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Abstract. For some time, convex relaxations have been used to obtain lower bounds on global
optima of general nonlinear programs. One variant of this technique is to use linear relaxations,
and to solve the relaxations with state-of-the-art linear programming technology. We are ex-
amining a variant of linear relaxations in which we completely (and automatically) parse the
objective into component elementary operations (addition, multiplication, powers, etc.), then
relax the individual operations. A number of researchers have explored and implemented these
variants, but since floating point arithmetic has been used both in obtaining the relaxations
and in solving the resulting convex (or linear) programs, the lower bounds on the objective
may not be actual lower bounds. Recently, Neumaier and Shcherbina, as well as Jansson, have
shown how to get rigorous lower bounds on the solution of linear programs, and others have
begun to explore using these rigorous lower bounds in the context of convex relaxations. In
particular, if a point, machine-representable linear program is presented to a process that ob-
tains a rigorous lower bound on its optimum, then that point program should be a rigorous
relaxation of the original nonlinear program, for the rigorous lower bound to be a lower bound
for the original nonlinear program. In the context of relaxing the individual operations, this
means supplying rigorously rounded coefficients for underestimators and overestimators for
the operations. This work gives details of how the estimation and rounding can be done for
odd and even powers, reciprocals, exponentials, logarithms, square roots, and uncertain scalar
multiples.

1. Introduction

We consider the general global nonlinear programming problem (NLP) defined
by

minimize ϕ(x)
subject to ci(x) = 0, i = 1, . . . ,m1,

gi(x) ≤ 0, i = 1, . . . ,m2,
where ϕ : x→ R and ci, gi : x→ R, and where x ⊂ R

n is
the hyperrectangle (box) defined by

x
i
≤ xi ≤ xi, 1 ≤ i ≤ n,

where the x
i
and xi are constant bounds.

(1)

The context in which we solve problem (1) is deterministic branch and bound
methods as explained, for example, in [2,10,14]. In such methods, we adaptively
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subdivide an initial region x(0) into subregions x of the form in (1) while main-
taining an upper bound ϕ on the global optimum of (1) (say, by evaluating at a
succession of feasible points). A lower bound ϕ(x) on ϕ over x is computed over
each subregion x, and x is rejected if ϕ(x) > ϕ.

A popular way of obtaining underestimators is through convex or linear re-
laxations. If the objective ϕ (or one or more constraints gi) is replaced by a linear
(or, more generally, a convex) function ` such that `(x) ≤ ϕ(x) (or `(x) ≤ gi(x))
for x ∈ x, then the resulting problem has global optimum less than or equal to
the global optimum of (1). If the objective and all of the constraints are underes-
timated by linear functions (where the equality constraints are replaced by pairs
of underestimating functions), the solution to the resulting linear (or convex)
program is an underestimator ϕ(x).

Techniques for linear underestimation are developed and reviewed in [14],
while techniques for more general convex underestimation appear in [2].

Convex and linear underestimation techniques perhaps began with McCor-
mick [6,7]. Also perhaps originating with McCormick was the idea of converting
an arbitrary NLP into a separable one by introducing intermediate variables and
replacing each elementary operation in computation of the objective and con-
straints by equality or inequality constraints [5]1 . In [4], we explain this process
with examples, we analyze this process from the point of view of equivalency to
the original NLP after replacing equality constraints by inequality constraints,
and we analyze refinement of the approximations either by adding constraints
or subdividing the domains x. This work is within that context.

Convex or linear relaxations of nonlinear programs have been used for some
time and by many in branch and bound methods for global optimization, but the
linear programs themselves have both been formed approximately (with floating-
point arithmetic) and solved approximately. Thus, the lower bounds ϕ(x) so
obtained are only “approximate” lower bounds, with no guarantee that they are
actual lower bounds. Therefore, the resulting algorithms have been not validated
(that is, they give global optima and global optimizers without mathematical
guarantees). Only recently, with work of Neumaier and Shcherbina [9] and of
Jansson [3], has it been recognized how to obtain a rigorous lower bound, given
approximate values of the dual variables. These new techniques allow us to obtain
a rigorous lower bound ϕ(x), given the solution to a linear relaxation. However,
such a lower bound will not be rigorous unless the linear relaxation is itself
rigorous in the sense that, although the coefficients are machine representable
numbers, the resulting linear functions are exactly (and not just approximately)
lower bounds on the corresponding elements of the original problem.

Although taking account of rounding when computing point linear programs
representing relaxations of problem (1) appears to be possible without signifi-
cant increase in overall computational effort and without the necessity to discover
not-already-known obscure tricks, there are numerous pitfalls to be avoided if
we want the resulting linear program with machine-representable coefficients

1 Actually, McCormick’s conversion process is closely related to basic ideas in automatic
differentiation, as presented, for example, in the early reference [11].
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to be truly a relaxation of the original problem. Furthermore, not all methods
of producing approximate relaxations are easily transformable to methods that
produce rigorous relaxations. It is useful to provide details of how such rigorous
relaxations can be produced. The only such works of which we are aware that
precedes this paper are [1] and [8]. In [1], Borradaile and Van Hentenryck develop
a short theory of rigorous underestimating and overestimating lines (and opti-
mality thereof) for convex and concave functions, given lower and upper bounds
on the slopes (linear coefficients) and y-intercepts (constant coefficients). In [8],
Michel, Lebbah, and Rueher work in a context similar to that of this paper; they
give explicit and detailed procedures on how to rigorously round when bounding
products and quadratic terms in a quadratic program.

In this paper, we show more generally how to bound arbitrary positive inte-
ger powers of x, quotients, exponential functions, logarithms, square roots, and
ax, a a constant with uncertainty, over arbitrary intervals. In particular, we
give details of how to rigorously underestimate (or overestimate) xn, n odd, by
a set of linear inequalities, such that the total effect of the set of underestimating
(or overestimating) linear inequalities represents an approximation to a specified
accuracy over the portion of the interval in which multiple underestimators are
possible. We explain our suggested technique for underestimating and overesti-
mating odd powers in §2, while we explain relaxations of even powers in §3, of
exponential functions in §4, of logarithms in §5, and of square roots in §6. We
describe a rational way of handling quotients in §7, and we give underestimates
for ax, a an uncertain (interval) coefficient in §8. We relate our work to that in
[1] and [8] in §9, and give conclusions and the direction for future work in §10.

2. Relaxations of Odd Powers

2.1. Background

Let f(x) = xn, x ∈ [a, b], where n is a positive odd number and a and b are
machine numbers with a < 0 and b > 0. The convex envelope and concave
envelope of f(x) = xn are shown in Figure 1 and Figure 2, respectively. To
find a linear underestimator of xn, first we let p1 = a and p2 = b for the
underestimator and let p1 = b and p2 = a for the overestimator. We define the
function g(x), the difference between the slope of the secant line connecting the
points (p1, p

n
1 ) and (x, xn) and the slope of the tangent line at x for x ∈ (a, b),

by

g(x) =
xn − pn

1

x− p1
− nxn−1.

Then, g is monotone decreasing for the underestimator and monotone increasing
for the overestimator. The solution t of g(x) = 0 is the point where the slope of
the secant line connecting the points (p1, p

n
1 ) and (t, tn) equals the slope of the

tangent line at t. Therefore, tight linear estimators of xn, x ∈ [a, b] are the secant
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Fig. 1. Convex envelope of xn, x ∈ [a, b]
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Fig. 2. Concave envelope of xn, x ∈ [a, b]

line connecting the points (p1, p
n
1 ) and (t, tn) and linear estimators of xn, where

x is between t and p2. Solving g(x) = 0 is equivalent to solving the equation

(1− n)xn + p1nx
n−1 − pn

1 = 0. (2)

Let h(x) = (1−n)xn +p1nx
n−1−pn

1 . Then h′(x) = −n(n−1)xn−2(x−p1). The
Newton’s method iterates are defined by

xk+1(h, xk) = xk −
h(xk)

h′(xk)
,
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where x0 is some appropriate initial approximation.
Next, we show how to choose x0 in order to start the iteration to converge

to the solution t. Let’s view Newton’s method as a fixed point iteration. Let

p(x) = x − h(x)
h′(x) . Then p is continuous. Assume the following two conditions

hold:

1. h(x) has one positive real solution for the underestimator and one negative
real solution for the overestimator;

2. p′(x) > 0 when x > t for the underestimator and p′(x) > 0 when x < t for
the overestimator.

Then Newton’s method converges to the solution t. See Figure 3 and Figure 4.

x0x1x2x3t

(x0, x1)•

(x1, x2)•

(x2, x3)
•

x1 = p(x0)

x2 = p(x1)

x3 = p(x2)

y = x
y = p(x)

Fig. 3. Newton’s method converges to t for the underestimator.

x0 x1 x2 x3 t

(x0, x1)
•

(x1, x2)
•

(x2, x3)
•

x1 = p(x0)

x2 = p(x1)

x3 = p(x2)

y = x
y = p(x)

Fig. 4. Newton’s method converges to t for the overestimator.

To show that the above two assumptions hold, we consider h(x) = (1 −
n)xn + p1nx

n−1 − pn
1 and h′′(x) = −n(n − 1)2xn−2 + p1n(n − 1)(n − 2)xn−3,



6 Siriporn Hongthong, R. Baker Kearfott

where n is a positive odd number. For the underestimator, p1 < 0. Then h(x)
has one variation in sign. Thus, by Descartes’s rule of signs, h(x) = 0 has one
and only one positive real solution. Also, h′′(x) < 0 for x > t. Rewriting h(x) =
g(x)(x− p1), we see that h is monotone decreasing. Since h(0) > 0 and h(x) has
only one positive real solution, h(x) < 0 for x > t. Thus

p′(x) =
h(x)h′′(x)

(h′(x))2
> 0, when x > t.

Hence, for the underestimator, we start x0 from the right end of the interval, i.e.
x0 = b− ε, for small ε. In the same manner, for the overestimator, p1 > 0. Then
h(−x) has one variation in sign. Thus, by Descartes’s rule of signs, h(x) = 0 has
one and only one negative real solution. Also, h′′(x) > 0 for x < t. Rewriting
h(x) = g(x)(x − p1), we see that h is monotone decreasing. Since h(0) < 0 and
h(x) has only one negative real solution, h(x) > 0 for x < t. Thus, p′(x) > 0,
when x < t. Therefore, we start x0 from the left end of the interval, i.e. x0 = a+ε
for the overestimator.

However, for both the underestimator and overestimator, the given interval
may not include the solution t or the solution may occur at p1 which is not in
the domain of g. In this case, the linear estimator is a secant line connecting the
two endpoints.

2.2. Method to obtain rigorous estimators

The main thing is we want to get validated solutions. There are three things
we need to be concerned about: the point t, the secant line from (p1, p

n
1 ) to

(t, tn), and the linear estimator of xn, where x is between t and p2. Using the
considerations of the previous section, t is computed only approximately. To use
this approximation to t to find the rigorous estimators, this point itself must
be validated. Therefore, we construct a box in which we know this point t has
to lie. We do this by using the interval Newton method. We construct a box x

centered at the approximation ť which we got from Newton’s method. For it to
be possible to verify existence or uniqueness, the box x should be larger than
the tolerance which the actual solution will be computed. The interval Newton
operator is

N(h,x, ť) = ť− h(ť)

h′(x)
.

We get an interval [n2, n2]. Then, for rigor, we use interval arithmetic to eval-
uate f([n2, n2]) = (f, f). We obtain the box as shown in Figure 5 and Figure
6. The point (n2, f) on the bottom right corner is chosen to be t∗ for the un-

derestimator, whereas the point (n2, f) on the top left corner is chosen to be t∗

for the overestimator. A point t∗ corresponding to this box will be used to find
the rigorous estimators. For the secant line connecting two points, we need to
make sure that it guarantees a correct estimator. For example, if mux+ bu and
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a t b

•
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interval
evaluation

Fig. 5. A point t∗ for the underestimator

a t b

•t∗
interval

evaluation

Fig. 6. A point t∗ for the overestimator

mox + bo are the linear underestimator and linear overestimator of f(x), then
mux+ bu ≤ f(x) and mox+ bo ≥ f(x) must be strictly valid. We will translate
two pairs of coordinates representing the secant line into a machine-representable
slope (linear coefficient) and y-intercept (constant coefficient). Also, for the lin-
ear estimator of xn, where x is between t and p2, we are going to use the adaptive
method to obtain piecewise linear estimators, because a single linear estimator
may not be sharp. In other words, we will subdivide the interval and produce
linear approximations in each subinterval. Therefore, the rigorous estimator has
two different parts:

1. a line obtained by using algorithm 2 below with the following inputs: ‘is under’,
[a,b], t∗.

2. piecewise linear estimators obtained by using algorithm 1 below with the
following inputs: ‘is under’, interval between t∗ and p2, ε.
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‘is under’ is a logic variable to determine whether we want to find underestima-
tors or overestimators. It is ‘T’ for underestimators.

2.2.1. Piecewise linear estimators We use essentially the sandwich algorithm
[12], except we modify the line and construction to take account of roundoff error
to obtain piecewise linear estimators. Algorithm 1 is proposed for finding piece-
wise linear underestimators for convex functions and overestimators for concave
functions. To take account of roundoff error in computing a linear function, we
define the function round(is under,sign) as in Table 1. Because of the way the

Table 1. Function round(is under,sign) shows how to round in computing the slope (linear
coefficient) and y-intercept (constant coefficient) of a linear function.

rounding in computing
is under sign slope y-intercept

T + upward downward
T − downward downward
F − upward upward
F + downward upward

constraints are formulated in the LP and validated computations, we will trans-
late the representation in terms of two endpoints into a representation in terms
of a machine-representable slope (linear coefficient) and y-intercept (constant
coefficient). We define two types of rounding as follows.

Definition 1. bxc is a machine number computed with correct rounding to be
less than or equal to the exact (mathematical quantity) x (and preferably the
nearest machine number less than x).

Definition 2. dxe is a machine number computed with correct rounding to be
more than or equal to the exact (mathematical quantity) x (and preferably the
nearest machine number more than x).

Note that x may represent an expression or a function value, and actually com-
puting bxc or dxe may involve more than one rounding operation.

We use Borradaile and Van Hentenryck ’s technique [1] to define the function
segment(is under,sgn(x),sgn(x)) as in Table 2. Illustrative examples are given
below.

Example 1. Find a machine-representable underestimating approximate tangent
line to the curve y = xn at the point d > 0 by using rounding scheme
round(is under,+).

Without taking account of rounding error, the tangent line is

y = ndn−1x− ndn + dn,

which gives the slope ndn−1 and y-intercept −ndn + dn. Since we are finding
a linear underestimator, is under=‘T’. Therefore, we use upward rounding in
computing the slope and downward rounding in computing the y-intercept.
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Table 2. Function segment(is under,sgn(x),sgn(x)) gives the slope (linear coefficient) and y-
intercept (constant coefficient) of a machine-representable line segment below(if is under is
‘T’)/above(if is under is ‘F’) the line segment mx+ b, x ∈ [x, x].

is under sgn(x) sgn(x) slope y-intercept
T − − dme bbc
T + + bmc bbc
T − + η1 bb+ γ1c
F − − bmc dbe
F + + dme dbe
F − + η2 db+ γ2e

where

(i) η1 = η2 = bmc, γ1 = (dme − bmc)x, and γ2 = (dme − bmc)x, if
|x| ≤ |x|;

(ii) η1 = η2 = dme, γ1 = −(dme − bmc)x, and γ2 = −(dme − bmc)x, if
|x| ≤ |x|.

Both are applicable. The difference is in the tightness.

Even though power is a built-in function, unless we know the accuracy of
the floating evaluation of this function, we either implement our own version of
the power function with proper rounding or we use interval arithmetic to obtain
these bounds. In our INTLAB [13] implementation, the computations are as
follows:

d = intval(d),

slope = sup(ndn−1),

y-intercept = inf(−ndn + dn).

Note that “intval” defines the type of variable to be an interval; “sup” and “inf”
return the right and left bound of the interval, respectively.

Example 2. Let x1 < 0, x2 > 0, and |x1| < |x2|. Find a machine-representable
slope and y-intercept for a line segment that overestimates the line segment
connecting the points (x1, y1) and (x2, y2), by using the function
segment(‘F’,sgn(x1),sgn(x2)).

The “exact” line segment is mx+ b, where

m =
y2 − y1

x2 − x1
,

b = − y2 − y1

x2 − x1
x1 + y1.

Figure 7 shows that dmex+ dbe is not a correct overestimator because the large
slope can cause dmex + dbe to dip below the exact value at the lower endpoint
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x. By using the function segment(‘F’, sgn(x1), sgn(x2)), we obtain

slope =

⌈

y2 − y1

x2 − x1

⌉

,

y-intercept =

⌈

− y2 − y1

x2 − x1
x1 + y1 − (dme − bmc)x1

⌉

.

mx+ b

x x

dmex+ b

dmex+ dbe

dmex+ db− (dme − bmc)x1e

Fig. 7. dmex+ dbe is not guaranteed to be a correct overestimator.

Piecewise linear underestimators for convex functions and piecewise linear
overestimators for concave functions can be obtained from the following algo-
rithm. The input is the logic variable is under (‘T’ for underestimators and ‘F’
for overestimators), the interval [a,b] where a and b are machine numbers and
the tolerance ε, while the output is machine-representable coefficients for a set
of piecewise linear functions.

Algorithm 1 (Find piecewise linear estimators for y = f(x), x ∈ [a, b].)

Input: is under, interval [a, b], ε
Output: machine coefficients for a set of piecewise linear underestimators (if f
is convex and is under = ‘T’) or overestimators (if f is concave and is under
= ‘F’)

initialize:

(a) n← 1.
(b) l(n)← a, r(n)← b.

do while n > 0:
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1. Evaluate the tangent lines to y = f(x) at the endpoints of the interval
[l(n), r(n)] by computing the coefficients using rounding scheme
round(is under,−) at l(n) and round(is under,+) at r(n). We obtain an
initial bound for the function in the interval [l(n), r(n)].

2. Compute the point of intersection for the tangent lines resulting from the
previous step. The abscissa of the point of intersection is called c. The
interval [l(n), r(n)] is partitioned at this point c.

3. Form two new subintervals [l(n), c] and [c, r(n)].
4. Calculate the maximum distance between the point c to the curve f(x),

x ∈ [l(n), r(n)], and let it be d. This maximum distance d is the maxi-
mum error between the curve and its initial bound. The abscissa of the
point where the maximum error occurs is called x1. The “exact” bound
corresponds to a tangent line to f(x) at x1. (see Figure 8.)

5. Find rigorously computed slope and y-intercept for a bound to f that is
approximately tangent to f at x1. (see Algorithm 2 below.)

6. If d < ε, then
(a) Store l(n), r(n) and the rigorous bound in a list.
(b) n← n− 1.

otherwise assign the new left and right interval as follows:
New left interval:

(a) l(n)← l(n).
(b) r(n)← c.

New right interval:
(a) l(n+ 1)← c.
(b) r(n+ 1)← r(n).
(c) n← n+ 1.

end if

end do

We give details of step 5 in Algorithm 2 below.

Algorithm 2 (Find rigorously computed slope and y-intercept for a bound to
f(x) that is approximately tangent to f at a point x1.)

Input: is under, interval [a, b], x1

Output: a machine-representable slope and y-intercept corresponding to a math-
ematically correct bound

1. Calculate a slope al and y-intercept bl of an approximating the tan-
gent line to the left of x1, denoted L(x), by using rounding scheme
round(is under,+), and a slope ar and y-intercept br of an approximating
tangent line to the right of x1, denoted R(x), by using rounding scheme
round(is under,−). (see Figure 9.)

2. Evaluate L(l(n)) = all(n)+ bl and R(r(n)) = arr(n)+ br by using down-
ward rounding in the multiplication and addition in an underestimator
and upward rounding in the multiplication and addition in an overesti-
mator.
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3. Compute a machine-representable slope and y-intercept corresponding
to the line connecting (l(n), L(l(n))) and (r(n), R(r(n))) by using the
function segment(is under,sgn(l(n)),sgn(r(n))). The line corresponding
to this machine-representable slope and y-intercept is a rigorously com-
puted bound, as shown in Figure 9.

1 2 3 4 5 6
-1

0

1

2

3

4

y = f(x)

“exact”
lower
bound

d

l(n) r(n)cx1

Fig. 8. Illustrates the “exact” lower bound.

“exact”
lower bound

rigorously
computed

lower bound

L(x)

R(x)

l(n) r(n)x1

Fig. 9. Illustrates the rigorously computed lower bound.
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Example 3. Find the linear underestimators of y = x3, where x ∈ [−1, 2].
As in algorithm 1 with ε = 0.1, we obtain piecewise linear underestimators shown
below.

−1 0 1 2
−20

−15

−10

−5

0

5

10
Piecewise linear estimators of y=x3, x ∈ [−1,2], ε=0.1

x

y

Example 4. Find the linear overestimators of y = x3, where x ∈ [−1, 1].
As in algorithm 1 with ε = 0.01, we obtain piecewise linear overestimators shown
below.
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5
Piecewise linear overestimators of y=x3, x ∈ [−1,1], ε=0.01

x

y

A summary of how the relaxations of the function y = f(x), x ∈ [x, x], where x
and x are machine numbers, depend on the convexity of the function is shown
in the following table.
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Function Underestimator(s) Overestimator(s)

Convex
use algorithm 1 with is under =‘T’
and [x, x] to obtain piecewise linear
underestimators.

use the function segment
(‘F’,sgn(x),sgn(x)) to compute a
machine-representable slope and y-
intercept for a line segment that
overestimates the line segment con-
necting (x, df(x)e) and (x, df(x)e).

Concave

use the function segment
(‘T’,sgn(x),sgn(x)) to compute a
machine-representable slope and y-
intercept for a line segment that un-
derestimates the line segment con-
necting (x, bf(x)c) and (x, bf(x)c).

use algorithm 1 with is under =‘F’
and [x, x] to obtain piecewise linear
overestimators.

3. Underestimators and Overestimators for Even Powers

Let f(x) = xn, x ∈ [x, x], where n is a positive even number and x and x
are machine numbers. Then f is a convex function. In exact arithmetic, a linear
underestimator is the tangent line at any point in [x, x] and a linear overestimator
is the secant line connecting the points (x, xn) and (x, xn). However, as in the
case of odd powers, a rigorously computed slope and y-intercept corresponding to
a lower bound can be obtained by using algorithm 2. Moreover, with the adaptive
process, piecewise linear underestimators (corresponding to sets of inequalities)
can be obtained by using algorithm 1. For a linear overestimator, we use the
function segment(‘F’,sgn(x),sgn(x)) to obtain a machine-representable slope and
y-intercept for a line segment that overestimates the secant line connecting the
points (x, dxne) and (x, dxne). Even though power is a built-in function, unless
we know the accuracy of the floating evaluation of this function, we either write
our own versions with correct rounding or use interval arithmetic to obtain these
estimators.

4. Underestimators and Overestimators for Exponential Functions

Let f(x) = ex, x ∈ [x, x], x and x machine numbers. Since f is convex, as in the
case of even powers, rigorously computed coefficients for a lower bound and piece-
wise linear underestimator can be obtained with algorithm 2 and algorithm 1,
respectively. For a linear overestimator, we use the function segment(‘F’,sgn(x),
sgn(x)) to obtain a machine-representable slope and y-intercept for a line seg-
ment that overestimates the secant line connecting the points (x, dexe) and
(x, dexe). Even though exponential is a built-in function, unless we know the
accuracy of the floating evaluation of this function, we either write our own ver-
sions with correct rounding or use interval arithmetic to obtain these estimators.

5. Underestimators and Overestimators for Logarithms

Let f(x) = log x, x ∈ [x, x], x and x machine numbers, and x > 0. Then f is a
concave function. In exact arithmetic, a linear underestimator is the secant line
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connecting the points (x, log x) and (x, log x) and a linear overestimator is the
tangent line at any point in [x, x]. However, as in the case of odd powers, we
use the function segment(‘F’,+,+) to obtain a machine-representable slope and
y-intercept for a line segment that underestimates the secant line connecting
the points (x, blog xc) and (x, blog xc). Even though log is a built-in function,
unless we know the accuracy of the floating evaluation of this function, we either
write our own versions with correct rounding or use interval arithmetic to obtain
these estimators. For a rigorously computed upper bound and piecewise linear
overestimators we use algorithm 2 and algorithm 1, respectively.

6. Underestimators and Overestimators for Square Roots

Let f(x) =
√

x, x ∈ [x, x], x and x machine numbers and x ≥ 0. Since f is
concave, as in the case of logarithms, we use the function segment(‘F’,+,+) to
obtain a machine-representable slope and y-intercept for a line segment that
underestimates the secant line connecting the points (x, b√xc) and (x, b

√
xc).

Even though square root is a built-in function, unless we know the accuracy of
the floating evaluation of this function, we either write our own versions with
correct rounding or use interval arithmetic to obtain these estimators. For the
overestimators, we are looking for the small interval to the right of x = 0 such
that the resulting computed f ′(x) will not overflow when we exclude this interval
from the domain of x. Let “huge” be the largest positive real number that can
be represented using IEEE standard arithmetic. Then g′(x) will not overflow
if x > 1

4(huge)2 . However, in most machines the smallest nonzero floating point

number is greater than 1
4(huge)2 . On such machines (including IEEE arithmetic

machines), we exclude only the point 0 from the domain of x. Hence, if x > 0,
then a rigorously computed upper bound and piecewise linear overestimators
can be obtained by using algorithm 2 and algorithm 1, respectively. Otherwise,
there is no overestimator.

7. Underestimators and Overestimators for Quotients

7.1. Valid Domain

Consider g(x) = 1
x
, x 6= 0. We are looking for the small interval centered at

x = 0 such that the resulting computed estimators of g(x) will not overflow
when we exclude this interval from the domain of x. Let “huge” and “tiny” be the
largest and smallest positive real numbers that can be represented using IEEE
standard arithmetic, respectively. Then g(x) will not overflow if x > tiny > 1

huge

and g′(x) will not overflow if x > 1√
huge

> tiny. Therefore, we exclude the

interval [− 1√
huge

, 1√
huge

] from the domain of x. In other words, there are neither

overestimating nor underestimating constraints over any interval that intersects
[− 1√

huge
, 1√

huge
].
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7.2. Method to obtain the rigorous estimators

We derive 3 cases of estimators that depend on x and x.

case 1. x < − 1√
huge

For x ∈ [x, x], g(x) is concave. Then we use algorithm 1 to ob-
tain piecewise linear overestimators. For the underestimator, we
compute a machine-representable slope and y-intercept for a line
segment that underestimates the secant line connecting the points
(x, bg(x)c) and (x, bg(x)c) by using the function segment(‘T’,−,−).

case 2. x > 1√
huge

For x ∈ [x, x], g(x) is convex. Then we use algorithm 1 to ob-
tain piecewise linear underestimators. For the overestimator, we
compute a machine-representable slope and y-intercept for a line
segment that overestimates the secant line connecting the points
(x, dg(x)e) and (x, dg(x)e) by using the function segment(‘F’,+,+).

case 3. (x < − 1√
huge

and x > 1√
huge

) or (x < − 1√
huge

and x < 1√
huge

) or

(x > − 1√
huge

and x > 1√
huge

)

There is no underestimator and no overestimator in this case. In a
branch and bound algorithm, we may wish to subdivide by trisect-
ing to

[

x,− 1√
huge

]

⋃

[

− 1√
huge

,
1√
huge

]

⋃

[

1√
huge

, x

]

.

8. Underestimators and Overestimators for y = [a, a]x

Various problems occurring in applications have multiplications by a number a,
where a is uncertain (i.e. subject to bound constraints). An alternate way of
formulating such an operation (other than as a multiplication of two variables
subject to bound constraints) is as an operation

y = ax,

where a ∈ [a, a], a and a are machine numbers and x ∈ [x, x]. However, if a

is input as decimal and must be converted, we will use a ← bac and a ← dae.
We obtain 3 cases of underestimators and 3 cases of overestimators for y that
depend on x and x.

case 1. If x ≤ 0, then
y ≥ ax.
y ≤ ax.

case 2. If x ≥ 0, then
y ≥ ax.
y ≤ ax.
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case 3. If x ≤ 0 and x ≥ 0, then the underestimator is given by the
machine-representable slope and y-intercept for a line segment that
underestimates the line segment connecting the points (x, baxc)
and (x, baxc) computed with the function segment(‘T’,−,+) and
the overestimator is given by the machine-representable slope and
y-intercept for a line segment that overestimates the line segment
connecting the points (x, daxe) and (x, baxe) computed with the
function segment(‘F’,−,+). (see Figure 10.)

-2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

x x

y = ax

y = ax

•
(x, daxe)

•(x, baxc)

•(x, daxe)

•
(x, daxe)

underestimator

overestimator

Fig. 10. Overestimator and underestimator for y = ax.

In case 3, 0 ∈ x, the underestimator and overestimator of y = ax are not
sharp. In branch and bound algoritms, we could improve the approximation
by trisecting x in such a way that the middle interval is sufficiently small and
centered at zero, that is, we trisect into [x,−δ], [−δ, δ] and [δ, x], where δ is a
small number.

9. Relationship to Work of Others

The implementation in section 3 is similar to [8], but we generalize to xn. Fur-
thermore, we find a rigorously computed bound to xn at the point of tangency
as shown in algorithm 2.

Since single linear estimators may not be sharp, we give adaptive processes
for underestimators for the convex function and overestimators for the concave
function as in algorithm 1 to obtain the piecewise linear estimators. The basic
process has been explained in [14] and elsewhere, but we are unaware of previous
details in print or of actual use in an adaptive process.
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We present a technique to derive the linear underestimators and overestima-
tors for the odd powers, as in section 2. We carefully compute the point t∗ to be
rigorous in order to get the rigorous linear estimators.

10. Conclusions and Future Work

We have presented techniques to produce validated linear underestimators and
overestimators by taking account of roundoff error. The functions we considered
are xn, 1/x, ex, log x and

√
x. In the near future, we will also analyze rigorous

relaxations of trigonometric functions such as sinx and cosx, as well as other
transcendental functions. Finally we are presently in the process of incorporating
the work into a rigorous branch and bound method for global optimization.
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