
A Fortran 90 Environment for Research and
Prototyping of Enclosure Algorithms for Nonlinear

Equations and Global Optimization

R. Baker Kearfott∗

University of Southwestern Louisiana

Abstract

An environment for general research into and prototyping of al-
gorithms for reliable constrained and unconstrained global nonlinear
optimization and reliable enclosure of all roots of nonlinear systems
of equations, with or without inequality constraints, is being devel-
oped. This environment should be portable, easy to learn, use, and
maintain, and sufficiently fast for some production work. The motiva-
tion, design principles, uses, and capabilities for this environment are
outlined. The environment includes an interval data type, a symbolic
form of automatic differentiation to obtain an internal representation
for functions, a special technique to allow conditional branches with
operator overloading and interval computations, and generic routines
to give interval and non-interval function and derivative information.
Some of these generic routines use a special version of the backward
mode of automatic differentiation. The package also includes dynamic
data structures for exhaustive search algorithms.

Categories and Subject Descriptors: G.1.5[Numerical Analysis]: Roots of
Nonlinear Equations, G.1.6: Optimization, G.4[Mathematical Software],
D.3.3[Programming Languages]: Language Constructs and Features

General Terms: Programming environments

Additional Key Words and Phrases: Fortran 90, automatic differentiation,
nonlinear algebraic systems, global optimization, symbolic computation

∗This work was supported in part by National Science Foundation grant CCR-9203730.

1

1 Introduction, Background, and Motivation

Numerous applications benefit from enclosure methods for numerical non-
linear analysis. Such methods include rigorous global optimization, both
constrained and unconstrained, and rigorous location of all roots to nonlin-
ear systems of equations, with or without side inequality constraints.

Global optimization is important in engineering, biological and economic
modelling, and other applications; see [7] and [8]. Furthermore, enclosure
(i.e. interval) methods, when applicable, not only can provide solutions with
certainty, but can also be more efficient than other methods; see [14] or [37].

Enclosure methods for unconstrained and constrained solution of non-
linear systems are useful in robotics in sensor data analysis and collision
detection ([12] and [13]), generally for reliability in computer graphics (as
in [29], [36] and elsewhere), etc.

Ad hoc algorithms for each of the above applications are sometimes
the most efficient. However, all such enclosure methods contain common
sub-tasks, such as computing interval residuals or interval function values.
Furthermore, a substantial theory has been developed (see [32]), and there
are many computational tools that can be incorporated in these methods
in different ways; see, for example [14], or, for recent tools of ours, [20],
[22], or [23]. It is still unclear what the scope of applicability of these tools
is. Furthermore, efficient prototyping of these tools requires a programming
environment in which they are easily accessible in a uniform way.

General research on such methods can proceed within a language such
as Fortran 77. For example, with elements of the Fortran 77 package INT-
BIS ([21]) we have investigated acceleration at singular roots (in [19]) and
bound-constrained global optimization (in [24]). However, the speed of such
investigations is constrained by lack of

an interval data type Giving tasks to graduate students, we have person-
ally observed much higher productivity with an interval data type (in
ACRITH-XSC [39]) than with accessing interval arithmetic through
subroutine calls. Routines are much smaller, algorithms are more eas-
ily understood by reading the actual routines, and routines are more
easily maintained1.

a universal representation of functions Even traditional approximate
nonlinear equation solvers and optimizers require routines to evaluate

1This fact has been recognized for decades, and was the motivation behind [5] and [41].

2

residuals or objective functions, gradients, and Jacobians or Hessian
matrices for Newton steps, etc. A major burden has been the neces-
sity to code both functions and derivatives. This is even more so for
a general investigation of enclosure methods, since function informa-
tion is used in more contexts. For example, not only may interval
enclosures for an objective function, gradient, and Hessian matrix be
required, but also floating point values, as well as relationships among
the intermediate quantities produced during evaluation; there are pos-
sibly ten or more separate routines to return information on a single
mathematical function. For this reason, generic interpreters for each
of these functions (interval function, interval gradient, etc.), as well
as a globally available internal representation of specific functions are
useful. Means of automatically generating such representations from
simple programs are required.

dynamic lists Branch and bound techniques are common to both deter-
ministic global optimization and reliable root isolation in nonlinear
systems. In such techniques, two sub-regions are produced from a sin-
gle parent region. One of the child regions is placed, in order, in a list,
while the other is kept for further processing. However, the order of the
list and its management differ from algorithm to algorithm, and inser-
tion into the list may be required in different, separated, subroutines.
Experimentation with new algorithms may demand moving the places
where the lists are required. Furthermore, the size of each list element
depends on the dimension of the problem, and the maximum required
number of elements of a list is not known a priori. Thus, dynamic,
generic list operations, with encapsulated details, are advantageous.

encapsulation of certain operations Besides list operations, other com-
mon operations include computation of preconditioners of various types,
computation of a step of an interval Newton method, and others. En-
capsulation of these would greatly ease high-level algorithmic research
and development. This encapsulation should be in subroutines, func-
tions, or operators with a natural interface. In particular, only argu-
ments that are logically required should appear; arguments such as
array bounds and workspace vectors slow research and prototyping.

A computer language to implement an environment with the above at-
tributes must have

• user-defined data types and operator overloading,

3

• a pointer data type,

• dynamic memory allocation, and

• good facilities for defining and accessing global data.

Furthermore, for portability the language should be standardized and widely
available. This is particularly important when hardware is rapidly improving
and changing, when remote access to diverse hardware is easily available,
and as obsolete equipment is rapidly retired. Under similar conditions, the
language should also admit a style for easy maintenance and modification.

We have found Fortran 90 to have the necessary attributes. Knowing
Fortran 77, we had no difficulties learning Fortran 90, and our Fortran 90
code for the package seems particularly natural. Finally, necessary non-
interval auxiliary routines, such as a Fortran 77 sparse linear system solver,
are immediately seamlessly accessible, without any necessary modification.

In the remainder of the paper, we briefly describe key aspects of our
environment under development. In §2, we explain our interval data type.
We briefly describe the internal representation of our functions and its gen-
eration in §3. We single out a particular aspect, representation of condi-
tional branches, in §4. We outline our generic routines for interpreting this
representation in §5, while key properties of our list-processing capabilities
appear in §7. We mention what can be viewed as a special type symbolic
differentiation capability, available in the package, in §6.

We assume some familiarity with interval arithmetic in §2, §4, and §5.
Introductions to the subject can be found in [1], [14], [30], or [32].

A description of package operations such as preconditioner computation
and interval Gauss–Seidel steps will appear elsewhere.

2 The Interval Data Type

We have recently produced INTLIB ([27]) as a portable Fortran 77 library
to support basic interval arithmetic functions and interval arithmetic eval-
uation of the elementary functions. However, direct use of INTLIB requires
writing a subroutine call for each elementary operation, such as an addition
or multiplication. As mentioned in §1, this leaves the developer or main-
tainer at a substantial disadvantage. However, since the Fortran 90 standard
contains Fortran 77, we may directly use INTLIB as a supporting package
when defining an interval data type. We have created a Fortran 90 module
INTLIB ARITHMETIC precisely for this purpose.

4

PROGRAM TEST_INTERVAL_ARITHMETIC

! This routine tests the Fortran 90 interface to the elementary
! interval arithmetic portion of INTLIB.

USE INTLIB_ARITHMETIC

TYPE(INTERVAL) X

CALL SIMINI ! Initialize machine constants and interval
! constants used in the elementary functions

X = IVL(1,2)

WRITE(6,*) X**2 + 3*X + 2

END PROGRAM TEST_INTERVAL_ARITHMETIC

Figure 1: Example – interval arithmetic using Fortran 90 overloading.

An example of the use of this module appears in Figure 1. With a certain
Fortran 90 compiler on a DOS-based PC, this program produces the output

5.9999999999999947 12.0000000000000107

The same computation, accessing INTLIB in Fortran 77 appears in Fig-
ure 2. The output was exactly the same as above.

Previously, interval data types have been available with products such
as the Augment precompiler [5] with [41], Pascal-SC [34], Fortran-SC or
ACRITH-XSC [2], etc. See also [25] for additional references. However,
only recently has it become possible to provide portable packages accessible
to most of the scientific and engineering community.

W. Walter is developing an alternate Fortran 90 package for interval
arithmetic [38]. This package, termed FORTRAN-XSC, is, to a certain
extent, a portable version of ACRITH-XSC. Developed upon a portable ac-
curate dot product, it has substantial support for linear algebra operations.

In contrast, our interval arithmetic module, with INTLIB as supporting
package, does not have an accurate dot product, but presently has the most
common elementary functions. Its arithmetic, rigorous but not optimally
accurate, should be adequate in many situations, and may be somewhat
faster than the arithmetic in FORTRAN-XSC.

Our interval arithmetic module has also been designed to be compatible
with ACRITH-XSC in the sense that the names of supported operations and

5

C This standard Fortran-77 routine uses INTLIB directly.

DOUBLE PRECISION X(2)

DOUBLE PRECISION TMP1(2), TMP2(2)

CALL SIMINI ! Initialize machine constants and interval
! constants used in the elementary functions

X(1) = 1D0
X(2) = 2D0
CALL RNDOUT(X,.TRUE.,.TRUE.)

CALL POWER(X,2,TMP1)
CALL SCLMLT(3D0,X,TMP2)
CALL ADD(TMP1,TMP2,TMP1)
CALL SCLADD(2D0,TMP1,TMP1)

WRITE(6,*) TMP1(1), TMP1(2)

END

Figure 2: Example – interval arithmetic directly in Fortran 77.

elementary functions match. This should facilitate conversion of ACRITH-
XSC programs.

3 Representing Functions – Code Lists

To solve systems of nonlinear equations or to find optima, researchers and
practitioners must represent functions and derivatives in a computer-usable
form. Thought has been given to this, beginning with the first use of dig-
ital computers for such problems. The most straightforward method is to
program the function and any required derivatives as separate subroutines
or functions. However, computation and coding of the derivatives is error-
prone. Some symbolic manipulation packages can produce programs for
the derivatives, given programs for the functions. However, the resulting
expressions are sometimes so complex (not in lowest terms) that they are
unusable. Finite difference approximations are sometimes used, but these
usually contain significant amounts of both roundoff and trunction errors;
furthermore, their use is illogical in most contexts where interval arithmetic
is applied.

A third alternative is automatic differentiation. See, for example [9],

6

[10], [15], or [33]. In the forward mode, as in [33], the arithmetic oper-
ations and elementary functions can be overloaded, for a data type that
simultaneously contains function and derivative values. In the backward
mode, intermediate quantities obtained during evaluation of the function
are stored, then later combined to produce derivatives. The backward mode
can produce gradients for a scalar-valued function in a time proportional to
the number of operations necessary to evaluate the function, but also has
storage requirements proportional to the number of operations necessary to
evaluate the function. Also, representation of branching (IF-THEN-ELSE)
in evaluation of the function poses difficulties when the backward mode is
used. See [15] and the papers in [11].

Our function representation scheme is related to the backward mode of
automatic differentiation. In particular, we use operator overloading for a
code list data type, that we define in a Fortran 90 module OVERLOAD. For
example, the actual sequence of computer operations for addition of two code
list variables consists of writing a numeric code identifying the operation as
addition, as well as the addresses of the operands, to a file. The complete
result after execution of a program defining a function is a file containing
the sequence of operations for that function. This information is termed a
“linear representation,” since no loop constructs explicitly appear2.

An example of a program to generate a code list appears in Figure 3,
while the result of running this program appears in Figure 4. The first row in
Figure 4 gives dimension information, such as the number of dependent vari-
ables, number of independent variables, number of intermediate quantities
produced during computation, numbers constants of two types, and number
of conditional branches3. The next four rows identify operations, operand
addresses, and result addresses. For example, operation 22 is multiplication
by a constant, operation 5 is taking the square, operation 20 is addition,
and operation 23 is addition of a constant. Row 6 identifies intermediate
quantity 5 as a dependent variable. The last two rows contain the values of
the constants and the rows of the code list with which they are associated.

We will give complete details of the definition of the code list, as well as
a complete description of syntax and capabilities for the code list variable
types, in a separate user’s guide.

We may think of the code list as defining a sequence of relations

xpj = φj(xqj , xrj), 1 ≤ j ≤ NOPS (1)

2It is also termed a “Wengert list,” from R. E. Wengert [40].
3See §4 for an explanation of conditional branches.

7

! This program illustrates use of module OVERLOAD to generate a
! code list.

PROGRAM TEST_FUNCTION

USE OVERLOAD

TYPE(CDLVAR), DIMENSION(1):: X
TYPE(CDLLHS), DIMENSION(1):: F

OUTPUT_FILE_NAME=’FUNCTEST.CDL’

CALL INITIALIZE_CODELIST(X)

F(1) = X(1)**2 + 3*X(1) + 2

CALL FINISH_CODELIST

END PROGRAM TEST_FUNCTION

Figure 3: Simple program to generate a code list.

1 1 5 5 0 1 1 0
22 2 1 0
5 3 1 0

20 4 3 2
23 5 4 0
18 5 0 0
1 0.29999999999999991100E+01 0.30000000000000008900E+01
4 0.19999999999999995600E+01 0.20000000000000004400E+01

Figure 4: The code list file for the function in Figure 3.

where NOPS is the total number of operations to evaluate the function. Each
φ represents an elementary arithmetic operation (+, −, ∗, or /) or a standard
function, such as sin, exp, or power ∗∗.

Our code list differs from that in some automatic differentiation appli-
cations, since values are not initially stored, but only symbolic information
for the sequence of operations defining the function. Thus, the code list can
be placed in global storage, made available in a module and, in principle,
used in any routine requiring a specific function as data. These routines
may include subroutines to compute residuals, gradients or Jacobi matrices
of either the original system or the expanded system formed by assigning

8

variables to the intermediate quantities, or to solve for one variable in terms
of another 4.

In further contrast to some schemes for code lists, we presently make
no attempt to identify “active” and “dead” variables, i.e. to restructure the
code list to reduce the number of rows by identifying intermediate quan-
tities that are no longer needed during the course of function evaluation.
This is because, in some contexts, we must think of the code list as defin-
ing relationships among the intermediate quantities, and not merely as a
prescription to obtain the final dependent variable values. In particular, we
can use the relationships between intermediate quantities produced during
evaluation of the function to reduce overestimation in the final results; see
[16], [22] and [28].

4 Representing Conditional Branches

As mentioned in §3, conditional branches pose a problem when generating
code lists through operator overloading, since straightforward execution of
a program containing conditional branches results in different code lists,
depending on current values of the branch variables. Since we think of
(and indeed, in our nonlinear equations and global optimization algorithms
use) the intermediate quantities as variables, the number of variables in our
system would dynamically change.

However, conditional branches are important in various applications in-
volving nonlinear systems and global optimization. For example, in graphics,
computing the intersection of B-spline surfaces would require working with
functions specified through conditional branches. For this reason, we have
designed a special branch function CHI. The resulting code list contains
the intermediate variables for both conditional branches, as well as informa-
tion concerning when a particular branch is valid. Function and derivative
routines can then interpret this code list appropriately, depending on the
values of the branch variables. Also, to obtain interval inclusions of func-
tions and derivatives, evaluation of both branches is necessary when the
decision variable takes on interval values; thus, if we desire a uniform envi-
ronment for both interval and standard floating point arithmetic, storage of

4It is possible to solve for one variable in terms of another since inverses are known
for the elementary operations such as xp = sin(xq); we get tight bounds on the ranges of
these inverses, without linearization. The inverses may consist of more than one point or
interval; in those cases, we intersect with the original value of the intermediate variable
and return the list of resulting intervals.

9

IF (X(1).LT.0) THEN
F(1) = 2*X(1)

ELSE
F(1) = X(1)**2

END IF

Figure 5: An ordinary conditional branch described by CHI in Figure 6.

both branches of the symbolic representation is not wasteful.
The function

xp = CHI(xs, xq, xr) (2)

will return xq if xs < 0, xr if xs ≥ 0, and xq ∪ xr otherwise5. For example,
suppose we wish to program the conditional branch in Figure 5. If this
represents the complete function definition, then we may write the simple
program in Figure 6. The code list produced from this program appears
in Figure 7. There, operation 27, in line 4 of the code list, represents the
branch function of equation 2. We note that both branches of the conditional
statement appear in the code list6. The last row in Figure 7 gives the address
of the quantity xs used in the branch decision.

With interval arithmetic, we have devised natural rules for evaluating
and differentating χ within the functions described in §5. For example, the
derivatives of CHI are defined as follows.

5In this case, the result may consist of two intervals.
6The multiplication occurs in the second row, and the power occurs in the third row

of Figure 7.

10

! This is a simple test of the characteristic function for handling
! if-then-else.

PROGRAM FCHITS

USE OVERLOAD

TYPE(CDLVAR), DIMENSION(1):: X
TYPE(CDLLHS), DIMENSION(1):: F

OUTPUT_FILE_NAME=’FCHITS.CDL’

CALL INITIALIZE_CODELIST(X)

F(1) = CHI(X(1),2*X(1), X(1)**2)

CALL FINISH_CODELIST

END PROGRAM FCHITS

Figure 6: Simple illustration of the branch function.

1 1 4 4 0 1 0 1
5 2 1 0
22 3 1 0
27 4 3 2
18 4 0 0
2 0.19999999999999995600E+01 0.20000000000000004400E+01
3 1

Figure 7: The code list produced by the program in Figure 6.

11

If xs ≥ 0 then

∂χ/∂xq = 1

∂χ/∂xr = 0

If xs < 0 then

∂χ/∂xq = 0

∂χ/∂xr = 1

Otherwise :

∂χ/∂xq = [0, 1]

∂χ/∂xr = [0, 1]

The basic formulas for symbolic differentiation of code lists containing
CHI are

∂χ(xs, xq, xr)
∂xq

= χ(xs, 1,
∂xr

∂xq
)

∂χ(xs, xq, xr)
∂xr

= χ(xs,
∂xq

∂xr
, 1)

Differentiation with respect to the decision variable is more problemati-
cal. For numerical differentiation, we may use

∂χ(xs, xq, xr)
∂xs

=



































0 if xs ≥ 0 or xs < 0
0 if xq = xr and xr is a point,
ELSE:
[0,∞) if xr > xq,
(−∞, 0] if xr < xq,
(−∞,∞) otherwise

for rigor in the computations. In actual branch-and-bound algorithms, how-
ever, the domain can be subdivided into regions where xs is of constant sign.
Symbolic differentiation cannot be done unless we assume xq = xr where
xs = 0, so we may set ∂χ(xs,xq,xr)

∂xs
= 0. Such a case occurs, for example,

when χ is describing a continuous spline.
Though we arrived at this structure independently, this handling of con-

ditional branches is similar to the treatment of logical variables described in
[36].

12

5 Using the Code List – Obtaining Function and
Derivative Values

Our package will include interpretive routines for evaluating functions and
derivatives for both interval and floating point data. The capabilities presently
under development are

1. computation of the dependent variables, given the independent vari-
ables for both interval and floating point data types;

2. computation of the Jacobi matrix for the dependent variables with
respect to the independent variables, given the independent variables.

3. computation of the Jacobi matrix for the dependent variables with
respect to the independent variables, given the intermediate quantities
in evaluation of the function.

4. computation of all of the intermediate quantities from the independent
variables, through a “forward sweep” of the code list.

5. computation of the Jacobi matrix for the intermediate quantities with
respect to the intermediate quantities.

6. solution for one intermediate quantity in terms of the others, using a
specified relation from the code list.

7. computation of the Hessian matrix (or tensor) of the dependent vari-
ables with respect to the independent variables, given the independent
variables.

The code list, along with all dimension information, is accessible to each
of the routines through a Fortran 90 module. All workspace is allocated
dynamically. The main programming device is the Fortran 90 CASE state-
ment, with a case corresponding to each operation defined for the code list7.
Depending on the compiler implementation, this construct will interpret the
code list efficiently. Also, use of the internal representation and module al-
lows a particularly simple user interface. For example, interval values for
any function can be obtained with the statement

7This technique is the natural way to interpret code lists. It was first suggested to the
author in a private conversation with Arnold Neumaier.

13

CALL F(X,FVAL)

The programmer’s only obligation is to assure that the independent variable
values are in the array X and that the array FVAL has enough storage to
hold the dependent variable values8.

As is seen from equation 1, with the exception of the branch statement
of equation 2, each elementary operation has at most two operands and one
result. Thus, if we think of each intermediate quantity and each dependent
variable definition as equations, and each independent variable and inter-
mediate variable as new independent variables, then the Jacobi matrix of
the resulting expanded system has at most three non-zero entries in each
row. Assuming that such matrices must be stored, it is efficient to store
them in a two-dimensional array whose row bound is 3. Information about
the columns in which the non-zero elements occur in a given row is already
available in the code list. We will refer to Jacobi matrices stored with this
data structure as expanded Jacobi matrices9.

We use a backward substitution process to compute the Jacobi matrices
of the original dependent variables with respect to the original independent
variables from expanded Jacobi matrices. In this technique, known by re-
searchers in automatic differentiation, we eliminate the entries in columns
of the expanded Jacobi matrix corresponding to intermediate variables from
the rows corresponding to dependent variables. The Jacobi matrix of the
dependent with respect to the independent variables then occurs in the
columns corresponding to the independent variables. Experiments in [16]
hint that this method can achieve tighter interval enclosures for the orig-
inal Jacobi matrix than straightforward evaluation. This is particularly
true when the bounds on the intermediate quantities obtained during func-
tion evaluation are tightened using the relationships among the intermediate
quantities. The overall complexity of our routine to do this is

O (NOPS + NEQ) +O (NEQNOPS) ,

where NOPS is the number of operations required to evaluate the function
and NEQ is the number of components of the function (i.e. the number of
dependent variables). This complexity is not better than that of the forward

8Unfortunately, this example also illustrates a minor inflexibility. It is complicated to
devise a routine in Fortran 90 that works efficiently with the syntax FVAL = F(X), where
FVAL is an array or user data type without a preset size. This is due to technical aspects
of the standard related to lack of automatic “garbage collection”.

9This technique was proposed by Xiaofa Shi in a private conversation.

14

mode, when the matrix has at least as many rows as columns, but it is
easier to use independently tightened interval bounds on the intermediate
quantities in the backward mode.

6 Symbolic Differentiation of Code Lists

Since there is an elementary relationship between each elementary operation
φ in Equation 1 and its derivative with respect to the operands, we may pro-
duce the code list for a derivative tensor, given the code list for the original
dependent variables. We designed the set of operations for our code lists to
be closed under such differentiation. This differentiation can be viewed as
symbolic, since its input is a defining representation for a function indepen-
dent of argument value, and its output is a similar representation. However,
it differs from traditional symbolic differentiation and manipulation, since
algebraic expressions are not stored, but only elemental relationships defin-
ing a particular representation of the function.

We have a routine that outputs a derivative code list of exactly the same
form as the function code list. The routines mentioned in §5 can thus be
applied to these derivative code lists to obtain numerical (interval or floating
point) values of higher-order derivatives. For example, an alternative to
using the Jacobi matrix routine would be to symbolically differentiate the
code list, then use the function routine. The differentiation routine can also,
in principle, be applied an indefinite number of times to its own output, for
derivatives of arbitrary order.

Several issues arise with this technique. First, higher-order derivative
tensors of functions of many independent variables exhibit ever-higher sym-
metries. A scheme meant for high-order derivatives should thus take account
of such symmetry to reduce redundant storage and operations; for example,
it may be possible to improve our scheme using ideas in [31]. Second, many
components of higher-order tensors typically are zero; we can possibly use
ideas in [6]. In general, derivative code lists should contain structure infor-
mation for storage economization.

A third issue is the extent of applicability of derivative code lists. The
size of a derivative code list is larger than the original list, but how much
larger depends on the implementation of the differentiation scheme and on
the function. An alternative is to interpret the original function code list
in a routine that directly computes numerical values for the higher-order
derivatives.

15

We will give details of our derivative code list elsewhere. An interest-
ing related treatment of the backward mode of automatic differentiation to
obtain higher-order derivatives appears in [4].

7 Boxes and Lists for Nonlinear Equations and
Optimization

Interval methods for nonlinear algebraic systems and global optimization
involve exhaustive searches of the domain. See the algorithms in [14, §9.11],
[26], [30, pp. 77–78], [35, p. 111], etc. In such exhaustive searches, the
algorithm recursively subdivides an initial box B, producing a list L of sub-
boxes. As each box in L is processed, boxes are removed from and inserted
into L. Particularly in global optimization algorithms, elements of such
lists are ordered by e.g. the lower bounds on the function value over the
corresponding box.

We recapitulate the considerations in the introduction for software em-
ploying such lists:

1. Information other than the coordinates of a box B, such as a corre-
sponding approximate root or critical point, whether a computational
existence test has proven existence of a root or critical point in B, and
bounds on the range of the objective function in the case of optimiza-
tion, should be stored with the box. This information may change
with the algorithm.

2. It should be possible to insert boxes into the list in logically separate
parts of the algorithm. For example, generalized bisection may pro-
duce two boxes, one of which should be inserted into the list for later
consideration; see [18], etc. Alternately, in the substitution-iteration
process we first advocated in [22], computation of both branches of
a square root of a strictly positive interval would also lead to two
boxes. Furthermore, division by a zero-containing interval in an in-
terval Gauss–Seidel step, with subsequent intersection of the extended
intervals with the original interval, could lead to two intervals.

3. The maximum number of boxes in L is not known a priori. Further-
more, general software (even research codes) should be able to handle
arbitrary dimensions efficiently with respect to ease of use, storage,
and computation time.

16

4. It should be easy to modify research codes, easy to maintain produc-
tion codes, and easy to read both types of code.

Such facts lead to the following conclusions.

• Information associated with the box B should be encapsulated in a
derived data type. Simple support for creation and destruction of
elements of this data type should be provided.

• Storage for the list L should be allocated and freed dynamically, and
list operations should be encapsulated and made generic. This can be
done with a dynamic linked list of the form described in [3, §8.2], with
data of the type of B associated with each node.

We have created two box data types (one for optimization and one for
general nonlinear equations), as well as list data types for integers and inter-
vals. Operations on such lists include insertion, removal of the first element,
a “purge” operation (for global optimization), printing, checking whether
a list is empty, and creation. The list operations are generic, so that the
same routine name can be used with a box of any type. For example, the
statement

CALL INSERT(L,B)

inserts item B into list L, where L is a list of any type, and B is an item of
corresponding type.

Storage is created for a list element as the element is inserted, and is
reclaimed as the element is removed. For boxes associated with interval
vectors, the list routines read the dimension of the interval vector from the
code list, and allocate precisely the amount of storage necessary.

The operations on lists make heavy use of Fortran 90 pointer variables.
Depending on hardware and compiler implementations, operations in-

volving such dynamic allocation can involve large numbers of machine op-
erations. However, operations on such lists within enclosure method codes
typically occur infrequently compared to other computations, and are thus
appropriate. In some contexts, such as when dealing with integer lists of
known maximum size (e.g. variable indices), use of simple arrays may be
more appropriate.

17

8 Summary, Conclusions, and Future Work

We have used new Fortran-90 capabilities to design a system for developing
numerical nonlinear equation and global optimization codes. Features of this
system include an interval data type and a special symbolic implementation
of automatic differentiation that can be iterated. We have defined a spe-
cial characteristic function to allow consideration of conditional branches.
We have also supplied various routines to obtain numerical values from the
symbolic lists produced from the automatic differentiation. Finally, we have
supplied dynamic data structures for exhaustive search algorithms.

The new system should eliminate much of the programming burden when
developing and testing both interval and non-interval nonlinear equation and
optimization codes.

Future work can include improvement of the storage structures for higher
derivatives, as mentioned in §6 above, and development of additional func-
tions φ allowable in the code list. For example, we may provide for user-
defined elementary functions. We may also allow linear forms like

∑np
j=1 ajxij ,

where the xij are independent variables, since evaluation of such expressions
leads to exact ranges.

9 Acknowledgement

I wish to acknowledge the referees and the editor John Reid for their quick
but careful reading and for their useful suggestions.

References

[1] Alefeld, G. and Herzberger, J. Introduction to Interval Computations,
Academic Press, New York, etc., 1983.

[2] Bleher, J. H., Rump, S. M., Kulisch, U., Metzger, M., Ullrich, C., and
Walter, W. Fortran-SC — A Study of a Fortran Extension for Engi-
neering Scientific Computation with Access to ACRITH. Computing
39, 2 (1987), 93–110.

[3] Brainerd, W. S., Goldberg, C. H., and Adams, J. C. Programmer’s
Guide to Fortran 90 . Mc-Graw-Hill, New York, 1990.

18

[4] Christianson, B. Reverse Accumulation and Accurate Rounding Er-
ror Estimates for Taylor Series Coefficients. Optimization Methods and
Software 1, 1 (1992), 81–94.

[5] Crary, F. The AUGMENT Precompiler. Technical report no. 1470,
Mathematics Research Center, University of Wisconsin, Madison, 1976.

[6] Dixon, L. C. W., Maany, Z. and Mohseninia, M. Automatic Differen-
tiation of Large Sparse Systems. Journal of Economic Dynamics and
Control 14, (1990), 299–311.

[7] Floudas, C. A. and Pardalos, P. M. A Collection of Test Problems
for Constrained Global Optimization Algorithms. Springer-Verlag, New
York, 1990.

[8] Floudas, C. A. and Pardalos, Eds. Recent Advances in Global Optimiza-
tion. Princeton Univ. Press, Princeton, N. J., 1992.

[9] Griewank, A. The Chain Rule Revisited in Scientific Computing. SIAM
News 24, 3 (1991), 20–21.

[10] Griewank, A., The Chain Rule Revisited in Scientific Computing. SIAM
News 24, 4 (1991), 8–24.

[11] Griewank, A. and Corliss, G. F., Eds. Automatic Differentiation of Al-
gorithms: Theory, Implementation, and Application. SIAM, Philadel-
phia, 1991.

[12] Hager, G. Interval-Based Techniques for Sensor Data Fusion. Preprint,
GRASP Lab – Room 301C, Univ. of Pennsylvania, 3401 Walnut St.,
Philadelphia, PA 19104-6228, 1990.

[13] Hager, G. D. Solving Large Systems of Nonlinear Constraints with Ap-
plication to Data Modeling. Interval Computations, in press.

[14] Hansen, E. R. Global Optimization using Interval Analysis. Marcel
Dekker, Inc., New York, 1992.

[15] Iri, M. and Kubota, K. Methods of Fast Automatic Differentiation and
Applications. Technical report no. RMI 87-02, University of Tokyo, De-
partment of Mathematical Engineering and Instrumentation Physics,
1987.

19

[16] Jan, C.-H. Expression Parsing and Rigorous Computation of Bounds
on All Solutions to Practical Nonlinear Systems. Ph.D. dissertation,
University of Southwestern Louisiana, 1992.

[17] Jansson, C. and Knüppel, O. A Global Minimization Method: The
Multi-Dimensional Case. Preprint, T. U. Hamburg, 1992.

[18] Kearfott, R. B. Abstract Generalized Bisection and a Cost Bound.
Math. Comp. 49, 179 (1987), 187–202.

[19] Kearfott, R. B. Interval Newton / Generalized Bisection When There
are Singularities near Roots. Annals of Operations Research 25, (1990),
181–196.

[20] Kearfott, R. B. Preconditioners for the Interval Gauss–Seidel Method.
SIAM J. Numer. Anal. 27, 3 (1990), 804–822.

[21] Kearfott, R. B., and Novoa, M. INTBIS, A Portable Interval New-
ton/Bisection Package (Algorithm 681). ACM Trans. Math. Software
16, 2 (1990), 152–157.

[22] Kearfott, R. B. Decomposition of Arithmetic Expressions to Improve
the Behavior of Interval Iteration for Nonlinear Systems. Computing
47, (1991) 169–191.

[23] Kearfott, R. B., Hu, C. Y., Novoa, M. III. A Review of Precondition-
ers for the Interval Gauss–Seidel Method. Interval Computations 1, 1
(1991), 59–85.

[24] Kearfott, R. B. An Interval Branch and Bound Algorithm for Bound
Constrained Optimization Problems. Journal of Global Optimization 2,
(1992), 259–280.

[25] Kearfott, R. B., Dawande, M., Du K.-S. and Hu, C.-Y. INTLIB: A
Portable Fortran-77 Elementary Function Library. Preprint, Depart-
ment of Mathematics, University of Southwestern Louisiana, 1992.

[26] Kearfott, R. B. and Du, K. The Cluster Problem in Multivariate
Global Optimization. Preprint, Department of Mathematics, Univer-
sity of Southwestern Louisiana, 1992.

[27] Kearfott, R. B., Dawande, M., Du K.-S. and Hu, C.-Y. INTLIB: A Rea-
sonably Portable Interval Elementary Function Library. Preprint, De-
partment of Mathematics, University of Southwestern Louisiana, 1992.

20

[28] Kearfott, R. B. and Shi, X. A Preconditioner Selection Heuristic for
Efficient Iteration with Decomposition of Arithmetic Expressions for
Nonlinear Systems. Interval Computations, in press.

[29] Kearfott, R. B. and Xing. Z. Rigorous Computation of Surface Patch
Intersection Curves. Submitted to Comput.-Aided Geom. Des.

[30] Moore, R. E. Methods and Applications of Interval Analysis, SIAM,
Philadelphia, 1979.

[31] Neidinger, R. D. An Efficient Method for the Numerical Evaluation of
Partial Derivatives of Arbitrary Order. ACM Trans. Math. Software 18,
2 (1992), 159–173.

[32] Neumaier, A. Interval Methods for Systems of Equations. Cambridge
University Press, Cambridge, England, 1990.

[33] Rall, L. B. Automatic Differentiation: Techniques and Applications.
Springer, Berlin, New York, etc., 1981.

[34] Rall, L. B. An Introduction to the Scientific Computing Language
Pascal-SC. Computers and Mathematics with Applications 14, 1 (1987),
53–59.

[35] Ratschek, H., and Rokne, J. New Computer Methods for Global Opti-
mization. Wiley, New York, 1988.

[36] Snyder, J. M. Interval Analysis for Computer Graphics. Computer
Graphics 26, 2 (1992), 121–130.

[37] Walster, G. W., Hansen, E. R. and Sengupta, S. Test Results for a
Global Optimization Algorithm. In Numerical Optimization 1984, P.
T. Boggs, R. H. Byrd and R. B. Schnabel, Eds., SIAM, 1985, 272–287.

[38] Walter, W. V. FORTRAN-XSC: A Portable Fortran 90 Module Library
for Accurate and Reliable Scientific Computing. In Computing Suppl. 9
(Validation Numerics), R. Albrecht, G. Alefeld and H. J. Stetter, Eds.,
1993, 265–286.

[39] Walter, W. V. ACRITH-XSC: A Fortran-Like Language for Verified
Scientific Computing. In Scientific Computing with Automatic Result
Verification, E. Adams and U. Kulish, Eds., Academic Press, New York,
etc., 1993.

21

[40] Wengert, R. E. A simple Automatic Derivative Evaluation Program.
Comm. ACM 7, 8 (1964), 463–464.

[41] Yohe, J. M. Software for Interval Arithmetic: A Reasonably Portable
Package. ACM Trans. Math. Software 5, 1 (1979), 50–53.

22

