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Abstract

The algorithm contains a moderately-sized system of Fortran-90
subroutines, along with a driver program. The output of this system
is a Fortran-77 program for evaluating the derivative of a user-specified
function f : Rm → Rn, where m and n are arbitrary. The user de-
fines f as a Fortran-90 subroutine, with certain syntax restrictions.
The statements in the resulting Fortran-77 program are completely
unrolled.

A program that produces a LaTEX file describing f and its deriva-
tives is also included.

The system contains technology from a prototyping environment for
nonlinear equations and nonlinear optimization algorithms. A sym-
bolic form of automatic differentiation, implemented with operator
overloading, is used.

Categories and Subject Descriptors: G.1.5[Numerical Analysis]: Roots of
Nonlinear Equations, G.1.6: Optimization, G.4[Mathematical Software],
D.3.4[Programming Languages]: Processors, I.1.2[Algebraic Manipu-
lation]: Algebraic algorithms

General Terms: Tools for Scientific Computing

Additional Key Words and Phrases: Fortran 90, automatic differentiation,
FORTRAN-77, symbolic computation
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1 Introduction

Computation of derivatives is an important auxiliary task in codes for nu-
merical optimization, solution of nonlinear algebraic systems, and param-
eter fitting. Programming large Jacobian matrices by hand is costly and
error-prone. For this reason, diverse techniques have been used to avoid
this process. These include finite-difference approximations, quasi-Newton
methods with secant updates as in [3] and elsewhere, symbolic computations
and, more recently, automatic differentiation. Finite differences, though
commonly used in the past, can suffer from truncation and roundoff errors
and can involve many function evaluations. In quasi-Newton methods, not
all derivatives are actually approximated, and convergence properties are
somewhat less desirable. Modern commercial packages for symbolic manip-
ulation, such as Reduce, Macsyma, or Mathematica, allow one to input a
function in symbolic form, and to output its derivatives as a Fortran or C
program. However, such symbolic manipulation can result in “expression
swell,” in which the output, not in lowest terms, can take many times the
amount of space used to describe the original function; numerical proper-
ties of evaluation of such expressions are in doubt. Additionally, unless the
symbolic package is integrated into a custom environment, it may be incon-
venient to express the original function, given as a set of subroutines in C or
Fortran, as an expression in the form required by the symbolic package. The
third alternative, automatic differentiation, reviewed in [7], obtains deriva-
tives without truncation or cancellation errors, and without disadvantages
of traditional symbolic differentiation.

Here, we present an algorithm, based on automatic differentiation tech-
nology, that takes, as input, a Fortran 90 representation of a function and
produces, as output, a FORTRAN 77 program that evaluates the function,
its derivative, or both. The technology is based on the system described in
[9]: Operator overloading is first used to produce an internal representation
of the function. That internal representation can then be differentiated ac-
cording to a list of simple rules, resulting in an internal representation of the
same form. Such internal representations can be translated into TEX, For-
tran, or another language, using a list of relatively simple rules. Alternately,
generic routines can be used at runtime to interpret the internal representa-
tion, and thus obtain numerical values of the function or derivatives in any
desired data format.

Other packages have dealt with differentiation of Fortran programs. For
instance, ADIFOR [2] and [1], written in Fortran 77, is the result of an
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ambitious project to differentiate Fortran 77 programs. That package is
much more sophisticated than this one, but is for the most part built on
slightly different principles. The commercial package and associated lan-
guage AMPL [5] also incorporates a similar underlying technology to this
package. The main advantages of this package are its small size, simplicity
and comprehensibility, and ease of installation.

2 Package Contents and Use

Production of a subroutine that evaluates derivatives proceeds according to
the following steps.

1. Write a Fortran 90 program, using the syntax of §2.2.

2. Compile and run the program from step 1, using modules from the
package, to produce an internal representation of the operations re-
quired to evaluate the function.

3. Run a program to differentiate the internal representation.

4. Run a program to either output the derivative as a FORTRAN 77
program or as a LaTEX file.

The package is structured according to these tasks.

2.1 Structure and components of the package

The system, supporting interval arithmetic, does so with the interval arith-
metic package INTLIB [8], a TOMS algorithm. Not including INTLIB, the
package consists of fifteen Fortran 90 files, totalling roughly 200K, along
with a configuration file, example output, a user’s guide and a make file.
We describe these files according to task here.

The sample driver routine RUN FORTRAN DIFFERENTIATION runs
the entire sequence of steps 2–4 for generating a FORTRAN 77 routine to
evaluate derivatives. It calls the sample routine ORIGINAL FUNCTION,
that defines the function to be differentiated. In fact, the routine ORIGI-
NAL FUNCTION can be used as a template.

Figure 1 illustrates the module used for creation of the internal repre-
sentation, termed the code list. Figure 2 illustrates the module used for
generating the derivative from the internal representation. Additionally,
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Figure 1: Components for generating the internal representation
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PROGRAM PRINT FUNCTION, using module GRADIENT VARIABLES,
is compiled separately to produce a LaTEX representation of either the func-
tion or the derivative. This and the programs and modules account for all
of the Fortran 90 source files in the package. Finally, a configuration file
OVERLOAD.CFG and a PostScript copy of the user’s guide for the system
in [9] are included.

The modules should be compiled according to the dependencies shown.
A Unix makefile is supplied with the package.

2.2 Syntax and allowed operations

The package supports the elementary operations, including exponentiation
between all admissible data types, as well as the standard functions SIN,
COS, TAN, ASIN, ACOS, ATAN, COSH, SINH, EXP, LOG, and SQRT.
Note that ABS, ATAN2, TANH and LOG10 are not presently supported.
However, the user can define an arbitrary number of univariate functions,
giving the functions in subroutine USR and derivatives in subroutine USRD.

The following rules are used for writing the Fortran 90 program defining
the function components.

1. The independent variables and intermediate quantities depending on
the input variables should be declared to be type CDLVAR (“CoDe
List VARiable”). Such variables may occur on both sides of assignment
statements and in arithmetic expressions obeying the rules of Fortran
90. They may occur as arguments to the elementary functions listed
above.

2. Variables defining the function must be of the form F(1), . . . , F(N),
and these variables must be declared as left-hand-side variables (type
CDLLHS). Each of them may only occur once in the program, on the
left side of an assignment statement. These variables are assumed to
be assigned in the order F(1), F(2), . . . , F(n).

3. Variables used as independent variables must be “initialized” by pass-
ing them as arguments to the subroutine INITIALIZE CODELIST at
the beginning of the program. All independent variables must be in a
single array, but the name of the array is arbitrary. The dimension of
this array must be exactly the number of these variables.

4. Conditionals (e.g. IF-THEN-ELSE or CASE statements) may not be
used, unless the conditions tested are constant. However, most non-
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SUBROUTINE DIFFERENTIATE CODELIST
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PROGRAM RUN FORTRAN DIFFERENTIATION
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Figure 2: Components for generating a derivative representation
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conditional loops and other non-conditional constructs following For-
tran 90 syntax are allowable.

5. Conditional branches may be programmed using the branch function
χ, described in [9], with an example in §2.4 below.

6. Double precision, integer, and interval arithmetic may be used within
this program, as well as mixed-mode operations with independent vari-
ables and variables of type CDLVAR (intermediate variables).

7. Use of IMPLICIT NONE is strongly recommended. Any variable that
depends on the independent variables (as specified with INITIAL-
IZE CODELIST) should be declared to be of type CDLVAR.

8. The function may be defined through a heirarchy of subroutines, as
long as each subroutine contains an appropriate USE OVERLOAD
statement.

9. The last program statement should be a call to the subroutine FIN-
ISH CODELIST.

Details are given in the user’s guide for the system described in [9],
distributed with this algorithm.

2.3 An example

An example of a properly constructed program appears in figure 3. In
this figure, the symbol OUTPUT FILE NAME is intrinsic to the system,
and defines the storage name of the internal representation. (The module
OVERLOAD defines how the expressions are translated into the internal
representation.) If this subroutine is called, followed by a call to OBJEC-
TIVE TO GRADIENT as in the sample driver RUN FORTRAN DIFFE-
RENTIATION, the output will be the FORTRAN 77 program pictured in
figure 4. If the program PRINT FUNCTION GRADIENT is then run, the
LaTEX file in figure 5 is produced. Running this file produces the contents
of figure 6. In figure 6, the function components and their derivatives are
indexed in the order

(f1, ∂f1/∂x1, ∂f1/∂x2, f2, ∂f2/∂x1, ∂f2/∂x2),
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! This is a test problem for Fortran differentiation.

SUBROUTINE ORIGINAL_FUNCTION(FILE_NAME)

USE OVERLOAD

CHARACTER (LEN=20):: FILE_NAME

TYPE(CDLVAR), DIMENSION(2) :: X
TYPE(CDLLHS), DIMENSION(2) :: F

OUTPUT_FILE_NAME=FILE_NAME

CALL INITIALIZE_CODELIST(X)

F(1) = 4*X(1)**3 - 3*X(1) - X(2)
F(2) = X(1)**2 - X(2)

CALL FINISH_CODELIST

END SUBROUTINE ORIGINAL_FUNCTION

Figure 3: An example of Fortran 90 source for the function

the same order as their appearance in the internal representation. Figure 6
gives constants is as floating point numbers, although the internal repre-
sentation is as intervals. A switch in the routines PRINT FUNCTION and
PRINT FUNCTION GRADIENT allows printouts in either format.

2.4 Example of programming conditional branches

Conditional branches, although necessary for representing many functions,
cannot be implemented symbolically in a straightforward way when operator
overloading is used for parsing, when interval arithmetic is used, or when we
wish to differentiate with respect to one or more variables used in branching.
For this reason, this package implements branching with a branch function

CHI(xs, xq, xr) =

{

xq if xs < 0,
xr if xs ≥ 0.
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SUBROUTINE FG(X,F,G)

DOUBLE PRECISION X( 2 )
DOUBLE PRECISION F( 2 )
DOUBLE PRECISION G( 2 , 2 )

DOUBLE PRECISION Y( 17 )

DO 10 I = 1, 2
Y(I) = X(I)

10 CONTINUE

Y( 3 ) = Y( 1 ) ** 3
Y( 4) = 0.40000000000000000000D+01* Y( 3)
Y( 5) = 0.30000000000000000000D+01* Y( 1)
Y( 6 ) = Y( 4 ) - Y( 5 )
Y( 7 ) = Y( 6 ) - Y( 2 )
Y( 8 ) = Y( 1 ) ** 2
Y( 9 ) = Y( 8 ) - Y( 2 )
Y( 10 ) = Y( 1 ) ** 2

Y( 11) = 0.30000000000000000000D+01* Y( 10)
Y( 12) = 0.40000000000000000000D+01* Y( 11)
Y( 13) = 0.30000000000000000000D+01
Y( 14 ) = Y( 12 ) - Y( 13 )
Y( 15) = 0.20000000000000000000D+01* Y( 1)
Y( 16) = -0.10000000000000000000D+01
Y( 17) = -0.10000000000000000000D+01

F( 1 ) = Y( 7 )
F( 2 ) = Y( 9 )

G( 1 , 1 ) = Y( 14 )
G( 1 , 2 ) = Y( 16 )
G( 2 , 1 ) = Y( 15 )
G( 2 , 2 ) = Y( 17 )

END

Figure 4: The FORTRAN 77 derivative program corresponding to figure 3
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%THE EXPRESSION CORRESPONDING TO CODE LIST FILE:FDTMPG.CDL

%LaTeX:

\documentstyle{article}
\begin{document}
\begin{eqnarray*}
f_{ 1} &=&\left(\left( ( 4.0 )

\left(x_{ 1}^ 3\right)\right)
- \left( ( 3.0 )

x_{ 1}\right)\right) - x_{ 2}\\
\frac{\partial f_{ 1}}{\partial x_{ 1}} &=&\left( ( 4.0 )

\left( ( 3.0 )
\left(x_{ 1}

^ 2\right)\right)\right) - ( 3.0 )
\\
\frac{\partial f_{ 1}}{\partial x_{ 2}} &=& (-1.0 )

\\
f_{ 4} &=&\left(x_ 1^2\right) - x_{ 2}\\
\frac{\partial f_{ 4}}{\partial x_{ 1}} &=& ( 2.0 )

x_{ 1}\\
\frac{\partial f_{ 4}}{\partial x_{ 2}} &=& (-1.0 )

\\
\end{eqnarray*}
\end{document}

Figure 5: The LaTEX file for the derivatives, corresponding to figure 3

f1 =
((

(4.0)
(

x3
1

))

− ((3.0)x1)
)

− x2

∂f1

∂x1
=

(

(4.0)
(

(3.0)
(

x2
1

)))

− (3.0)

∂f1

∂x2
= (−1.0)

f4 =
(

x2
1

)

− x2

∂f4

∂x1
= (2.0)x1

∂f4

∂x2
= (−1.0)

Figure 6: The typeset function and derivatives, corresponding to figure 5
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Rules for differentiating the function CHI appear in [9] and in the user’s
guide. Figure 7 illustrates how the simple function

f(x1, x2) =

{

2x1 if x2 < 0,
x2

1 if x2 ≥ 0.
(1)

would be programmed. The corresponding FORTRAN 77 program for the
derivatives appears in figure 8. The typeset output from the LaTEX file
generated for this function appears in figure 9.

Observe from figure 8 that each part of the branch is always evaluated,
but that only the proper branch is returned as a function or derivative
value. This scheme can be desirable in some circumstances, such as when
the branch variable is an interval that contains zero. However, for some
functions, this situation may generate an excessive amount of computation.
Furthermore, arithmetic errors may occur if some of the branches are not
defined everywhere. This is not serious if the error handler can be set to con-
tinue execution after such errors (such as can be done with IEEE arithmetic,
with the result set to NaN).

2.5 User-defined extensions

The user can define univariate functions and their derivatives. The syntax
in the Fortran 90 program is: Y = U (K, X, A, B) where U can appear
anywhere in an arithmetic expression, K is an index, X is the argument (an
independent or intermediate variable), and A and B are parameters. The dif-
ferentiator translates this to a call to the function USRP(K,X,A,B), and its
derivative with respect to X to a call to function USRPD(K,X,A,B). Fortran
90 examples of USRP and USRPD appear in the module USER FUNCTIONS,
supplied with the package. FORTRAN 77 equivalents can also be supplied.

3 On Higher-Order Derivatives and Modifications

The internal representation of the derivative of the function is in exactly
the same form as the internal representation of the function itself. Fur-
thermore, the set of allowable operations and standard functions, with the
exception of the user-defined function U , is closed under repeated differ-
entiation. Thus, if the program does not contain user-defined functions1,

1This restriction can be removed with some additional development, provided the user
programs derivatives of the appropriate orders.
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! This test problem illustrates programming conditional branches.

SUBROUTINE ORIGINAL_FUNCTION(FILE_NAME)

USE OVERLOAD

CHARACTER (LEN=20):: FILE_NAME

TYPE(CDLVAR), DIMENSION(2) :: X
TYPE(CDLLHS), DIMENSION(1) :: F

! Caution! Do not change the following statement --
!

OUTPUT_FILE_NAME=FILE_NAME

CALL INITIALIZE_CODELIST(X)

F(1) = CHI(X(2),2*X(1),X(1)**2)

CALL FINISH_CODELIST

END SUBROUTINE ORIGINAL_FUNCTION

Figure 7: Fortran 90 source defining a simple branch
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SUBROUTINE FG(X,F,G)

DOUBLE PRECISION X( 2 )
DOUBLE PRECISION F( 1 )
DOUBLE PRECISION G( 1 , 2 )

DOUBLE PRECISION Y( 9 )

DO 10 I = 1, 2
Y(I) = X(I)

10 CONTINUE

Y( 3) = 0.20000000000000000000D+01* Y( 1)
Y( 4 ) = Y( 1 ) ** 2
IF ( Y( 2 ) .LT.0 ) THEN

Y( 5 ) = Y( 3 )
ELSE

Y( 5 ) = Y( 4 )
END IF

Y( 6) = 0.20000000000000000000D+01
Y( 7) = 0.20000000000000000000D+01* Y( 1)
IF ( Y( 2 ) .LT.0 ) THEN

Y( 8 ) = Y( 6 )
ELSE

Y( 8 ) = Y( 7 )
END IF
Y( 9 ) = 0D0

F( 1 ) = Y( 5 )

G( 1 , 1 ) = Y( 8 )
G( 1 , 2 ) = Y( 9 )

END

Figure 8: The FORTRAN 77 derivative program corresponding to figure 7

f1 = χ(x2, [2.0, 2.0]x1, x2
1)

f2 = χ(x2, [2.0, 2.0], [2.0, 2.0]x1)

f3 = 0

Figure 9: The typeset function and derivatives, corresponding to figure 7
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OBJECTIVE TO GRADIENT can be repeatedly called to compute higher
order derivative tensors.

Figure 10 shows the typeset output from the LaTEX file produced from the
second derivative representation corresponding to the function of figure 3,
printed as the original function with the routine PRINT FUNCTION. Ob-
serve that the second derivatives are listed very redundantly in the order:

# derivative
1 f1

2 ∂f1/∂x1

3 ∂f1/∂x2

4 ∂f1/∂x1

5 ∂2f1/∂x2
1

6 ∂2f1/∂x1∂x2

7 ∂f1/∂x2

8 ∂2f1/∂x2∂x1

9 ∂2f1/∂x2
2

10 f2

11 ∂f2/∂x1

12 ∂f2/∂x2

13 ∂f2/∂x1

14 ∂2f2/∂x2
1

15 ∂2f2/∂x1∂x2

16 ∂f2/∂x2
17 ∂2f2/∂x2∂x1
18 ∂2f2/∂x2

2

Although this present scheme is convenient and simple, it is clear that the
redundancy is prohibitive for large numbers of variables or high-order deriva-
tives. We have developed an alternate internal representation, without re-
dundant representation, but additional work is necessary for full incorpo-
ration into the system. The present scheme is reasonable for first-order
derivatives, while the FORTRAN 77 code can be modified manually for
second-order derivatives.

Alternately, it is possible to write relatively simple drivers for derivatives
of particular fixed order (such as two). Such drivers would take the (redun-
dant) internal representation and output appropriate Fortran and LaTEX files
that do not have redundancy. The user can do this by modifying the routines
OUTPUT FORTRAN DERIVATIVE and PRINT FUNCTION GRADIENT.

Finally, the user may note that a different principle is used in producing
the FORTRAN 77 file than the LaTEX file. The technique from the LaTEX file
production can be used to produce an alternate FORTRAN 77 file in which
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f1 = ([4.0, 4.0]x3
1 − [3.0, 3.0]x1)− x2

f2 = [4.0, 4.0][3.0, 3.0]x2
1 − [3.0, 3.0]

f3 = [−1.0,−1.0]

f4 = [4.0, 4.0][3.0, 3.0]x2
1 − [3.0, 3.0]

f5 = [4.0, 4.0][3.0, 3.0][2.0, 2.0]x1 − 0

f6 = −0

f7 = [−1.0,−1.0]

f8 = 0

f9 = 0

f10 = x2
1 − x2

f11 = [2.0, 2.0]x1

f12 = [−1.0,−1.0]

f13 = [2.0, 2.0]x1

f14 = [2.0, 2.0]

f15 = 0

f16 = [−1.0,−1.0]

f17 = 0

f18 = 0

Figure 10: The typeset second derivative tensor corresponding to figure 3

intermediate results of the computation are not stored, but parenthetical
expressions appear.

4 Summary and Disclaimer

A relatively simple set of routines for a type of symbolic differentiation of
programs is provided. This set of routines illustrates use of operator over-
loading technology and automatic differentiation ideas for such purposes.
The routines are relatively easy to understand and modify. The technol-
ogy is also available in other packages, such as the commercial optimization
package and language AMPL [5], the C++ package ADOLC [6], and other
packages mentioned in [7] and later. This package gives Fortran access, with
source code in an easily understandable form.

The output FORTRAN 77 program contains a single operation per pro-
gram statement, i.e. it is completely unrolled, and all intermediate quantities
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are stored. This can have certain advantages, but may be impractical for
functions with large numbers of operations. For such problems, a sophisti-
cated package such as ADIFOR may be appropriate.

Also, the LaTEX file, although giving correct expressions, is generated in
a simple way. It may not be esthetically optimal, or fit within page bound-
aries, for complicated functions. Again, for such functions it is possible that
commercial symbolic manipulation packages would provide appropriate so-
lutions.
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