmetic, we recommend our 2009 update [42]. Another
common reference text is Alefeld and Herzberger’s 1972 book [3] and 1983 transla-
tion into English [4].

6 but with complicated interpretation of results in general settings
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1.3 Fuzzy Sets: Fundamentals and Philosophy

Amid a huge amount of literature, software manuals, technical descriptions, and
mathematical analysis of algorithms and variants, the foundation and basic philoso-
phy of fuzzy technology continues to be well described by its inventor Lofteh Zadeh’s
seminal article [65], while we also rely on [33] for additional insight. We suggest
the reader new to the subject turn to these for additional reading concerning what
follows here.

In contrast to interval analysis, meant to make traditional scientific measurement
and computation mathematically rigorous, fuzzy set theory and associated areas
are meant to allow computers to process ambiguous natural language and to make
decisions in the way humans do in the absence of scientific measurements or models.
Fuzzy set theory, fuzzy logic, and applications are characterized less by underlying
assumptions than lack thereof”.

The following example is amenable to processing with fuzzy technology.

Example 1 Take a college departmental tenure committee’s use of student evaluation
of instruction data. The committee wants to grant tenure only to professors with
“good” (or sufficiently popular) ratings. However, it is subjective what sufficiently
good means. If the students rate the professor on a scale of 1 to 5, some committee
members might think a rating of 3 or greater is sufficiently good, while others might
think the rating is sufficiently good only if it is greater than or equal to 4. If S
represents the set of sufficiently good ratings, a membership function is used to
describe S as a fuzzy set.

Fuzzy sets are defined via membership functions. In some ways, membership
functions are like characteristic functions, and in some ways, they are like statistical
distributions, with notable differences.

Definition 4 (modified from [65]) Let X be a domain space (a set of objects, words,
numbers, etc.; discrete or continuous), and let x € X. The degree of membership of
x € Xin aset A C X is defined by a fuzzy membership function

,uA:X—> [0,1].

The general membership function has few mathematical restrictions: Different au-
thors have placed various additional restrictions on membership functions, to facili-
tate analysis in various applications.

Definition 5 If A C X is as in Definition 4, the pair (A, u4) is termed a fuzzy set 2.

In problem formulations and computations, particular quantities are assumed to
be fuzzy or not:

Definition 6 A quantity x is called fuzzy value X if it is assumed to belong to some
fuzzy set X with degree of membership px(x). Well-defined quantities, that is, those
that are not fuzzy, are called crisp quantities.

7 This is not to say that mathematical implications of particular procedures are not highly analyzed.
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The interval arithmetic analog of a fuzzy set is a non-degenerate interval®, whereas
a crisp value corresponds to a point, i.e. a degenerate interval.

Any membership function u(z) for Example 1 would reasonably be like a cu-
mulative statistical distribution with support [1, 5], since it would seem reasonable
for it to increase from O to 1 as ¢ increases from 1 to 5. However, while statistical
distributions are derived based on assumptions and principles, fuzzy membership
functions are typically designed according to a subjective view of the application,
ease-of-computation, and experience with what gives acceptable results®.

Membership functions can also be similar to probability density functions:

Example 2 (A classic example) In Example 1, suppose the department chair would
like to commend faculty whose evaluations are above average and to take other action
whose evaluations are below average. Some might think a rating of 2 would qualify
as average, and some might think a rating of 4 would qualify as average, but all might
agree a rating of 3 would be average.

In Example 2, a well-designed membership function u(z) might have u(3) = 1,
u(1) = 0, u(5) = 0, and be increasing on [1, 3] and decreasing on [3, 5]. However,
unlike a probability density function, in general it would not be necessary to have

/15 u(t)dt # 1.

Example 3 Suppose we wish to describe a quantity that we know varies within the
interval [1, 2], and we know that every value in the interval [1, 2] is taken on by that
quantity, but we know nothing else about the distribution of values of the quantity
within [1, 2] An appropriate membership function for the set of values of the quantity
takes on might then be u(t) = x|1,2)(¢), where xi 7] is the characteristic function of
[1,2].

Example 3 highlights one relationship between interval computation and fuzzy sets.

To do computations with fuzzy sets and to make decisions, degrees of truth are
defined, and the user of fuzzy set technology determines an acceptable degree of
truth, defined through alpha cuts:

Definition 7 The set
Se ={x | u(x) = a} forsome a € [0, 1] (1.6)

is called an alpha-cut for the fuzzy set G. Here, we will call a particular value g
the degree of truth!'® of the elements of Sy .

The degree of truth is like a probability, but, in some contexts, we call degrees of
truth possibilities.

8 Intervals correspond to fuzzy sets with membership function the characteristic function, i.e.
indicator function, of the interval.

° However, data, and even statistics, can sometimes be used in the design of membership functions.
10 The terms “degree of truth” and “degree of belief” are common in the literature concerning
handling uncertain knowledge. Also, “belief functions,” like membership functions, are defined.
See [53], for example. We do not guarantee our definition of “degree of truth” is the same as that
of all others.



10 R. B. Kearfott
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Fig. 1.1: The a@-cut @ > 0.75 for Example 4.

For X an interval subset of R and under reasonable assumptions on (%), such as u
be unimodal or monotonically increasing, S, is an interval for each «; in Example 1,
S, is an interval subset of [1, 5] for each @ € [0, 1].

Decisions based on fuzzy computations are made according to what degree of
truth « is acceptable.

Example 4 Suppose, in Example 2, the possibilities are modeled by the membership
function u(r) = —%(t — 1)(t = 5), and the department head decides to accept an
evaluation as average if it has a possibility @ > 0.75. Then Sp75 = [2,4]; see
Figure 1.1.

An important aspect of computations involving fuzzy sets involves functions of
variables from a fuzzy set.

Theorem 1 (well known; see for example [33, Section 3.4] for an explanation)
Suppose the interval X, is an a-cut for a real quantity x, and suppose a dependency
between a quantity y and the quantity x € X can be expressed with a computable
expression f, i.e. y = f(x), where X corresponds to a fuzzy set X. Then, the range
f(Xy) of f over X, is the corresponding a-cut for the value f(x).

Thus, interval arithmetic can be used for bounding a-cuts of functions of variables,
and the corresponding membership function for a function f of a fuzzy variable can
be approximated by subdividing [0, 1] and using interval arithmetic to evaluate f
over each sub-interval. See, for example, [33].
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Intersection and union of fuzzy sets can be defined in terms of the membership
functions, as introduced in Zadeh’s seminal work [65]:

Definition 8 (a classical alternative for union and intersection of fuzzy sets) If S is
a fuzzy set with membership function us and 7 is a fuzzy set with membership
function ur, the membership function for the intersection S N 7~ may be defined as

T(S,T)(x) = psar(x) = inf {ug(x), pr(x)}, (1.7)

and the membership function for the union may be defined as

S(S, T)(x) = psur(x) = sup {us(x), pr(x)} . (1.8)

Other, somewhat similar definitions of intersection 7'(S, 7 )(x) and union S(S, 7)(x)
of fuzzy sets are also defined and used; the operators 7(S, 7°) and S(S, 7), obeying
certain common properties, are called T-norms and S-norms. Relations between
different T-norms and S-norms have been analyzed. Which particular S- or T-norm
is used in an application can depend on subjective or design considerations.

1.3.1 Fuzzy logic

Fuzzy logic is based on fuzzy union and fuzzy intersection. Here, a common defini-
tion of the membership function for “not-S" is

p-s(x) = 1 = ps(x). (1.9)

If (1.8), (1.7), and (1.9) are used to define truth values in fuzzy logic, then, for each
degree of truth e other than a9 = 0.5, the truth tables for the fuzzy logic are the
same as the truth tables for traditional logic (Table 1.1), whereas, for ¢y = 0.5, —s is
T when s is T.

1.3.2 A brief history

Like interval arithmetic, basic concepts in fuzzy set theory have deep roots, going
back to Bernoulli and Lambert (see [53, Section 2]). Also, like Ray Moore in
his dissertation and subsequent book, Lofti Zadeh clearly defines the philosophy,
principles, and underlying mathematics of fuzzy sets in [65]. Since Zadeh’s seminal
paper, fuzzy information technology has become ubiquitous throughout computer
science and technology. There are numerous conferences held world-wide each year
on the subject, there are various software packages, there are numerous devices
controlled with fuzzy technology, etc. Examples of recent conference proceedings
are [27], [7], and [59].
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1.4 The Branch and Bound Framework: Some Definitions and
Details

Here, we focus on the general non-convex optimization problem, that we pose with
this notation:

minimize ¢(x)
subjectto ¢;(x) =0, i = 1,...,my,
gi(x) <0, j=1,...,my, (1.10)
where g : X CR" - R
andeach ¢;, g : X — R, with x = (x1,...,x,) € X.

The subset of R" satisfying the constraints is called the feasible set. Here, some of
the constraints g; < 0 may be of the simple form x; < a; or x; > b;; these bound
constraints are often handled separately with efficient techniques.

An important general concept in branch and bound algorithms for global opti-
mization is that of relaxations:

Definition 9 A relaxation of the global optimization problem (1.10) is a related
problem, where ¢ is replaced by some related function ¢, each set of constraints is
replaced by a related set of constraints, such that, if ¢* is the global optimum to the
original problem (1.10) and ¢ is the global optimum to the relaxed problem, then
of < ¢".
We will say more about relaxations in Section 1.5.

In branch and bound (B&B) methods, an initial domain is adaptively subdivided,
and each sub-domain is analyzed. The general structure is outlined in Algorithm 1.

B&B algorithms represent a deterministic framework, that is, a framework within
which, should the algorithm complete and use exact arithmetic, the actual global
optimum (and, depending on the algorithm, possibly one or possibly all globally
optimizing points) will be found. Neumaier calls such algorithms complete; see [44]
for a perspective on this.

A common choice for the regions D in Algorithm 1 is rectangular paralellepipeds

x =(x1,x2...,%,) = ([x, %1 ] [x0, X2), ..., [, X)), (1.11)
that is, the set
{x =(x1, %2, ..., %) €ER" | x; € [x;, %] for1 <i < n},

otherwise known as a box or interval vector. Subdivision of boxes is easily imple-
mented, typically, but not always, by bisection in a scaled version of the widest
coordinate:

x — {xD, x?y, (1.12)

where
xW = (e [+ X0)/2 %] X X)
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Data: An initial region D©), the objective ¢,
the constraints C, a domain stopping tolerance £, and a limit M on the maximum
number of regions to be allowed to be processed.
Result: Set the Boolean variable OK:
e Set OK = true, set the best upper bound ¢ for the global
optimum, set the list C within which all optimizing points
must lie, if the algorithm completed with less than M
regions considered.
e Set OK = false if the algorithm could not complete.
1 Initialize the list £ of regions to be processed to contain D©);
2 Determine an upper bound ¢ on the global optimum;

3 i1,
4 while £ # 0 do
5 i—1i+1;
6 if i > M then return OK = false;
7 Remove a region D from L;
8 Bound: Determine if D is not infeasible, and if it is not proven to be infeasible,
determine a lower bound ¢ on ¢ over the feasible part of D;
9 if D is infeasible or ¢ > @ then return to Step 7;
10 Reduce: (Possibly) eliminate portions of 9 through various efficient techniques,
without subdividing.;
11 Improve upper bound: Possibly compute a better upper bound ;
12 if a scaled diameter diam of D satisfies diam(D) < &4 then
13 Store O in C;
14 Return to Step 7;
15 else
16 Branch: Split O into two or more sub-regions whose union is D;
17 Put each of the sub-regions into £;
18 Return to Step 7;
19 end
20 end

21 return OK = true, @, and C (possibly empty);

Algorithm 1: General Branch and Bound Structure

and
x<2) = (x], e Xiol, [£i9 (ll + }1)/2]’ Xitly .o xn)

for the selected coordinate direction i. Besides allowing simple management of the
subdivision process, uaing boxes x for the regions 9 can provide an alternative
way of handling bound constraints x < x; < X, provided sufficient care is taken in
algorithm design, implementation, and interpretation of results.

Besides boxes for the regions D, simplexes have appeared in some of the literature
and implementations. An n-simplex is defined geometrically as the convex hull of
n + 1 points x<i), 0 <i <ninR™, for m > n; we define the canonical simplex in R"
as having x©@ = 0,...,0) € R" and xD the i-th coordinate vector ¢; for 1 < i < n.
There are various disadvantages to using simplexes in branch and bound methods,
such as lack of simple correspondence to bounds on the variables, complicated
geometries resulting from subdivision processes, and the fact that the volume of the
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canonical n-simplex is only # However, some have reported success with simplexes
in B&B algorithms. For instance, Paulavi¢ius and Zilinskas [66, 46, 45] report
successes on general problems; however, their methods use statistical estimates of
Lipschitz constants, so are not complete in the sense of Neumaier [44].
Nonetheless, use of simplexes can be advantageous in complete algorithms for
several classes of problems. This is because of two alternative characterizations of a
simplex in terms of sets of constraints. The set of n + 1 inequality constraints

inﬁl, x;>0forl<i<n (1.13)

i=1
defines the canonical n-simplex. Alternatively, the set of constraints

n

inzl, xi>0for0<i<n (1.14)
i=0

defines an n simplex in R™*!. Serendipitously, a number of practical problems have
such sets of constraints, so their feasible set is a subset of a simplex. An initial
investigation with this in mind is [21]. An investigation into B&B algorithms based
on simplexes, as well as classes of constraint sets easily converted to simplicial
constraint sets (1.13) or (1.14), is currently underway [34].

We will say more about bounding techniques (Step 8 of Algorithm 1) and reducing
techniques (Step 10 of Algorithm 1) in in Section 1.5.

1.5 Interval Technology: Some Details

Interval-based methods for global optimization are generally strongly deterministic
in the sense they provide mathematically rigorous bounds on the global optimum,
global optimizers, or both. They are largely based on branch and bound methods, in
which an initial domain is recursively subdivided (branching) to obtain better and
better bounds on the range of the objective function. In addition to using interval
arithmetic to bound the range of the objective and constraints (if present) over
each sub-region, there are various interval-based acceleration processes, such as
constraint propagation and interval Newton methods. Books on interval-based global
optimization include Hansen and Walster’s 1983 book [17] as well as their 2003
update [16], Ratschek and Rokne [47], our monograph [24], [20] (with a special
emphasis on applications and constraint propagation), and others.

Implementations of interval-based branch and bound algorithms vary in effi-
ciency, depending on the application and how the problem is formulated. For exam-
ple, only rigorous and tight bounds on the objective may be desired, bounds on a
global optimizer may be desired, or bounds on all global optimizers may be desired,
it may be required to prove there are points satisfying all equality constraints, or
relaxations of the equality constraints may be permissible, etc.
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Interval-based optimization and system solving is having an increasing number of
successes in applications, but is not a panacea. This is largely due to interval depen-
dency in the evaluation of expressions!! and the wrapping effect!? when integrating
systems of differential equations. These problems can often be avoided with astute
utilization of problem-specific features.

Here, we outline a few common interval analysis tools for B&B algorithms.

1.5.1 Interval Newton Methods

Interval Newton methods and the related Krawczyk method are a class of methods
that are derived from the traditional Newton-Raphson method in several ways.

Definition 10 Suppose F : D € R" — R”, suppose x € D is an interval n-vector,
and suppose that F'(x) is an interval extension of the Jacobian matrix '3 of F over x
(obtained, for example, by evaluating each component with interval arithmetic), and
X € x. Then a multivariate interval Newton operator F is any mapping N (F, x, X)
from the set of ordered pairs (x, X) of interval n-vectors x and point n-vectors X to
the set of interval n-vectors, such that

¥ —N(F,x,X)=X+v, (1.15)
where v € IR" is any box that bounds the solution set to the linear interval system
F'(x)v = —=F(X). (1.16)

Interval Newton methods can verify non-existence of optimizers in regions D
in Algorithm 1, allowing quick rejection of such regions without extensive subdivi-
sion. In contrast to other techniques, such as examination of the feasibility of each
constraint individually, interval Newton methods implicitly take advantage of the
coupling between constraints and the objective. Furthermore, interval Newton meth-
ods can reduce the size of a region P in an often quadratically convergent iteration
process, much more efficiently than if 9 would need to be subdivided. They can
also sometimes prove existence of critical points of the optimization problem within
a specific region D.

This theorem summarizes some of the relevant properties:

Theorem 2 Suppose F : D C R" — R" represents a system of nonlinear equations
F(x) = 0, suppose F has continuous first-order partial derivatives, and suppose
N(F,x, X) is the image under an interval Newton method of the box x. Then any
solutions x* € x of F(x) = 0 must also lie in N (F, x, X). In particular, if N(F, x, X) N
x = 0, there can be no solutions of F in x.

11 The results of (1.1) and (1.2) are sharp to within measurement and rounding errors, but are
sometimes increasingly un-sharp when operations are combined

12 gee [42], etc.

13 For details and generalizations, see a text on interval analysis, such as [43], [4], or our work [24].
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Typically!4, if N(F, x, X) C x, then iteration of (1.15) will result in the widths of the
components of x converging quadratically to narrow intervals that contain a solution
to F = 0. Some analysis of this may be found in our work [1, Section 8.4], while
more analyses can be found in numerous other works, including [43].

Disadvantages of interval Newton methods include their limited scope of ap-
plicability and the large amount of linear algebra computations. In particular, the
interval Newton equation (1.15) can be iterated to progressively narrow the bounds
on a system of nonlinear equations. Interval Newton methods may not work well if
the system of equations is ill-conditioned at a solution, although they do have some
applicability in such cases and also when the region D is larger than a typical region
of attraction of Newton’s method (for example, see [22] and [31]). In branch and
bound algorithms for global optimization, the system of equations can be either a
system of equality constraints or the Kuhn-Tucker or Fritz John equations, and those
can be ill-conditioned or singular at solutions, for some fairly common situations, as
for example, demonstrated in [32].

Regarding linear algebra computations, interval Newton methods are generally
effective only if a preconditioner matrix Y is computed, so (1.15) becomes

YF'(x)v = —YF(¥), (1.17)

and the solution set of the preconditioned system is bounded. A common precon-
ditioner, used in various interval Newton formulations, is for Y to be the inverse
of the matrix of midpoints of the interval Jacobian matrix F’(x), while other pre-
conditioners involve solving a linear programming problem to obtain each row of
the point matrix Y (see [22, 31]). Either method involves more computations than
the classical floating point Newton method, and the advantages of using an interval
Newton method should we weighed against the smaller cost of simpler and less
costly techniques within the steps of a B&B algorithm.

1.5.2 Constraint Propagation

Constraint propagation, an entire sub-field of computer science, is strongly tied to
interval arithmetic when continuous variables appear in the problem formulation.
Within the context of general non-convex global optimization algorithms, it seldom
leads to a precise globally optimal solution, but it can be a relatively inexpensive
way of reducing the size of regions D in Step 10 (the “reduce” step) of Algorithm 1.

At its simplest, constraint propagation involves parsing the expressions defining
the objective and constraints into a list of elementary or canonical operations, evalu-
ating the resulting intermediate expressions, then inverting the canonical operations
to obtain sharper values on the variables. We give the following very simple example
for the benefit of readers new to the subject.

14 under mild conditions on the interval extension of F’ and for most ways of computing v
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Example 5

minimize ¢(x) = x;x

1.18
subjectto g(x) =1—-x1x, <0 and x; € [0, 1], i = 1,2. (1.18)

The variables x; and x,, as well as the intermediate results of the computation and
the function and constraint values, can be represented with the following list!>.

Vi = xi,
V2 = X2

V3 < V1V,

3 12 (1.19)
vy — 1 —v3;

Y = Vs,

g =wn <0

We initialize v; to [0, 1] and v, to [0, 1], then do a “forward evaluation” of the
list (1.19), obtaining v3 « [0,1] and v4 « [0, 1]. The condition v4 < 0 gives
vg € (—00,0] N[0, 1] = [0, 0]. We then solve v4 = 1 — v3 for v, giving v3 € [1, 1].
Using this value for v3 and solving for v in v3 = v{v, then gives

vi «— ([L1]/[0, 1) N[0, 1] = [1,00) N [0, 1] = [1, 1].

We similarly get v, « [1, 1]. In this case, a few elementary operations of constraint
propagation gives (x, x2) = (1, 1) as the only solution.

In addition to using constraints, as in Example 5, upper bounds on the objective
from Step 11 of Algorithm 1 can also be used with the back propagation we have
just illustrated, to narrow the bounds on possible minimizing solutions.

A notable historical example of interval constraint propagation in general global
optimization software is in work of Pascal van Hentenryck ([57, 58]). Van Henten-
ryck’s work is one of many examples, such as [38] or even our own early work [23].
Such interval constraint propagation is found in much current specialized and gen-
eral global optimization software; a well-known current commercial such package
is BARON [51, 52].

The book chapter [10] contains a somewhat recent review of constraint prop-
agation processes. The COPROD series of workshops [62] is held every year, in
conjunction either with one of the meetings on interval analysis or on fuzzy technol-

ogy.

15 Various researchers refer to similar lists as code lists (Rall), directed acyclic graphs (DAGs,
Neumaier), etc. Although, for a given problem, such lists are not unique, they may be generated
automatically with computer language compilers or by other means.
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1.5.3 Relaxations

If D is a box, an interval evaluation of ¢ over D provides an easy lower bound on ¢
in the bounding step 8 of a branch and bound process (Algorithm 1). However, such
an evaluation can be crude, since it doesn’t take account of the constraints at all. For
example, many problems, such as minimax and £, data fitting, are formulated so the
objective consists of a single slack variable, and all of the problem information is in
the constraints. Interval Newton methods may not be useful in such situations (see
[32], for instance). Furthermore, constraint propagation as explained in Section 1.5.2
doesn’t take full advantage of coupling between the constraints, so may not be so
useful either for certain problems. This is where relaxations step in.

Relaxations as in Definition 9 do not in general need interval arithmetic, but
interval computations are frequently either central to the relaxation or are a part of
the relaxation. In particular, we generally replace Problem 1.10, augmented with
constraints describing the current region O under consideration, by a relaxation that
is easier to solve than Problem 1.10; the optimum of the relaxation then provides a
lower bound!® on ¢ over D.

Generally, relaxations are formed by replacing the objective ¢ by an objective
@ such that g(x) < ¢(x) for all x € D, and replacing the feasible set ¥ (defined
as the portion of D satisfying the constraints) by a set ¥ such that ¥ C F. ¥ is
generally defined by modifying the inequality constraints. For example, g(x) < 0
can be “relaxed" by replacing g by g, where g(x) < g(x) for all x € D; an equality
constraint ¢(x) = 0 may be relaxed by first replacing it by two inequality constraints
¢(x) < 0 and —c(x) < 0, then relaxing these.

A classical relaxation for convex univariate ¢ or g is to replace g (or ¢) by a tangent
line approximation ¢: £(x;) = ax; + b at some point x@ = (xio), .. .,xl@), .. .,xﬁ,o)) S
. This can be done at multiple points x*) € D; the more points, the tighter the
enclosure ¥ is to #. Non-convex univariate functions g can be relaxed by finding
Lipschitz constants for g over D, and replacing g by the affine lower bound implied by
the Lipschitz constant. Mathematically rigorous Lipschitz constants can be computed
with interval evaluations of g’ over . However, we cannot tighten the enclosing
set ¥ by adding additional constraints £ < 0 corresponding to such non-convex g
without subdividing D; if we could, we might be able to use this procedure to prove
P =NP.

The parsing procedure illustrated in Section 1.5.2 with Example 5 and formulas
(1.19) can be used to decompose the objective and each constraint into constraints
depending on only one or two variables. The resulting constraints can then be
relaxed with linear functions as we have just described!”. The resulting relaxation

16 To obtain a possibly better upper bound on the global optimum, we replace ¢ in Problem 1.10
by —¢, then form and solve a relaxation of the resulting problem. However, for mathematical rigor,
computing an upper bound on ¢ is more complicated than computing a lower bound over D, since
the region 9 may not contain a feasible point.

17 Two-variable relaxations correspond to multiplication; the literature describes various relaxations
to these.
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of the overall problem (1.10) is then a sparse linear program whose size depends on
the number of operations. Such relaxations are called McCormick Relaxations, and,
to our knowledge, first appeared in [36, 37]. Various researchers have studied such
relaxations; one of our publications on the subject is [30, 26]. In [28], we '8 use the
ideas to automatically analyze the difficulty (in terms of amount of non-convexity,
in a certain sense) of a B&B method to solve a problem.

Other researchers have improved upon McCormick relaxations for certain prob-
lems by defining relaxations for multiple combinations of operations, more than two
variables, and by using more general functions (other than linear'?) in the relaxation.
C. Floudas’ group and their @-BB algorithm (see [5] and subsequent work) come to
mind. In a-BB, the effects of Hessian matrices over domains 9 are bounded using
interval arithmetic; see [5, 2], etc.

1.5.4 Interval Arithmetic Software

Numerous software packages are available for interval arithmetic and for interval-
based global optimization; we refer the reader to the aforementioned general refer-
ences. One of the most well-known current interval arithmetic packages is Siegfried
Rump’s Matlab toolbox INTLAB [48, 49]. Our own GlobSol software[25], based
on ideas in [24], subsequent developments in constraint propagation, and our own
ACM Transactions on Mathematical Software algorithms, have been much cited in
comparisons with newer packages.

1.6 Fuzzy Technology: A Few Details

Since Zadeh’s seminal work, a large number of papers and reports concerning
underlying philosophy and technical details of optimization in a fuzzy context have
appeared. One review, containing various references, is [56]; we recommend this
review for further reading.

Fuzzy optimization problems can be classified in various ways. One way is
according to where the fuzziness occurs:

1. fuzzy domain, fuzzy range, crisp objective:  The domain X of the objective ¢ and
the constraints ¢; and g; is afuzzy set X, and therange Y = {y | y = ¢(x) for x € X}
is also a fuzzy set ). However, the objective ¢ itself is assumed to be well-defined.

2. crisp domain, fuzzy range: The domain X is a subset of a usual real vector
space, but the range Y is a fuzzy set ).

3. fuzzy domain, crisp range: The domain X is a fuzzy set r, but the range Y is a
usual real vector space, and ¢ is well-defined for crisp (real) vectors x.

18 Another group previously published similar ideas, with a slightly different perspective; see [15].
19 notably, quadratics, since quadratic programs have been extensively studied
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4. fuzzy function:  Whether or not the domain or range are fuzzy, the ¢ or the g; or
¢; may be defined in a fuzzy way.

The concept of a fuzzy function (Type 4) corresponds to an interval-valued objective
@, such as a polynomial ¢ with interval coefficients, in which the values of a function
at a point are intervals. Similarly, if the values of some of the ¢; or g; at points are
intervals, this can be construed to define a fuzzy domain. However, the concept of a
fuzzy range does not otherwise seem to have an analog in interval optimization.

Optimization based on fuzzy sets typically proceeds by somehow reformulating
the problem as a non-fuzzy (crisp) optimization problem. For instance, let’s con-
sider the case where the objective and constraints are real-valued, as in the global
optimization problem (1.10), but when both objective and constraints defining the
feasible set are fuzzy. Then, minimizing ¢ can be interpreted to mean there is x € X
at which ¢(x) is sufficiently likely to be judged minimum and at which the degree
of membership in the feasible set is acceptably high. To describe this situation, we
make the following definitions.

Definition 11 Let X = {X, ux} be a fuzzy set, and let f be a function as in Theo-
rem 1. Define the fuzzy set X{/=0} = {x{/=0}, ,u){(fzo}} by

XU = {x e X | f(x) =0},

and define u){gfzm : X — [0,1] to be a membership function2 of x in X{/=0},

Similarly define X/ =0},

Definition 12 Let X be as in Definition 11, and let ¢ be an objective function as
in (1.10). Define ,ui(mm"’} : X — [0,1] to be a membership function for the set
argmin,.y ¢(x).

In this context, with this notation, and with the feasible set defined by constraints
¢, 1 <i <mpandg;, 1 < j < my of (1.10), one crisp optimization problem
formulation is:

maxn}%n {u){{mm‘p}(x); ,u;"':O}(x) 1 <i <my; ,u){{g"so}(x) , 1<) < mz}.
(1.20)
Solution of the crisp problem (1.20) can proceed, e.g. via a specialized interval-based
branch and bound algorithm, by non-rigorous techniques, or by local methods such
as descent methods.

For a somewhat simpler example of a reformulation, consider a problem of our
Type 3 classification that is unconstrained (no ¢; and no g;), and suppose we have
predetermined an acceptable degree of membership ap. We may then reformulate
the problem as

min /,t;mlw}(x) such that yimm“’}(x) > ap. (1.21)
xeX

20 derived from pux and f or designed some other way, to take account of perceived goodness of
values of ¢
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Objectives (1.20) and (1.21) are merely examples of formulations of crisp objec-
tives corresponding to fuzzy optimization problems. In contrast to what has been
developed in interval optimization, techniques for fuzzy optimization consist more
of a guiding way of thinking than prescriptions for deriving algorithms.

A common problem with fuzzy optimization is that crisp reformulations often do
not have isolated minimizing points, especially when the range is a fuzzy set (that is,

when the values in the range of f are known only to within a degree of membership).
{mingp}

For example, suppose we required only that py (x) = o in (1.21), and not that
,u;mm ‘p}(x) also be minimized? Problem (1.21) then becomes a constraint satisfaction

problem that usually would have an open region of solutions.

It is impossible here to cover all of the techniques in the literature for fuzzy
technology, especially when dealing with specific applications. A recent proceedings
is [27].

1.7 Conclusions

Fuzzy sets and interval analysis have an outwardly similar history in the twentieth
century. Techniques and tools for implementing and using interval computations
and fuzzy computations are similar, and implementations of fuzzy logic use interval
arithmetic. However, the underlying premises are very different, based on the innate
difference between measurement uncertainty and ambiguity in human thought and
language. Properties of interval arithmetic are largely deduced, while properties of
particular fuzzy logic systems are largely designed. While interval arithmetic strives
to guarantee the range of all possible outcomes, fuzzy sets and fuzzy logic strive
to automate ambiguous human perception and decision processes in a way that the
outcome seems reasonable to humans.

We are currently investigating combining fuzzy sets in interval global optimiza-
tion: fuzzy sets may be a way to control heuristics involved in the branching and
fathoming processes.
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