
EMPIRICAL EVALUATION OF INNOVATIONS IN INTERVAL
BRANCH AND BOUND ALGORITHMS

FOR NONLINEAR SYSTEMS∗

R. BAKER KEARFOTT†

SIAM J. SCI. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 18, No. 2, pp. 574–594, March 1997 014

Abstract. Interval branch and bound algorithms for finding all roots use a combination of
a computational existence/uniqueness procedure and a tessellation process (generalized bisection).
Such algorithms identify, with mathematical rigor, a set of boxes that contains unique roots and
a second set within which all remaining roots must lie. Though each root is contained in a box
in one of the sets, the second set may have several boxes in clusters near a single root. Thus,
the output is of higher quality if there are relatively more boxes in the first set. In contrast to
previously implemented similar techniques, a box expansion technique in this paper, based on using
an approximate root finder, ε-inflation, and exact set complementation, decreases the size of the
second set, increases the size of the first set, and never loses roots.

In addition to the expansion technique, use of second-order extensions to eliminate small boxes
that do not contain roots, and interval slopes versus interval derivative matrices are studied. These
items are evaluated empirically on a significant test problem set, within a Fortran-90 environment
designed for such purposes. The results are compared with previous results and show that careful
incorporation of the techniques yields both quantitatively and qualitatively superior computer codes.

Key words. nonlinear algebraic systems, branch and bound methods, interval computations,
ε-inflation, slope matrices, Fortran 90, second-order extensions

AMS subject classifications. 65-04, 65-05, 65G10, 65H20

PII. S1064827594266131

1. Introduction, background, and motivation. Interval arithmetic has pro-
ven itself useful in many contexts for automatically supplying rigorous bounds on
solutions or for verification of solutions that have been computed by approximate
methods. Since it can supply rigorous bounds on ranges of functions, interval arith-
metic has been particularly successful in branch and bound algorithms for global
optimization and in finding all solutions to nonlinear systems of equations F (X) = 0,
F : Rn → Rn within a given region. However, naive application easily leads to unsat-
isfactory results, and experts agree that interval arithmetic should appear only where
necessary, and then only appropriately.

In branch and bound methods for rigorously finding all roots of nonlinear alge-
braic systems of equations, details of both how the interval arithmetic enters and how
the search process (branch and bound) is carried out have an extreme impact on the
success of an implementation. The purpose of this paper is to investigate some of
these details.

Branch and bound methods for nonlinear systems are roughly based on the fol-
lowing algorithmic steps.

ALGORITHM 1 (skeletal branch and bound algorithm).

INPUT: initial bounds [ai, bi], 1 ≤ i ≤ n, defining the region X0, an internal repre-
sentation for the function F : X0 ⊂ Rn → Rn, and the tolerance εd

∗Received by the editors April 15, 1994; accepted for publication (in revised form) July 20, 1995.
http://www.siam.org/journals/sisc/18-2/26613.html
†Department of Mathematics, University of Southwestern Louisiana, U.S.L. Box 4-1010, Lafayette,

LA 70504-1010 (rbk@usl.edu). This work was supported in part by National Science Foundation
grant CCR-9203730.

574

BRANCH AND BOUND ALGORITHMS FOR NONLINEAR SYSTEMS 575

OUTPUT: a list R of boxes such that each box X ∈ R has been rigorously verified
to contain a unique root of F and a list U of boxes of maximum side lengths on the
order of

√
εd such that all remaining roots of F in X0 must lie in boxes in U

• Place X0 into the stack S of regions to be considered.
• DO WHILE S is nonempty.

1. Pop an item from S and let it become the current region X.
2. Use an iterative scheme (e.g., some form of interval Newton method) to

replace X by a smaller box X̃ such that all roots of F in X must lie in
X̃.

3. Use an inclusion test to determine if X contains a unique root.
4. IF X is proven to contain a unique root THEN Store X on a list R.
5. IF X is proven to contain no roots, then cycle to step 1.
6. IF the diameter of X has been made smaller than εd in step 2 but the

tests in steps 3 and 5 were inconclusive, THEN store X in a list U of
boxes that may contain roots.

7. IF there was no progress in steps 2, 3, 5, or 6, THEN bisect X along a
coordinate direction i, placing the resulting two regions on S.

END DO

Algorithms with similar basic steps have appeared in [24], [5], and the references
therein, and elsewhere. An abstract version of such an algorithm, along with an
analysis, appears in [8].

Commonly the regions X are taken to be boxes, i.e., interval vectors or, geo-
metrically, rectangular parallelepipeds. Along these lines, implementations generally
involve some form of interval Newton method for steps 2, 3, and 5. The most com-
mon such interval Newton methods appear to be the Krawczyk method (from [20]
and explained in [25] and [26]) and the interval Gauss–Seidel method (such as in [13]
and [17]), although preconditioned interval Gaussian elimination could also be used
(see [29]). Theory and practice indicate that the interval Gauss–Seidel method is
somewhat better than Krawczyk’s method for most purposes; see [29]. Here we use
the interval Gauss–Seidel method.

Regardless of whether the Krawczyk or interval Gauss–Seidel iteration is used,
effectiveness depends on (i) the preconditioner employed in the corresponding linear
system and (ii) the variation bound matrix (interval Jacobi matrix, more general
Lipschitz matrix, or slope matrix) used in the interval Newton equation. The inverse
midpoint preconditioner, with theoretical properties summarized in [29], is commonly
used, whereas we have found preconditioners satisfying various types of optimality
conditions can give better performance when solving nonlinear systems problems in
small to moderate dimensions; see [12] and [16].

To date, we have preferred interval Jacobi matrices to slopes, since it is simple to
incorporate them in a computational uniqueness test, such as in [25] or in [29, Thm.
5.1.7]. Interval slopes provide tighter bounds and faster convergence in step 2 but
only allow existence (and not uniqueness) to be shown when used in a straightfor-
ward manner. However, Rump has recently pointed out (in [32]) that slopes can be
effective in a two-step process in which we first verify existence in as small a region as
possible, then verify uniqueness in as large a region as possible. This slope-verification
procedure shows much promise.

There are also various ways of choosing the coordinate direction i in step 7 of
Algorithm 1. In this work, we use the maximal smear scheme proposed in [17]: we

576 R. BAKER KEARFOTT

choose i such that si = minj∈C sj , where

sj = max
1≤k≤n

{|Sk,j(F,Xa,W)|(wj − wj)}.

This takes the function variation into account and works better than bisecting the
coordinate direction of (unscaled) maximum width.

The exclusion test in step 5 of Algorithm 1 combines both an interval Newton
method and an interval function evaluation. In the interval Newton method, if the
image N(X) of a region X is disjoint from the region X, then there cannot be any
solutions of F within X. In the function evaluation, we obtain a region F(X) that
contains the range of F over the region X; F has no roots in X if F(X) does not
contain the zero vector. In [15], theoretical and empirical analysis indicates that the
order of the interval extension (reviewed in section 4 below) of an objective function
in global optimization greatly affects the ability of the algorithm to exclude regions.
We examine whether this is true for nonlinear systems in section 4.

Finally, due to overestimation in the variation bound matrix and in the interval
extension of the function, sometimes combined with poor conditioning, steps 2 and 7
of Algorithm 1 may result in many boxes that can be neither verified as root containing
nor rejected as not containing roots. As in the global optimization case analyzed in
[15], such boxes may consist of clusters about roots. The algorithm’s output is more
difficult to comprehend when such clusters occur: a list of boxes, each of which has
been verified to contain a unique root, is more meaningful than a large list of small
regions such that all of the roots must lie within boxes in the list. Furthermore, a
proliferation of small regions can cause a fatal increase in the computational effort of
the algorithm.

In [8], we proposed a general scheme to eliminate boxes in a cluster and proved,
under technical assumptions, that such a scheme resulted in a list of boxes, each of
which contained a unique root, and such that all roots were contained in boxes in
the list. This scheme, based roughly on replacing each small box entering step 6
with a larger one, then deleting all boxes in the list that intersect the larger box, was
implemented heuristically in the Fortran-77 program INTBIS of [17]. The scheme
was not totally successful at eliminating clusters. Furthermore, since the process was
based on theoretical assumptions from [8] that were not computationally verified, it
also could possibly eliminate a box containing a root in favor of a neighboring box.1

In [11], we described a form of trisection, in which a small box was cut exactly
from a larger box, to remove points where the function was nearly zero and the
Jacobi matrix was ill conditioned. The algorithms in [11] also used the fact that
the classical Newton method would often converge to roots where the Jacobi matrix
is singular, even though interval verification processes fail there; the removed box
portions were constructed around approximate solutions so found. Later, in [18] and
[33], reminiscent of the trisection process, we developed a geometrical complementation
algorithm, in which we could form a new list of boxes from an old list, such that the
union of the elements of the new list was the complement of a given box in the old
list. In [18] we used the process to eliminate from the search space portions of a curve
that had already been found.

In fact, the list complementation process from [18] can be combined with the
box expansion idea from [17] to allow us to rigorously eliminate clusters without
discarding roots. Furthermore, use of a classical root finder (such as a “globalized”

1INTBIS provided an option to disable this.

BRANCH AND BOUND ALGORITHMS FOR NONLINEAR SYSTEMS 577

quasi-Newton method, as in [27]) need not be confined to the search for roots where
the Jacobi matrix is ill conditioned or singular. Assuming that it is easier to find an
approximate solution and then verify it using interval arithmetic rather than to find a
verified solution from the beginning with interval arithmetic, we could (i) try wherever
possible to find approximate roots; (ii) construct as large a box as possible about each
such approximate root, in which we can verify that there is a unique solution; or (iii)
take the geometrical complement of each such box within the stack S and list U of
Algorithm 1. Such a procedure may result in reduced clustering and lower execution
time. On the other hand, the complementation process replaces a single box in the
stack or list by up to 2n new boxes (cf. section 5 below); although these boxes may
be processed more easily, the larger number of boxes could be costly. Also, running
the approximate solver takes CPU time. Thus, experimentation is needed.

The idea of first obtaining an approximate solution, then verifying it, is ubiqui-
tous throughout interval computations. In fact, it can be considered one of the two
paradigms in algorithms with automatic result verification: in the first, existence is
assumed and bounds on the solution are refined, while existence is verified a posteriori
(after computation of an approximate solution) in the second. Verification of approx-
imate solutions began with Krawczyk [20] and Moore [25] and continued with the
introduction of fixed point theory by Rump [31]. In global search algorithms for non-
linear systems, besides in [11], it has been used in the univariate global optimization
algorithm proposed by Caprani, Godthaab, and Madsen in [3] and in the multivariate
global optimization algorithm in [7] and is discussed in [29, p. 211].

The goals of the present study are to (i) examine the practical worth of the
approximate root-finding/complementation process, (ii) examine the practicality of
second-order extensions versus first-order extensions, (iii) determine the usefulness of
interval slopes and Rump’s slope-based uniqueness test, (iv) compare the implemen-
tation of these innovations (in a new environment) to our previous implementations
in [17] and [12]. We first define our notation and then explain slope-based computa-
tional uniqueness tests, second-order interval extensions, and the tessellation process.
We then give our overall algorithm pattern in section 6, while experimental results
appear in section 7. We summarize in section 9.

We assume prior familiarity with interval analysis, and will not repeat elementary
details. Introductions to the field are [24] or [1], while a treatise on the theory of
interval methods for nonlinear systems is [29]. A well-prepared up-to-date general
review of advanced aspects of the subject is [6].

2. Notation. Throughout, we will use boldface to denote intervals, lowercase
to denote scalar quantities, and uppercase to denote vectors and matrices. We will
use underscores to denote lower bounds of intervals and overscores to denote upper
bounds of intervals. For components of vectors, we will use corresponding lowercase
letters. For example, we may have

X = [x1,x2, . . . ,xn]T ,

where xi = [xi, xi]. The notation x̌ will denote the midpoint of the interval x. The
magnitude of an interval is defined as |x| = max {|x|, |x|}.

The width of an interval x will be denoted by w(x) = x− x, and the width of an
interval vector X, denoted w(X), will be defined componentwise. We will use w(X)
in the context of ‖w(X)‖ = ‖w(X)‖∞.

The symbol F1(X) will denote a natural (first-order) interval extension of F over
X, where F : Rn → Rn, while F2 will denote the second-order extension described in

578 R. BAKER KEARFOTT

section 4 of this paper. (F1(X))i will denote the ith component of F1(X). The exact
range of F over X will be denoted2 by Fu(X).

Whenever ‖ · ‖ is used, it will mean ‖ · ‖∞.
We will use calligraphic letters such as S, U , and R to denote stacks and lists of

boxes.
Brackets [·] will be used to delimit intervals, while parentheses (·) will delimit

matrices and vectors.

3. Slope-based uniqueness and epsilon inflation. Depending on goals, it
is possible to craft various branch and bound root-finding algorithms. For example,
to obtain merely a list of boxes, the union of which must contain all roots and the
total measure of which is less than the measure of the initial region, a computational
uniqueness test is not necessary. However, to isolate all roots or determine the precise
number of roots, such a computational uniqueness test is crucial. Furthermore, ac-
cepting as large a box as possible in which uniqueness can be proven leads to a faster,
more practical algorithm. Thus, the work here is based on trying to prove uniqueness
wherever possible.

Until recently, computational uniqueness tests were based on Lipschitz matrices,
defined in [29, p. 174]. For example, any componentwise interval extension of the
Jacobi matrix3 of F over X is a Lipschitz matrix for F over X. Theory such as [29,
Thm. 5.1.7] indicates that interval Newton methods based on the linearized system

A(X̃− X̌) = −F (X̌)(1)

prove uniqueness when the computed X̃ is a subset of X, provided A is a Lipschitz
set for F over X.

On the other hand, the entries of slope matrices generally have smaller widths
than those of corresponding Lipschitz matrices, and thus are more likely to lead to
X̃ ⊂ X when bounding solutions of equation (1). In [32, Sect. 3], [21], and other
works, we see the following.

DEFINITION 1. Let F : D ⊆ Rn → Rn be a continuous function and let X ⊆ D
and Xc ⊆ D. An interval matrix S(F ,X,Xc) with Xc ⊆ X is called a slope matrix for
F over X at Xc if ∀X ∈ X, ∀Xc ∈ Xc, ∃S ∈ S such that F (X)−F (Xc) = S(X−Xc).

However, if S(F,X, X̌) is substituted for the Lipschitz matrix A in equation (1),
then X̃ ⊂ X only implies that there exists a solution of F (X) = 0 within X, and not
that this solution is unique; see [29, Cor. 5.4.3] and [32, Fig. 2.1]. Nonetheless, Rump
has recently proposed a scheme that can prove uniqueness using only slopes and can
possibly be more effective than verification based on interval Jacobi matrices. We
identify it as follows.

ALGORITHM 2 (Algorithm 2.1 in [32]).

INPUT: an initial guess for an approximate root of F

OUTPUT: an approximate root Xa, a box Xa 3 Xa in which there must exist a root,
and a box W ⊇ Xa such that F has a unique root in W

Use a two-stage process, involving only slopes, to verify existence in a small box
containing Xa and uniqueness in a larger box.

2Suggesting “united extension,” a term first used by Moore.
3E.g., that natural interval extension obtained by a given form of automatic differentiation and

evaluation with interval arithmetic.

BRANCH AND BOUND ALGORITHMS FOR NONLINEAR SYSTEMS 579

Algorithm 2 is practical because slopes can be implemented in a process similar
to automatic differentiation, so the user need only program the function itself. The
review [32] contains tips on how to do this efficiently and with small output intervals;
we have implemented such slope computations as a subroutine in our Fortran-90
system of [10].

Obtaining Xa and W involves a process termed ε-inflation, originated by Rump
in [31] and further described by Mayer, e.g., in [22]. This process works by construct-
ing a small box centered at Xa, then expanding it until existence (or uniqueness)
can be verified. To find just one root, this process potentially is much less costly
than beginning with a large box and tessellating it; we investigate this possibility
experimentally in section 7.

The ε-inflation algorithm in the experiments of section 7 is based on Algorithm 2.
In this algorithm in [32] (see also [22]), an iterative process is applied to Xa, once
found, to reduce its size. This process is not explicit in the following algorithm,
although it is an option in the code; see section 7 below.

ALGORITHM 3 (Find an approximate root and verify uniqueness within as large
a box as possible about that root.)

INPUT: the initial box (overall bounds) X0, the current box Xc ⊆ X0, and the
smallest box size εd produced by bisection in the overall branch and bound algorithm.

OUTPUT: one of the following: (1) an approximate root Xa ∈ Xc and a box W
containing Xa, W ⊆ X0, such that F has a unique root in W; (2) an approximate
root Xa ∈ Xc and a box W containing Xa such that existence of a root within W
has been proven; (3) an approximate root Xa (according to the approximate solver)
but no box W; and (4) failure to compute an approximate root.

1. Depending on the widths of the coordinates of Xc and εd, either find Xa with
the MINPACK1 routine HYBRD1 or take Xa to be the center of Xc.

2. IF Xa 6∈ Xc or no solution is found THEN EXIT.
3. Construct a small box Xa, Xa ∈ Xa, in which existence can be proven as in

Algorithm 2.
4. (Verify uniqueness within as large a box as possible) IF existence was veri-

fied in step 3 THEN, expanding the widths of Xa coordinate by coordinate,
construct as large a box W ⊇ Xa as possible in which uniqueness can be
proven.

4. Second-order interval extensions. Natural interval extensions F1 of F ,
that is, extensions obtained by directly evaluating the expressions4 for F using interval
arithmetic, are first order in the sense that

‖w(F1(X))‖ − ‖w(Fu(X))‖ = O(‖w(X)‖).(2)

On the other hand, second-order extensions obey

‖w(F2(X))‖ − ‖w(Fu(X))‖ = O(‖w(X)‖)2.(3)

For example, with the mean value theorem and slopes, the interval extension F2
defined by

F2(X) = F (X̌) + S(F,X, X̌)(X− X̌)(4)

is second order under natural conditions (cf. [29, Sect. 2.3, Cor. 2.3.4]).5

4Including, possibly, loops and subroutines.
5Various interval extensions of first and second order are detailed in [30].

580 R. BAKER KEARFOTT

X
W 1

W 4

W 3

W 2 W 1

X

(a)

W 1

W 2

X

(b) (c)

FIG. 1. Complementation of a box X in a box W.

Condition 3 is better than condition 2 for determining 0 6∈ F (X) for small w(X),
but F2 requires more work to evaluate than F1 does. The following algorithm com-
bines the two.

ALGORITHM 4. (Try a first-order, then second-order, function evaluation.)

INPUT: an internal representation for F and the current box X

OUTPUT: either “unknown” or “no root in X”
1. Compute the natural first-order extension F1(Xc) to F ; IF 0 6∈ F1(Xc) THEN

RETURN “no root in X.”
2. Compute (a more costly) second-order extension F2(Xc) to F , based on the

mean value extension with a slope matrix6; IF 0 6∈ F2(Xc) THEN RETURN
“no root in X.”

3. If neither step 1 nor step 2 verified 0 6∈ Fu(Xc), then RETURN “unknown.”

Actually, step 2 determines that there is no root in X precisely when the image of
the Jacobi method does not intersect X. Thus, step 2 is probably best implemented
by performing a step of the Gauss–Seidel method. Although the Gauss–Seidel method
is used as an overall iteration procedure in the algorithm, step 2 is not superfluous,
since it involves recomputation of a slope matrix and checking at points in the branch
and bound process where it would not otherwise be done, i.e. in steps 2 and 4(a)
of Algorithm 5 and step 3(c)i of Algorithm 7. In these places, it is conceptually
appropriate to think of it as a second-order function evaluation.

5. The complementation process. The algorithms that generate the lists of
boxes consist of generalized bisection and of taking the complement of a box in a list
of boxes. Generalized bisection is step 7 of Algorithm 1 in the introduction. The
algorithms for taking the complement of a box in a box and for generating a list of
boxes whose union is the complement of a box in the union of the boxes in an original
list first appeared in [33] and [18] but had not been tried in general nonlinear systems
codes. Details are available from the author of this paper. The important observation
here is that a list of at most 2n boxes can be produced by complementing a box X in
a box W with a simple O(n) computation. Figure 1 illustrates the process.

6Or do a step of the Jacobi method; see the remark below this algorithm.

BRANCH AND BOUND ALGORITHMS FOR NONLINEAR SYSTEMS 581

6. Overall algorithm pattern. The overall algorithm is based on the ε-in-
flation of Algorithm 3, on the basic generalized bisection structure in [8] and [17],
and on taking the complement of the boxes produced by Algorithm 3 in the lists of
boxes produced in the generalized bisection structure. A crucial question is where
in the overall algorithm to find and verify approximate roots (i.e., where to apply
Algorithm 2). We can attempt to find another approximate root at the beginning
and whenever a box is cut through bisection or complementation, or we can do so
merely when small boxes that have not been verified are produced.

We use a heuristic, based on a parameter α between 0 and 1, to decide when
to attempt approximate root finding: α = 0 implies that Algorithm 3 is always at-
tempted, while α = 1 implies Algorithm 3 is never attempted, except for starting
points within boxes of diameters less than the domain tolerance. Specifically, approx-
imate root finding and verification are attempted within a box with relative diameter
greater than εd whenever min{|F i|, |F i|}/max{|F i|, |F i|} < α for each component
Fi = [F i, F i] of F is larger than α. The presumption is that when zero is centered
in the interval estimate for the range, it is more likely that the actual range, without
overestimation, contains zero; cf. step 1 of Algorithm 7.

The following algorithm embodies these considerations.

ALGORITHM 5 (overall tessellation/complementation process).

INPUT: the initial box X0, a symbolic representation for the function F , the heuristic
parameter α, the maximum allowable number of boxes M to be processed, and a
domain tolerance εd

OUTPUT: If the search was successful: a list R such that each box X ∈ R has been
verified to contain a unique root and a list U , each of whose boxes have relative side
lengths on the order of

√
εd, such that all roots of F in X0 not in boxes in R are in

boxes in U . If the search did not complete with M boxes processed: a list R as above,
a list U of boxes with diameters on the order of

√
εd that may contain roots, and a

stack S of boxes in the set complement of the union of the boxes in R and U that
have not been fully analyzed.

• Place X0 onto the stack S.
• Overall box processing loop: DO k = 1 to M WHILE S 6= ∅.

1. Remove the first box to have been placed in S to obtain the current box
Xc.

2. (Check function and find as many approximate roots as possible first.)
DO WHILE this step results in a change in S, R, or U :
(a) Perform Algorithm 4; IF 0 6∈ Fu(Xc) is verified THEN CYCLE

overall box processing loop.
(b) (Find approximate roots in current box) IF ω(Xc) > εd THEN

Find and verify an approximate root within Xc using Algorithm 3;
modify the stack S, the list R of root-containing boxes, and the list
U of small boxes of unknown status by taking the complement of the
verified boxes W in these lists, using Algorithm 7.

(c) If S has been altered, then remove the first box placed in S to obtain
the current box Xc.

END DO
3. Reduce the widths of the current box with Gauss–Seidel iteration and

bisection (Algorithm 6).
4. (Boxes exiting Algorithm 6 either are proven to have no roots or are small

and of “unknown” status.) IF the status of Xc is still “unknown,” THEN

582 R. BAKER KEARFOTT

(a) Check the function values: perform Algorithm 4; IF 0 6∈ Fu(Xc) is
verified THEN CYCLE overall box processing loop.

(b) (Unconditionally attempt to find a root in the small box.)
i. Find and verify approximate roots within Xc and modify the

stack S, the list R of root-containing boxes, and the list U of
small boxes of unknown status, using Algorithm 7. However,
use α̃ = 0, rather than the heuristic parameter α in step 1 of
Algorithm 7, to make sure an attempt is made.

ii. IF S is empty upon return from Algorithm 7, THEN EXIT
overall box processing loop

(c) (Attempt to avoid clusters at singular or ill-conditioned (near) roots
by artificial expansion.) IF step 4(b)i did not result in any change
in Xc, R, or U

THEN
i. For i = 1 to n replace xc,i by [xc,i − σi, xc,i + σi] where σi =

1/
√
εd max

{
|xc,i|εd,

√
εm
}

, where εm is the machine epsilon.
ii. Take the complement of Xc in S and in U .

iii. Insert Xc into U .
ELSE Push Xc onto S.

END IF (Cluster avoidance)
END DO overall box processing loop

• IF k has exceeded M in the overall processing loop
THEN print S, R, and U
ELSE return R, U , and performance statistics.

The expansion factor in step 4(c)i of Algorithm 5 is crucial. Our motivation for
it is that, speaking roughly, roots corresponding to singular Jacobi matrices can only
be computed with accuracy proportional to the square root of the machine precision.
Additionally, this expansion factor works well in practice (tending to cause each root
to be isolated in a single box), whereas smaller or larger ones do not.

Step 3 (to reduce the size of a box in overall Algorithm 5 and to reject or verify
boxes as in [17]) appears below as Algorithm 6. Details of the Gauss–Seidel sweep, a
variant of the algorithm explained in [12], for example, are omitted but are available
from the author upon request. Algorithm 6 calls for bisection if Gauss–Seidel is
unsuccessful and applies the approximate root-finding procedure (Algorithm 2) when
a new box is produced from bisection.

ALGORITHM 6. (Process the current box Xc in Algorithm 5.)

INPUT: the current box Xc, the internal symbolic representation for F , and the
current stack S

OUTPUT: (1) a new or altered box Xc; (2) the status “unknown” or “has no root”
associated with Xc, such that, if the status of Xc is “unknown,” then the maximum
relative width of a coordinate of Xc is on the order of εd; (3) a (possibly) altered
stack S

DO WHILE ω(Xc) > εd, where ω(Xc) is the relative diameter of Xc and εd is the
domain tolerance.

1. Compute the slope matrix S(F, X̌c,Xc) of F centered at X̌c and over the box
Xc, where X̌c is the midpoint of Xc.

2. Compute F (X̌c) using interval arithmetic to bound roundoff errors.
3. Perform a Gauss–Seidel sweep, beginning with Xc.

BRANCH AND BOUND ALGORITHMS FOR NONLINEAR SYSTEMS 583

4. IF the Gauss–Seidel sweep proved that Xc could not contain any roots THEN
EXIT.

5. IF the Gauss–Seidel sweep did not result in a change in Xc, S, or U , THEN
(a) Bisect Xc, modifying Xc and S.
(b) Use the natural first-order extension to check if the range of F over the

new current box Xc returned from bisection contains zero; if not, then
mark Xc as not root containing and EXIT.

(c) (Find approximate roots in new current box)
• Find and verify approximate roots within Xc and modify the stack
S, the list R of root-containing boxes, and the list U of small boxes
of unknown status, using Algorithm 7.

END IF (bisection process)
END DO

Finally, the heuristic for when to invoke Algorithm 3, as well as management of
the lists when taking complements, appears in the following.

ALGORITHM 7. (Find and verify approximate roots, then take their complements
in the stack.)

INPUT: the heuristic parameter α, the lists R and U , the stack S, and the interval
value F of F over Xc (either F1(Xc) or F2(Xc))

OUTPUT: (1) a (possibly) new Xc, (possibly) altered lists R and U , and a (possibly)
altered stack S; (2) an indicator stating whether any of Xc, the lists, or the stack was
altered

1. IF mini=1,...,n
{

min
{
|F i|, |F i|

}
/|(F)i|

}
< α, THEN EXIT with no action.

2. Use Algorithm 3 to find an approximate root, to construct a box Xr about this
approximate root, and to obtain information about existence and uniqueness
Xr.

3. IF an approximate root Xa could be found in step 2, THEN
(a) IF no box Xr could be found in which uniqueness could be verified, THEN

analogously to step 4(c) of Algorithm 5, form a box Xr by expansion
about Xa:
• For i = 1 to n set Xri = [Xa − σi, Xa + σi],

where σi = 1/
√
εd max

{
|Xa|εd,

√
εm
}

,
and where εm is the machine epsilon.

(b) Push Xc onto S.
(c) (This step is to guard against termination of the approximate solver at

nonroots or at approximate roots that are farther away from the actual
root than the stated tolerance.) IF Xr was formed in step 3(a), THEN

i. Apply Algorithm 4 to the smaller box Xs whose coordinates are de-
fined by

xs,i = [Xa −max {|Xa|εd,
√
εm} ,

Xa + max {|Xa|εd,
√
εm}]

ii. IF 0 6∈ Fu(Xc) THEN EXIT with failure to find an approximate
root.

(d) Take the complement of Xr in S and in U .
(e) IF Xr has been verified to contain a unique root THEN insert Xr into
R, ELSE insert Xr into U .

584 R. BAKER KEARFOTT

(f) (Note that S could be empty from step 3(d).) IF S is nonempty THEN
pop the first item from S into Xc.

END IF

To summarize, Figure 2 gives a calling diagram for the algorithms described above,
showing how each is incorporated into the overall root-finding code. Typeset details
or the Fortran-90 code are available from the author.

Algorithm 5
overall tessellation process

Algorithm 4
check interval function values

Algorithm 7
find and verify approximate

roots and adjust lists

Algorithm 6
Process a box

(Gauss–Seidel/bisection)

take the complement of a box
in a list of boxes

Algorithm 3
find and verify an

approximate root within a box

�����
HHHHj

�����9
XXXXz

?

FIG. 2. Overall algorithm structure.

7. Experimental results. The experiments have the following goals:
• Determine the optimal value of the parameter α in step 1 of Algorithm 7 to

determine when (or where) in the overall search algorithm (Algorithm 5) we
should use a local root finder to find approximate roots.
• Compare algorithm performance when using slopes in the Gauss–Seidel me-

thod (Algorithm 6) with that when using interval Jacobi matrices.
• Compare algorithm performance when not using second-order extensions to

when second-order extensions are used.
• Examine the ability of the algorithm to produce a list of boxes that are verified

to contain roots and to reject boxes that do not contain roots.
• Examine the effect of the domain tolerance εd on the algorithm.
• Compare the algorithm to the algorithms and experimental results in [13] and

[12], using those performance measures in common with these previous sets
of experiments.
• Present performance results on specific problems to impart an idea of the

practicality of the algorithm.

7.1. The problem set. The problems consisted of
1. a subset of the more challenging problems from [13] and [12],
2. an 18th-degree polynomial arising in modeling an isothermal flash in chemical

engineering (“Gritton’s second problem”), upon which INTBIS [17]
failed, and

3. a set of four problems arising in the modeling of nonlinear electrical circuits.
Since the problems from [13] and [12] are described in [13], details are not given

here. The problems selected are 1–4, 10–12, 15–17; they will be designated “TOMS1,”

BRANCH AND BOUND ALGORITHMS FOR NONLINEAR SYSTEMS 585

“TOMS2,” etc. in the tables below. The remaining problems are briefly described;
full definitions are available from the author.

Gritton-2. “Gritton’s second problem,” an 18th-degree polynomial arising from a
chemical engineering problem,7 upon which INTBIS failed. The problem has
18 roots in the initial interval [−12, 8], with the smallest root at x ≈ −11.09
and the largest root at x ≈ 6.958. Although this is a one-dimensional problem,
the root at x ≈ 1.381 is difficult for interval branch and bound methods to
isolate because of a combination of the geometry of the graph and interval
dependencies. In particular, the function decreases rapidly from x = −12,
then is relatively flat in the interval [−11, 8]; it is extremely flat in the interval
[1, 2]; graphs are available from the author. Step 4 of Algorithm 5, particularly
step 4(c), as well as use of second-order extensions are important for this
problem. The function is labelled GRIT2 in the tables below.

Mladenov-3. This moderately difficult problem, whose components consist of ex-
ponential and linear terms, arose from nonlinear electrical circuit analysis. It
has nine roots within the initial box [−2, 1]× [−5, 1]× [−2, 1]× [−5, 1] ⊂ R4.
Mladenov (private communication and [23]) developed special algorithms for
handling the special structure in the nonlinearities in this and the following
two problems. The function is labelled MLAD3.

Mladenov-4. This relatively easy circuit-analysis problem consists of exponential
and linear terms and has two roots in the initial box [−2, 2]×[−2, 2]×[−2, 2]×
[−2, 2]. The function is labelled MLAD4.

Mladenov-5. This system of four generic second-degree polynomials in four vari-
ables has two roots within the original box [−2, 2]4. The function is labelled
MLAD5.

Mladenov-5B. This problem has been derived from Mladenov-5 by appending
equations corresponding to intermediate quantities generated during evalu-
ation of the components of MLAD5, as explained in [9], to make it a 14-
dimensional problem; details are available from the author. The idea is to
make explicit information about the dependencies among the intermediate
quantities available to the Gauss–Seidel preconditioner computation. Such
expanded formulations reduce the total number of boxes processed by Al-
gorithm 5 but increase total execution time unless the system structure is
carefully used. The function is labelled MLAD5B.

Due to subdistributivity, the quality of the interval extension depends on the
way in which the expressions are written. We have rewritten using Horner’s scheme
wherever possible, although this does not always result in optimal bounds on ranges.
Our actual Fortran-90 subroutines are available upon request.

7.2. The implementation environment. The algorithm was implemented
within the research and prototyping environment described in [10]. This environment
has an interval data type that uses the routines in INTLIB [14], as well as dynam-
ically allocated linked lists of boxes. The problems are input as expressions, loops,
and subroutines in Fortran syntax, and an internal representation is then generated.
This single internal representation is then interpreted by various generic subroutines,
for interval function values, floating point function values, slope matrices, interval
Jacobi matrices, etc. Thus, some performance is sacrificed in favor of extreme ease of
programming new functions.

7From G. V. Balaji and J. D. Seader, private communication.

586 R. BAKER KEARFOTT

TABLE 1
Comparison of standard time units (STU’s) with floating point and interval evaluations, within

our programming environment.

Task CPU sec. No. STU’s
1000 eval. of Shekel function (STU) .056 1

1000 eval. of Shekel, using internal rep. .450 8.0
1000 interval eval. of Shekel, using internal rep. .986 17.6

The INTLIB package was used with only one small low-level modification: as
suggested by Knüppel in his BIAS subroutine package [19], we replaced the simu-
lated directed rounding subroutine with an assembler language routine that allowed
true directed roundings on our machine, and we restructured the subroutines for the
four elementary operations to take advantage of it. This approximately doubled our
execution speed, besides giving somewhat narrower intervals.

7.3. On timings. The experiments were run on a Sun Sparc 20 Model 51 with a
floating point accelerator. All code was compiled with the NAG f90 compiler version
2.1. All CPU times are written in terms of Standard Time Units (STU’s), 1000
evaluations of the Shekel function as defined in [4, pp. 12–14]. The “f77” library
function DSECND was used to obtain CPU times.

The STU is defined by programming the Shekel function in double precision as
a subroutine. Since an STU is on the order of the granularity limit (0.01 second) of
DSECND, we averaged 100 calculations of an STU. This entire averaging process was
run several times, with and without contending loads on the machine. The resulting
values were all within 10 percent of each other.

As in [10], an internal representation of the function was created beforehand, then
interpreted at run time, to obtain function and derivative values for all data types.
There is a CPU penalty for this process, even for evaluation of floating point types.
Table 1 shows the relationship between the STU, floating point function evaluations,
and interval function evaluations within our programming environment.

There is also a sizable overhead associated with dynamic allocation and deallo-
cation of boxes in lists that is not present in previous implementations. However, we
have not attempted to quantify this here.

Another performance measure reported in the experimental results is the total
number of boxes the code processed. In the subset of experiments represented in
Table 2, the correlation coefficient between total number of boxes and CPU time was
approximately 0.97.

7.4. Results.

7.4.1. The heuristic parameter α. The rows of Table 2 give performance
measures for different values of α in Algorithms 5 and 7. The row α = 0 corresponds
to attempting approximate root finding wherever possible, while rows corresponding
to α = 1.1 correspond to only attempting approximate root finding in small boxes
that have exited the Gauss–Seidel/box-processing loop without verification of either
existence or nonexistence (step 4(b) of Algorithm 5). The entries are simple sums of
measures for all of the test problems, excluding MLAD5B. We did not include the
latter in such sums because its running time was comparable to that of all of the other
problems combined (cf. Table 4).

The experiments in Table 2 were done without the refinement step for Xa of
Algorithm 2. Also, in all cases, εd was taken to be 10−6.

BRANCH AND BOUND ALGORITHMS FOR NONLINEAR SYSTEMS 587

TABLE 2
Comparison of performance versus heuristic parameter α.

α NSL NPFUN NFUN NV NNV NR NBOX TIME TAP TPT
0 12485 66758 16332 66 6 0 3290 3218 620 467

0.1 12298 50652 16246 66 6 0 3290 3038 441 377
0.2 12068 39792 16155 66 6 0 3291 2812 343 126
0.3 18541 27803 16063 66 6 0 3292 2731 263 126
0.4 18558 19152 15962 66 6 0 3296 2628 173 18
0.5 18558 13112 15866 66 6 0 3296 2587 130 54
0.6 18578 8259 15765 66 6 0 3301 2548 90 54
0.7 18578 5895 15673 66 6 0 3708 4559 61 54
0.8 18578 4376 15571 66 6 0 3708 4511 43 36
0.9 18578 2941 15411 66 6 0 3708 4568 28 0
1.1 18697 0 15165 66 6 0 3742 4613 0 0

The columns of Table 2 have the following meanings.
NSL is the total number of slope matrix evaluations.
NPFUN is the total number of noninterval (“point”) function evaluations.
NFUN is the total number of interval function (i.e., natural first-order extension)

evaluations. This column ideally equals the total number of roots.
NV is the total number of boxes in which a unique root was verified.
NNV is the total number of boxes that were small but could not be verified to

contain unique roots.
NR is the number of “redundantly listed” boxes, a measure of undesirable mul-

tiple small boxes near roots that cannot be rejected. This column equals
the total number of roots minus the two previous columns and ideally equals
zero. A negative number would indicate either an improperly functioning
algorithm (since not all roots were found) or two or more roots that are in
the same box in U .

NBOX is the total number of boxes processed in step 1 of Algorithm 5.
TIME is the total execution time given in STU’s, as explained in section 7.3.
TAP is the total amount of time in STU’s spent in the approximate solver (in

this case MINPACK1).
TPT is the total amount of time in STU’s spent computing noninterval function

values (in the approximate solver).
In Table 2, a gradual decrease of total execution time relative to α is observed

until α = .4, there is a relatively insensitive region between α = .4 and α = .6, then
there is a rapid increase to a plateau, until the maximum meaningful value of α is
reached.

The verification power appears independent of α, and the code is very successful
at isolating roots. In fact, examination of the details reveals that, for each α, each
root was uniquely enclosed in a box. Of the six roots for which uniqueness was not
verified, one was the root of Powell’s singular function (at which the Jacobi matrix
has a null space of dimension two); one was for TOMS10, a combustion chemistry
problem with an unusual scaling at its root; and the remaining were four roots of
GRIT2, approximately 1.480, 1.594, 1.752, and 1.967, in the interval of relative flat-
ness. Examining the results for α = .5, existence was verified for the boxes containing
the roots 1.480, 1.752, and 1.967, but not for 1.594 or for the boxes containing the
roots of TOMS3 and TOMS10.

We expect optimal α to be somewhat different, with a lower optimal value of
α, if the floating point function and derivative evaluations proceed from compiled

588 R. BAKER KEARFOTT

TABLE 3
Comparison of algorithm variations, with α = .5.

Method NSL NPFUN NFUN NV NNV NR NBOX TIME TAP TPT
Usual 12485 66758 16332 66 6 0 3290 3218 620 467

εd = 10−8 18967 13977 16450 71 1 0 3410 2649 129 108
Interval Jac. 11856 17846 45062 65 8 1 8160 2844 164 180
Refinement 18627 13080 16079 68 4 0 3367 2610 124 72

programs, rather than by interpreting a symbolic representation. However, the total
amount of time spent in the approximate solver is not large in relation to the total
time, so the dependence on α seems unimportant.

7.4.2. Variants of the algorithm. Table 3 reports performance measures sim-
ilar to those in Table 2 for algorithm variants. Based on Table 2, we chose α = .5,
near maximum insensitivity to α, for all experiments represented in Table 3. The
variants are as follows:

Usual denotes the method in Table 2 with α = .5, i.e., the last entry in Table 2,
for comparison.

εd = 10−8 denotes the usual method as above, but with the domain tolerance
(minimum box size) set to 10−8, rather than to 10−6.

Interval Jac. denotes the method with an interval Jacobi matrix replacing an
interval slope matrix in step 1 of Algorithm 6. With this modification, the
images under the Gauss–Seidel method may be wider, but uniqueness can
be verified with the Gauss–Seidel method itself. Note that, in this case, the
number of interval Jacobi matrix evaluations is not reported.

Refinement denotes the method that includes the refinement step for the box Xa

in which existence has been proven, as mentioned in section 3. Since we may
obtain sharper bounds on the root with this refinement, the slope matrices
in the uniqueness verification step may be narrower, and it may be possible
to verify uniqueness in a larger box.

Remark 1. We also attempted to run the test set without the second-order interval
extensions, i.e., without step 2 of Algorithm 4. However, problem GRIT2 did not
complete in 171 CPU minutes (184200 STU’s), while there did not seem to be a large
advantage for the other problems. We thus concluded that the second-order extension
was an essential part of the algorithm.

None of the variants differs significantly in CPU time from our primary scheme,
although we suspect slopes become much more efficient than interval Jacobi matrices
when we implement them more efficiently; note that use of interval Jacobi matrices
resulted in more than twice as many boxes.

We observe insensitivity of the work on the tolerance,8 but the smaller tolerance
allows more roots to be verified. Tuning of the relationships among the tolerances
and box-expansion factors, for particular F , will probably allow verification of all
roots in most cases. The results in Table 3 for εd = 10−8 represent ideal verification
and isolation behavior, since the root of TOMS3 (Powell’s singular function) is at a
singularity of the Jacobi matrix and cannot be enclosed in a box in which it is verified
to be unique.

8In earlier experiments, without the expansion of [11], step 4(c)i of Algorithm 5, the work actually
decreased as we decreased the tolerance between 10−6 and 10−9.

BRANCH AND BOUND ALGORITHMS FOR NONLINEAR SYSTEMS 589

TABLE 4
Performance measures by problem.

Function NFUN NSL NBOX NV NNV NR TIME TAP TPT
TOMS1 29 59 6 3 0 0 2.0 0.5 0.0
TOMS2 42 42 11 1 0 0 1.4 0.2 0.0
TOMS3 35 17 16 0 1 0 1.4 0.5 0.0
TOMS4 88 123 24 2 0 0 14.5 1.6 0.0
TOMS10 223 157 59 0 1 0 16.9 0.4 0.0
TOMS11 389 473 110 16 0 0 197.3 6.6 0.0
TOMS12 618 517 188 12 0 0 45.8 2.9 0.0
TOMS15 6 18 1 1 0 0 0.7 0.0 0.0
TOMS16 5 19 1 1 0 0 1.6 0.2 0.0
TOMS17 318 203 94 1 0 0 59.2 5.4 0.0
GRIT2 9098 6318 1802 14 4 0 213.6 24.6 0.0
MLAD3 894 618 265 9 0 0 1427.3 37.3 35.9
MLAD4 138 126 31 2 0 0 72.0 4.5 18.0
MLAD5 2540 1750 688 2 0 0 532.7 45.2 0.0
MLAD5B 1443 1015 407 2 0 0 2080.6 45.2 35.9
Totals 15866 11455 3703 66 6 0 4667.1 175.2 89.77

Refining the small boxes in which existence has been proven does not appear to
have much effect, except that there is weak evidence that it facilitates uniqueness
verification.

7.4.3. Performance on the individual problems. Table 4 gives cost mea-
sures by problem for α = .5.

7.4.4. Comparison with INTBIS. Table 5 compares performance measures
of the usual algorithm, with α = .5 to those of INTBIS [17]. To obtain the data, INT-
BIS was run on the Sparc system under the same conditions as the other experiments.
Since INTBIS uses an inverse midpoint preconditioner instead of the linear program-
ming preconditioner of [12], certain problems take much more time with INTBIS.

On the other problems, comparison of total execution times with INTBIS reveals
the overhead in interpretive evaluation of functions and slopes, as well as the overhead
in dynamic allocation and deallocation used in the system of [10]. We also see that
the verification power and cluster rejection power of the algorithm presented here are
superior to that of INTBIS. Furthermore, we emphasize that INTBIS could not solve
GRIT2 at all.

We only compared INTBIS on those test problems representing polynomial sys-
tems, since these are the only systems easily implemented in INTBIS. The problem
GRIT2 was not included, since INTBIS failed on this problem. (Severe clustering
occurred, and the fixed-size storage for the box list filled.)

The column labels in Table 5 are as in the other tables. Rows are grouped in
pairs; the first in a pair represents performance of the present algorithm, while the
second in the pair represents performance of INTBIS. In column “NSL,” the number
reported for the present code is the number of slope matrix evaluations, while the
number reported for INTBIS is the number of Jacobi matrix evaluations. The last
row, labelled “Ratios,” gives the ratio of the performance measure of the present
algorithm to the corresponding performance measure of INTBIS.

The results for INTBIS are skewed by TOMS3 and TOMS4, Powell’s singular
function and Brown’s almost linear function. The poor performance of INTBIS on
these problems is due to use of the inverse midpoint preconditioner, as opposed to
the linear programming preconditioner of [12]. On the other problems, the new algo-

590 R. BAKER KEARFOTT

TABLE 5
Performance measure comparisons with INTBIS.

Function TIME NV NNV NR NBOX NFUN NSL package

TOMS1 1.6 3 0 0 6 29 59 new
0.4 1 2 0 8 43 21 intbis

TOMS2 1.3 1 0 0 11 42 42 new
1.4 0 1 0 41 119 51 intbis

TOMS3 1.6 0 1 0 16 35 17 new
60.7 0 7 6 1350 3705 1475 intbis

TOMS4 10.4 2 0 0 24 84 91 new
498.0 1 1 0 6632 14992 6417 intbis

TOMS10 18.3 0 1 0 62 232 163 new
5.4 1 9 0 85 251 111 intbis

TOMS11 189.8 16 0 0 110 389 473 new
44.0 0 16 0 229 749 374 intbis

TOMS12 48.1 12 0 0 188 618 517 new
22.4 4 10 3 355 1281 575 intbis

TOMS15 0.5 1 0 0 1 6 18 new
0.2 1 0 0 1 4 2 intbis

TOMS16 1.6 1 0 0 1 5 19 new
0.0 1 0 0 1 4 2 intbis

TOMS17 71.6 1 0 0 94 318 203 new
7.5 1 0 0 76 189 80 intbis

Totals 344.9 36 2 0 419 1440 1399 new
632.5 9 37 8 8702 21148 9028 intbis

Ratios 0.98 4.00 0.05 0.00 0.05 0.07 0.16

rithm is more effective at verifying uniqueness, and generally requires that a smaller
number of boxes be processed. However, the overall running times appear to reflect
additional overhead in the new algorithm; examine the results for TOMS1, TOMS2,
and TOMS12.

The only problem for which the new code processed a larger number of boxes
than INTBIS was TOMS17. The interval Newton method works best without a
preconditioner on this strange problem, and the complementation process in the new
code also may have produced more boxes than simple bisection.

Table 4 indicates that the extra time spent in the approximate solver is insignifi-
cant.

7.4.5. Comparison with a preconditioner testing code. Table 6 compares
performance measures of the new algorithm, with α = .5, with those of the research
code in [12]. The code for the experiments in [12] was ad hoc and never published
and has not been installed on our present computing equipment. For this reason, we
compare only those performance measures listed in [12].

The columns of Table 6 are labelled as in the other tables, except that NBOX/P
means the number of boxes processed by the code of [12], NJAC/P is the number of
Jacobi matrix evaluations from [12], and NFUN/P is the number of interval function
evaluations from [12].

We see some variation from problem to problem,9 but overall the new algorithm
appears to be superior. Note that the new code processed only about a third as
many boxes and required about two-fifths as many interval function evaluations. The

9In particular, TOMS17 seems to have been solved more efficiently with the code from [12].

BRANCH AND BOUND ALGORITHMS FOR NONLINEAR SYSTEMS 591

TABLE 6
Comparison with the preconditioner code of [12] (columns /P).

Function NBOX NBOX/P NSL NJAC/P NFUN NFUN/P
TOMS1 6 19 59 35 29 73
TOMS2 11 29 42 47 42 104
TOMS3 16 368 17 423 35 1064
TOMS4 24 33 91 58 84 123

TOMS10 62 247 163 247 232 601
TOMS11 110 367 473 525 389 1210
TOMS12 188 255 517 475 618 1050
TOMS15 1 1 18 2 6 4
TOMS16 1 1 19 2 5 4
TOMS17 94 23 203 38 318 83

Totals 513 1343 1602 1852 1758 4316
Ratios 0.38 0.87 0.41

number of slope matrix computations was nearer to the number of Jacobi matrix
evaluations in the preconditioner code; this was probably due to the additional eval-
uations in the expansion process in Algorithm 3 and to the slope matrices required
for the second-order evaluations in Algorithm 4.

Although not reflected in Table 6, the verification and root isolation power of the
new code are superior to that of [12].

8. On convergence, rigor, and efficiency. The overall algorithm (Algorithm 5)
should always complete, in theory, with S empty, provided M is sufficiently large. In
each iteration of the overall box processing loop, at least one coordinate width of
the box Xc is decreased by an amount that is bounded below; the actual minimal
amount of decrease is determined by the bisection process and by a tolerance defining
“change” in step 5 of Algorithm 6. Furthermore, the “maximum smear” coordinate
selection for generalized bisection assures that each coordinate of a box is chosen an
infinite number of times, if the algorithm runs indefinitely, provided

max1≤j≤n{max1≤i≤n |Si,j |}
min1≤j≤n{max1≤i≤n |Si,j |}

is bounded below. Finally, processing of a box is terminated when its relative coor-
dinate widths10 fall below εd. These facts should form the elements of a convergence
theory, to be formalized in another work. However, it will probably be difficult to
obtain realistic upper bounds on the amount of work required by Algorithm 5 for
many problems.

The following is a consequence of established underlying theory of interval com-
putations.

THEOREM 8.1. Suppose that interval arithmetic is correctly implemented on a
computer with correct circuitry, and suppose that Algorithm 5 is correctly imple-
mented. Then, if Algorithm 5 completes with S empty, it constitutes a mathematical
proof that all roots of F within X0 are in boxes in R and U and each box in R contains
a unique root of F .

Theorem 8.1 motivates study of such interval branch and bound algorithms. How-
ever, such algorithms can also be competitive, efficiencywise, with less rigorous alter-
natives, on some problems; see the discussion in [13].

10A possible improvement to the algorithm may be to define the jth relative coordinate width by
wj = sj = max1≤i≤n {|Si,j(F,Xa,X)|(xj − xj)}, consistent with maximum smear.

592 R. BAKER KEARFOTT

A less rigorous, “probability one” alternative for polynomial systems is continu-
ation methods, described in [2]. Good theory and practice have been developed for
such algorithms by Morgan and Sommese [28]. These algorithms, though particular
to polynomial systems and not rigorous in the sense of Theorem 8.1, are useful in
many applications.

9. Summary. We have implemented a rigorous algorithm to compute all roots
within a box in Rn within our new Fortran-90 environment for research and prototyp-
ing. This algorithm incorporates recent research results and a technique for removing
root-containing boxes from the search region. This removal technique is more rigorous
than that of [8] and [17].

Experimental results show the effect of individual innovations and the effect of a
heuristic parameter in the algorithm. These results also reveal differences between the
new algorithm, a previously published code, and a previous research code. Conclusions
include the following:

• The new overall algorithm is more effective and solves problems for which
previous algorithms fail.
• The new complementation/deletion process is better than previous schemes

at isolating boxes in which roots are unique.
• An approximate root solver with ε-inflation can decrease overall running time.
• Second-order extensions based on interval slopes are crucial for some prob-

lems.
• Use of slopes, rather than interval Jacobi matrices, in the interval Newton

size-reduction iteration reduces the total number of boxes considered and may
reduce the total amount of work significantly if slopes can be implemented
more efficiently.
• Slopes are effective at proving both existence and uniqueness.
• The new algorithm seems relatively insensitive to the tolerance, within a

certain range.
• The total amount of work in the algorithm appears to depend nearly linearly

on the number of boxes to be processed.
In addition to the above, preliminary experiments have led us to the following

conclusions, not evident in the presented results:
• An effective algorithm involves several acceleration techniques that interact.

Assessment of a particular technique would change depending on what other
techniques are present and when they are applied.
• The relationship among the tolerances used to declare a box to be small, to

stop the approximate root solver, and to expand a box about a region in
which neither uniqueness or nonuniqueness could be proved is important.11

Of course, none of the above considerations would affect the rigor of the algorithm,
only its efficiency .

Acknowledgments. The author wishes to thank both referees, as well as the
editor Margaret Wright. The first referee had several useful overall suggestions giv-
ing perspective and guiding in improvement of the exposition. The second referee
exhibited a deep understanding of the material, gave a careful and laborious report,
and made many stimulating suggestions that improved the paper; I thank him for

11Also, the tolerance chosen for the minimum box size should be such that none of the tolerances
is smaller than the precision of the computations.

BRANCH AND BOUND ALGORITHMS FOR NONLINEAR SYSTEMS 593

pointing out the equivalence of step 2 of Algorithm 4 to a step of the Jacobi method.
Discussions with Dr. Wright resulted in an improved, more compact exposition.

REFERENCES

[1] G. ALEFELD AND J. HERZBERGER, Introduction to Interval Computations, Academic Press,
New York, 1983.

[2] E. ALLGOWER AND K. GEORG, Numerical Continuation Methods: An Introduction, Springer-
Verlag, New York, 1990.

[3] O. CAPRANI, B. GODTHAAB, AND K. MADSEN, Use of a real-valued local minimum in parallel
interval global optimization, Interval Comput., 2 (1993), pp. 71–82.

[4] L. C. W. DIXON AND G. P. SZEGÖ, The global optimization problem: An introduction, in
Towards Global Optimization 2, L. C. W. Dixon and G. P. Szegö, eds., North–Holland,
Amsterdam, 1978, pp. 1–15.

[5] E. R. HANSEN, Global Optimization Using Interval Analysis, Marcel Dekker, New York, 1992.
[6] J. HERZBERGER, ed., Topics in Validated Computations, Elsevier Science Publishers, Amster-

dam, 1994.
[7] C. JANSSON AND O. KNÜPPEL, A Global Minimization Method: The Multi-Dimensional Case,

Tech. report 92.1, Informathinstechnik, Technische Universität Hamburg–Harburg, Ham-
burg, Germany, 1992.

[8] R. B. KEARFOTT, Abstract generalized bisection and a cost bound, Math. Comp., 49 (1987),
pp. 187–202.

[9] R. B. KEARFOTT, Decomposition of arithmetic expressions to improve the behavior of interval
iteration for nonlinear systems, Computing, 47 (1991), pp. 169–191.

[10] R. B. KEARFOTT, A Fortran 90 environment for research and prototyping of enclosure al-
gorithms for nonlinear equations and global optimization, ACM Trans. Math. Software,
21 (1995), pp. 63–78.

[11] R. B. KEARFOTT, Interval Newton/generalized bisection when there are singularities near
roots, Ann. Oper. Res., 25 (1990), pp. 181–196.

[12] R. B. KEARFOTT, Preconditioners for the interval Gauss–Seidel method, SIAM J. Numer.
Anal., 27 (1990), pp. 804–822.

[13] R. B. KEARFOTT, Some tests of generalized bisection, ACM Trans. Math. Software, 13 (1987),
pp. 197–220.

[14] R. B. KEARFOTT, M. DAWANDE, K.-S. DU, AND C.-Y. HU, Algorithm 737: INTLIB: a portable
FORTRAN 77 interval standard function library, ACM Trans. Math. Software, 20 (1994),
pp. 447–459.

[15] R. B. KEARFOTT AND K. DU, The cluster problem in multivariate global optimization, J.
Global Optim., 5 (1994), pp. 253–265.

[16] R. B. KEARFOTT, C. HU, AND M. III NOVOA, A review of preconditioners for the Interval
Gauss–Seidel method, Interval Comput., 1 (1991), pp. 59–85.

[17] R. B. KEARFOTT AND M. NOVOA, INTBIS, a portable interval Newton/bisection package
(Algorithm 681), ACM Trans. Math. Software, 16 (1990), pp. 152–157.

[18] R. B. KEARFOTT AND Z. XING, Rigorous Computation of Surface Patch Intersection Curves,
University of Southwestern Louisiana, Lafayette, LA, 1993, preprint.

[19] O. KNÜPPEL, PROFIL/BIAS—A fast interval library, Computing, 53 (1994), pp. 277–287.
[20] R. KRAWCZYK, Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlershranken,

Computing, 4 (1969), pp. 187–201.
[21] R. KRAWCZYK AND A. NEUMAIER, Interval slopes for rational functions and associated cen-

tered forms, SIAM J. Numer. Anal., 22 (1985), pp. 604–616.
[22] G. MAYER, Epsilon–inflation in verification algorithms, J. Comput. Appl. Math. 60 (1994),

pp. 147–169.
[23] V. MLADENOV, An improved interval method for solving nonlinear systems of monotone func-

tions, S. M. Markov, ed., in Mathematical Modelling and Scientific Computing, DATECS
Publishing, Sofia, 1993, pp. 23–26.

[24] R. E. MOORE, Methods and Applications of Interval Analysis, Society for Industrial and Ap-
plied Mathematics, Philadelphia, PA, 1979.

[25] R. E. MOORE, A test for existence of solutions to nonlinear systems, SIAM J. Numer. Anal.,
14 (1977), pp. 611–615.

[26] R. E. MOORE AND S. T. JONES, Safe starting regions for iterative methods, SIAM J. Numer.
Anal., 14 (1977), pp. 1051–1065.

594 R. BAKER KEARFOTT

[27] J. J. MORÉ, B. S. GARBOW, AND K. E. HILLSTROM, User Guide for MINPACK-1, Tech.
report ANL-80-74, Argonne National Laboratories, Argonne, IL, 1980.

[28] A. J. MORGAN AND A. P. SOMMESE, Computing all solutions to polynomial systems using
homotopy continuation, Appl. Math. Comput., 24 (1987), pp. 115–138.

[29] A. NEUMAIER, Interval Methods for Systems of Equations, Cambridge University Press, Cam-
bridge, U.K., 1990.

[30] H. RATSCHEK AND J. ROKNE, Computer Methods for the Range of Functions, Horwood, Chich-
ester, U.K., 1984.

[31] S. M. RUMP, Kleine Fehlerschranken bei Matrixproblemen, Ph.D. thesis, Universität Karlsruhe,
Karlsruhe, Germany, 1980.

[32] S. M. RUMP, Verification methods for dense and sparse systems of equations, in Topics in
Validated Computations, J. Herzberger, ed., Elsevier Science Publishers, Amsterdam, The
Netherlands, 1994.

[33] ZH. XING, Rigorous Step Control for Continuation, Ph.D. thesis, University of Southwestern
Louisiana, Lafayette, LA, 1993.

Copyright of SIAM Journal on Scientific Computing is the property of Society for Industrial and Applied

Mathematics and its content may not be copied or emailed to multiple sites or posted to a listserv without the

copyright holder's express written permission. However, users may print, download, or email articles for

individual use.

