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Reliable Ray Tracing by Linear Interval Estimations

Abstract Recently Bühler has introduced a new type of bounding volume for parametric surfaces.
These bounding volumes, which Bühler calls Linear Interval Estimations (LIEs), are parametrized with
the same parametrization as the surfaces they bound. We report on the application of LIEs to the ray
tracing of Bezier surfaces. The general nonlinear ray–surface intersection problem is replaced with a
linear ray–LIE intersection method. A new ray–tracing algorithm is developed which is relatively simple
and compares favorably to the method of Toth, being roughly comparable in speed and yet more reliable.
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1 Introduction

The recent introduction of Linear Interval Estimations (LIEs) by Bühler [1] makes possible a new ray–
tracing algorithm for Bezier surfaces which is reliable and yet relatively simple. For a given subsurface
a LIE can be computed which is a bounding volume parametrized with the same parametrization as
the subsurface itself. The solution in parameter space to the intersection of a ray with the LIE when
computed using interval arithmetic gives bounds on the ray-surface intersection solution. Only that
part of the ray-LIE intersection solution which is within the original subsurface domain needs to be
considered. The remainder is pruned away to attain that portion of the original domain that may
contain a ray-surface intersection. Iterating the sequence of ray-LIE intersection followed by pruning
constitutes a strategy to determine the ray-surface intersection solution. The use of interval and affine
arithmetics gives this process reliability. After a brief summary of interval and affine arithmetics detail
on the algorithm is developed.
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2 Notation

Unless stated otherwise, a lower case letter b represents a real number, and an upper case letter B
represents an interval. Bold face lower case letters b represent real vectors, and bold face upper case
letters B represent interval vectors.

3 Self-validated Computation

A computation is referred to as self-validated if, as part of the process of computation, the accuracy of
the result is somehow specified. Interval analysis and affine arithmetic are two models for self-validated
computation.

3.1 Interval Arithmetic

A range-based model uses ranges as approximate values. As discussed in [6] interval arithmetic is a range-
based model for self-validated computation in which an interval X = [x1, x2] represents a quantity x
when x is guaranteed to lie within the range of values defined by X.

Each interval is specified by its bounds.

X = [x1, x2] = {x ∈ R | x1 5 x 5 x2}.
A midpoint and radius are also defined for each interval,

X = [a, b], mid(X) =
a + b

2
, rad(X) =

b− a

2
.

The starting point for an interval computation is a set of intervals known to contain the true values of
the input variables. Interval arithmetic operations and function evaluations are defined in such a way
that the result of the computation is always an interval guaranteed to contain the result of the ideal
computation.

Specifically, for ◦ ∈ {+,−,×,∧} and ϕ ∈ {sin, cos, exp, log, sqrt, abs},

X ◦ Y ∈ ¤{x̃ ◦ ỹ | x̃ ∈ X, ỹ ∈ Y }
ϕ(X) = ¤{ϕ(x̃) | x̃ ∈ X},

where ¤S = [inf(S), sup(S)] is the interval hull of the set S.
In each case the result of X ◦ Y or ϕ(X) is the smallest interval containing all results as x̃ and ỹ

range independently over X and Y . Possible correlations between X and Y are not considered, and
this leads to a difficulty with interval arithmetic. If, for example, X = [2, 4], applying the definition of
subtraction, we obtain X −X = [2, 4]− [2, 4] = [−2, 2]. Overestimation of the true range of a result can
occur whenever a particular variable occurs multiple times in an expression.1

1 [6, pp. 38–42]
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3.2 Affine Arithmetic

As discussed in [2] affine arithmetic is another range-based model for self-validated computation. Unlike
interval arithmetic, however, affine arithmetic encodes correlations between partially unknown quanti-
ties.

A partially unknown quantity x is represented by an affine form

x̂ = x0 + x1ε1 + x2ε2 + · · ·+ xnεn.

The central value, x0, is a constant. The εi are referred to as noise symbols, and each coefficient xi is
the corresponding ith partial deviation. The values of the εi are unknown but are assumed to lie within
the interval [−1, 1].

Each εi stands for an independent component of the total uncertainty of x and xi gives the magnitude
of that component. The Fundamental Invariant of Affine Arithmetic states that at any point in an AA
computation there is a single assignment of values from [−1, 1] to each of the noise symbols, so that
each affine form takes on the value of the corresponding quantity in the ideal computation.

Conversion from the interval form X = [x1, x2] to the affine form

x̂ = mid(X) + rad(X)ε1

carries all information about the uncertainty in x encoded in the interval representation.
However, when the affine form

x̂ = x0 + x1ε1 + x2ε2 + · · ·+ xnεn

is converted to the interval form

X = [x0 − rad(x̂), x0 + rad(x̂)],

with

rad(x̂) =
n∑

i=1

|xi|,

the information implicit in the dependence of the affine form on the particular noise symbols ε1, . . . , εn

is lost.2

3.3 Computing in Affine Arithmetic

As discussed in [2] we imagine that there are some precise ideal values x, y which are obtained from
their affine forms

x̂ = x0 + x1ε1 + · · ·+ xnεn, ŷ = y0 + y1ε1 + · · ·+ ynεn,

by some choice of the εi ∈ [−1, 1].
We consider a certain operation f carried out on x and y. We carry out some corresponding operation

on x̂ and ŷ, f̂(x̂, ŷ) = ẑ in order to obtain an affine form ẑ of the result z of the ideal computation,
where

z = ẑ = z0 + z1ε1 + · · ·+ zpεp

for some choice of the εj . If f is itself an affine function, f̂ will be an affine combination of the noise
symbols.

2 [2, pp. 43–50].
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Specifically, with α, ζ ∈ R,

x̂± ŷ = (x0 ± y0) + (x1 ± y1)ε1 + · · ·+ (xn ± yn)εn,

αx̂ = (αx0) + (αx1)ε1 + · · ·+ (αxn)εn,

x̂± ζ = (x0 ± ζ) + x1ε1 + · · ·+ xnεn.

We note that the range overestimation in the interval operation X−X does not occur in affine arithmetic,
as x̂− x̂ = 0 by the formula above. In practice, to account for any roundoff error, a new noise term δεk

is added in each of the formulas given.
When the operation z ← f(x, y) is nonaffine we have

z = f(x0 + x1ε1 + · · ·+ xnεn, y0 + y1ε1 + · · ·+ ynεn)
= f∗(ε1, . . . , εn)

where f∗ is a nonaffine function of the εi. In this case an affine function fa of the εi is chosen which
approximates f∗.

fa(ε1, · · · , εn) = z0 + z1ε1 + · · ·+ znεn

To fa an additional error term is added to account for the error in the approximation plus any roundoff
error. This yields

ẑ = fa(ε1, · · · , εn) + zkεk

= z0 + z1ε1 + · · ·+ znεn + zkεk.

The approximation fa is often made so as to minimize the maximum absolute error (Chebyshev ap-
proximation)3.

4 LIEs from Affine Forms

The following is a paraphrasing from [1].
Begin with a surface patch S(u, v) having parameter domain Iu × Iv. Let û, v̂ be the affine forms of the
parameter intervals Iu and Iv.

They are
û = mu + ruεu, v̂ = mv + rvεv,

where
mu = mid(Iu), ru = rad(Iu), mv = mid(Iv), rv = rad(Iv), εu, εv ∈ [−1, 1].

Now write an affine representation of the surface,

S(u, v) =




x(u, v)
y(u, v)
z(u, v)


 .

Since, in general, x(u, v) is a non–affine function of u and v, its affine form will be

x̂(û, v̂) = xa(εu, εv) +
n∑

i=1

xiεi,

3 [2, pp. 49–57].
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where xa is an affine function of the noise symbols εu and εv, and the

xiεi(i = 1, · · · , n)

are additional noise terms incorporating the error in the approximation xa plus any roundoff error.

⇒ x̂(û, v̂) = x0 + xuεu + xvεv +
n∑

i=1

xiεi

With similar expressions for ŷ and ẑ, we have

Ŝ(û, v̂) =




x̂(û, v̂)
ŷ(û, v̂)
ẑ(û, v̂)


 =




xo + xuεu + xvεv +
∑n

i=1 xiεi

yo + yuεu + yvεv +
∑n

i=1 yiεi

zo + zuεu + zvεv +
∑n

i=1 ziεi




= fo + fuεu + fvεv +
n∑

i=1




xi

yi

zi


 εi,

with

f0 =




xo

yo

zo


 , fu =




xu

yu

zu


 , fv =




xv

yv

zv


 .

By the fundamental invariant of affine arithmetic, for any given point (u, v) ∈ Iu×Iv, there are elements
of [−1, 1], εu, εv, εi (i = 1, · · · , n) such that

u = mu + ruεu, v = mv + rvεv,

and

S(u, v) = f0 + fuεu + fvεv +
n∑

i=1




xi

yi

zi


 εi.

Making the substitutions

εu =
u

ru
− mu

ru
, εv =

v

rv
− mv

rv
,

we have

S(u, v) = f0 − mu

ru
fu − mv

rv
fv +

n∑

i=1




xi

yi

zi


 εi +

1
ru

fuu +
1
rv

fvv

for some choice of the εi ∈ [−1, 1].
Thus, for any (u, v) ∈ Iu × Iv,

S(u, v) ∈ fo + Q− mu

ru
fu − mv

rv
fv +

1
ru

fuu +
1
rv

fvv
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where

Q =




−
n∑

i=1

|xi|,
n∑

i=1

|xi|

−
n∑

i=1

|yi|,
n∑

i=1

|yi|

−
n∑

i=1

|zi|,
n∑

i=1

|zi|




.

Then, defining interval vector

P(u,v) = fo + Q− mu

ru
fu − mv

rv
fv,

for any (u, v) ∈ Iu × Iv we have

S(u, v) ∈ P(u,v) +
1
ru

fuu +
1
rv

fvv = L(u, v).

Bühler [1] calls L(u, v) a Linear Interval Estimation (LIE) for the surface patch S(u, v).
As (u, v) ranges through Iu × Iv, L(u, v) describes an interval plane segment which is a bounding

volume for S(u, v). Thus, the LIE is a parametized bounding volume for the surface with the same
parametrization as the surface.

A note on the above calculations: In order to ensure the inclusion of S(u, v) in L(u, v), P(u,v) must be
computed using interval arithmetic. Specifically,

∑n
i=1 |xi|,

∑n
i=1 |yi|, and

∑n
i=1 |zi| must be computed

rounding up. Also, starting with fo, fu and fv, fo + Q − mu

ru
fu − mv

rv
fv must be done as an interval

computation. In addition, in P(u,v) + 1
ru

fuu + 1
rv

fvv, the division of fu by ru and of fv by rv must be
done using interval arithmetic, and henceforth 1

ru
fu and 1

rv
fv must be treated as interval vectors, Y1

and Y2.

5 Ray-LIE Intersection

Now consider a surface patch S(u, v), (u, v) ∈ Iu × Iv and its corresponding LIE,

L(u, v) = P(u,v) + Y1u + Y2v, Y1 ← 1
ru

fu, Y2 ← 1
rv

fv.

Let R(s) = E + sd be a ray having point of origin E, direction d, and parameter s.
The ray intersects the LIE when

L(u, v) = R(s) ⇔ P(u,v) + Y1u + Y2v = E + sd

⇔ Y1u + Y2v − ds = E −P(u,v).

Let I∗u × I∗v × I∗s be the solution of this system obtained using interval arithmetic. Then I∗u × I∗v × I∗s
bounds the solution in parameter space to the ray-LIE intersection. We also note that I∗u × I∗v is not
constrained to be contained in Iu × Iv.

Let Iu × Iv be the parameter domain of the surface patch S(u, v).
For any (u, v) ∈ Iu × Iv, we have

S(u, v) ∈ P(u,v) + Y1u + Y2v = L(u, v).
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Suppose the ray R(s) intersects the surface S at

(u∗, v∗) ∈ Iu × Iv ⇒ S(u∗, v∗) = R(s∗)
⇒ R(s∗) ∈ P(u,v) + Y1u∗ + Y2v∗

⇒ ∃p ∈ P(u,v), ∃y1 ∈ Y1, ∃y2 ∈ Y2 such that R(s∗) = p + y1u∗ + y2v∗

⇒ (u∗, v∗, s∗)

is in the solution set of
P(u,v) + Y1u + Y2v = R(s),

that is, L(u, v) = R(s).
So any parameter solution to the ray-surface intersection is contained within the set of parameter

solutions to the ray-LIE intersection. So we have

Proposition 1 Let I
′
u × I

′
v be the solution set to L(u, v) = R(s) and let Iu × Iv be the domain of

the patch. Then, for any parameter solution (u∗, v∗) to the ray-surface intersection, we have (u∗, v∗) ∈
(I
′
u × I

′
v) ∩ (Iu × Iv).

This implies the following practical consequences.

(I) (I
′
u×I

′
v)∩ (Iu×Iv), which we refer to as the pruned domain, contains all solutions to the ray-surface

intersection.
(II) If (I

′
u × I

′
v) ∩ (Iu × Iv) = ∅, the ray does not intersect the surface.

Now suppose (I
′
u × I

′
v) ∩ (Iu × Iv) 6= ∅.

Then ∃(u∗, v∗) ∈ Iu × Iv, such that R(s∗) = p
′
+ y

′
1u
∗ + y

′
2v
∗, where p

′ ∈ P(u,v), y
′
1 ∈ Y1, and

y
′
2 ∈ Y2. But p

′
+ y

′
1u
∗ + y

′
2v
∗, where (u∗, v∗) ∈ (Iu × Iv), is a point within the LIE restricted to

Iu × Iv. Therefore, the ray intersects a LIE which contains the surface S(u, v), (u, v) ∈ Iu × Iv. This
implies

(III) If (I
′
u × I

′
v) ∩ (Iu × Iv) 6= ∅, the ray intersects a LIE which contains the surface. In this case the ray

may or may not intersect the surface, but it does pass within a distance of the patch on the order of
the dimensions of the LIE restricted to (u, v) ∈ Iu × Iv.

Observations I, II, and III provide the basis for an algorithm to determine ray-surface intersection. The
basic process will be an iteration of the ray-LIE intersection and domain pruning. To this is added a
subdivision process to ensure reduction of the parameter space being searched.

6 Search of the Parameter Space (Iu × Iv) for a Solution to Ray–Surface Intersection

Begin with a surface patch S(u,v), (u, v) ∈ (Iu×Iv) and its corresponding LIE, L(u, v), (u, v) ∈ (Iu×Iv).
Compute the solution (I

′
u × I

′
v) to the ray-LIE intersection R(s) = L(u, v). Call (I

′
u × I

′
v) ∩ (Iu × Iv) =

(I1
u × I1

v ) the pruned domain. Since (I1
u × I1

v ) contains all solutions to the ray-surface intersection, it
is the only part of (Iu × Iv) which is relevant to the search. If (I1

u × I1
v ) = ∅, there is no solution. If

(I1
u× I1

v ) 6= ∅. the LIE containing the surface is intersected by the ray. In this case the ray passes within
a distance of the surface on the order of the dimensions of the LIE. Therefore, if the LIE is small enough
we record a solution at the LIE’s center. If (I1

u × I1
v ) 6= ∅, but the LIE is not small, we iterate ray-LIE

intersection and domain pruning.
There are several possible outcomes to the iteration.
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1. No solution case.
As has been shown, any solution to the ray-surface intersection is within the corresponding pruned
domain. Thus, if the process of ray-LIE intersection and domain pruning results in an empty pruned
domain (Iu,i+1 × Iv,i+1),

(Iu,i × Iv,i) ← domain

(I
′
u,i × I

′
v,i) ← solution to L(u, v) = R(s)

(Iu,i × Iv,i) ∩ (I
′
u,i × I

′
v,i) = (Iu,i+1 × Iv,i+1) = ∅

this verifies that there is no solution to the ray-surface intersection within (Iu,i × Iv,i).
2. An in tolerance solution.

When the iteration

(Iu,i × Iv,i) ← domain

(I
′
u,i × I

′
v,i) ← solution to L(u, v) = R(s)

(Iu,i × Iv,i) ∩ (I
′
u,i × I

′
v,i) = (Iu,i+1 × Iv,i+1) 6= ∅

results in a nonempty pruned domain, a LIE containing part of the surface is intersected by the
ray. Therefore the ray passes within a distance of the surface on the order of the dimensions of the
LIE. So if the LIE is small enough we have a solution. It can be shown that the width of a LIE
decreases at least linearly with the width of its parameter domain. A tolerance value on the width of
the parameter domain can thus be chosen which produces a LIE of near or below pixel dimensions.
If such a LIE contains a portion of the surface and is intersected by the ray (i.e., the LIE has a
nonempty pruned domain) the ray passes within pixel dimensions of the surface. In this case the
pixel is given surface color. We refer to this situation as an in tolerance solution.

3. A stalled iteration.
It may happen in the iteration that the pruned domain is not a proper subset of the starting domain.

(Iu,i × Iv,i) ∩ (I
′
u,i × I

′
v,i) = (Iu,i × Iv,i)

In this case the iteration would stall without the subdivision process.
4. The pruned domain is nonempty but the LIE is not within solution tolerance.

(Iu,i × Iv,i) ← domain

(Iu,i × Iv,i) ∩ (I
′
u,i × I

′
v,i) = (Iu,i+1 × Iv,i+1) 6= ∅

(Iu,i+1 × Iv,i+1) ← new starting domain

In this case we wish to continue the iteration on (Iu,i+1 × Iv,i+1).
In view of (3) we subdivide (Iu,i+1 × Iv,i+1) along the parameter interval of greatest width before
continuing with the iteration. This guarantees that the size of the parameter domains being searched
decreases.

The resulting algorithm is outlined in the following psuedocode. A linked list, L, of LIE objects is
created and the search proceeds through L. Each LIE object has associated with it the LIE’s parameter
domain (Iu,i × Iv,i) and the corresponding pruned domain (Iu,i × Iv,i) ∩ (I

′
u,i × I

′
v,i). Only LIEs with

nonempty pruned domains are put on the list, and the list is maintained in order according to the
minimum time (ray parameter) at which each LIE is hit by the ray. LIEs with smaller hit times are put
on the list ahead of LIEs with larger hit times.
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The Algorithm
Input: A surface S(u,v) and a ray R(s).
HaveSolution = False

Compute LIE of full surface.
Compute solution to ray–LIE intersection and
the corresponding pruned domain.
if(pruned domain 6= ∅)

{Initialize list L to contain the full surface LIE.
While {L 6= ∅}

{min s = time at which the ray first hits the LIE at top of L.
if(HaveSolution = True and solution hit time < min s)4
{break from while loop}
if(LIE at top of L is small enough)

{ Set HaveSolution = True
if(this solution is the 1st solution or the solution closest to the ray origin)
{record the solution}
Delete the LIE at the top of L.
Continue at the beginning of the while loop.
}

else if (the LIE at the top of L is not small)
{Divide the LIE’s pruned domain.
Compute LIEs for the two pruned domain halves.
Intersect these LIEs with the ray and
compute the corresponding pruned domains.
Delete the LIE at the top of L.
Insert each LIE with nonempty pruned domain
into L in order of their hit times.
Continue at beginning of while loop.
} end else if

} end while loop
} end if

if(HaveSolution = True)
{return recorded solution}

if (HaveSolution = False)
{return ”no solution”}

The algorithm produces a binary tree structure whose root is the LIE of the original surface. Non-leaf
nodes correspond to LIEs whose pruned domains have been divided. Leaf nodes correspond to either
LIEs with empty pruned domains or LIEs corresponding to in tolerance solutions.

4 Explanation of the first if clause in the while loop: When a solution is found, its hit time is the corresponding
value of the ray parameter. A LIE’s hit time is the smallest value of the ray parameter corresponding to ray-LIE
intersection. That is, the LIE’s hit time is the time the LIE is first hit by the ray. Since the LIEs are on the list
in order of their hit times, if the solution hit time is less than the hit time of the LIE at the top of the list, it
is less than the hit times of all the LIEs on the list. Therefore, since the LIEs on the list cover that part of the
surface still to be searched, the solution is necessarily closer to the ray’s origin than any other solution. In this
case the search can be ended. Hence the while loop is exited when the stated condition is met.
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The subdivision process guarantees that the tree ends in leaves after a finite number of levels because
tolerance dimensions are eventually reached, and then the pruned domain is either

1. empty ⇒ empty pruned domain leaf, or
2. nonempty ⇒ in tolerance solution leaf.

Any solution (u∗, v∗) in a subdomain is in the corresponding pruned domain. Therefore any solution in
the original domain must be in some leaf node at the end of the search. Thus if all leaves correspond to
LIEs with empty pruned domains, there can be no solution and this result is returned by the algorithm.
Furthermore:

– If an in tolerance solution leaf occurs, that solution is returned by the algorithm.
– If more than one solution leaf occurs, the solution which is closest to the ray origin is returned as

the solution.

7 Domain Inflation

As the algorithm proceeds it may happen that a pruned domain is encountered which has zero width
in one of the parameter intervals, e.g., Iu × Iv = [0.179411, 0.187177]× [1, 1] occurs as a pruned domain
in one of our test surfaces. In the next iteration the computation of the LIE for this parameter domain
involves division by rv = rad(Iv). This causes the program to terminate in a division by zero.

This difficulty can be overcome by testing the diameter of the pruned domain and inflating the
pruned domain slightly if the diameter is below a certain tolerance. We have found that the following
code works well.

if (Diam(Iu) < 0.0000001)
Iu = Hull(Inf(Iu)− 0.000001, Sup(Iu) + 0.000001) (same for Iv).

8 Normal Vectors

Once an in tolerance solution is found it is necessary to find a normal vector to the surface at the location
of the solution. A lighting model can then be invoked to assign an appropriate color to the pixel.

For S(u, v) with (u, v) ∈ Iu × Iv = [a, b]× [c, d] we have

S(u, v) ∈ L(u, v) = P(u,v) +
fu

ru
u +

fv

rv
v.

When the LIE L(u,v) is computed using affine arithmetic it can be shown by direct calculation that in
the limit as b → a and d → c, fu

ru
→ ∂S(a,c)

∂u and fv

rv
→ ∂S(a,c)

∂v .

Therefore, as the widths of the domains of the LIEs shrink toward zero, the coefficient vectors fu

ru

and fv

rv
become good approximations to the tangent vectors ∂S(a,c)

∂u and ∂S(a,c)
∂v . So once an in tolerance

solution is found, the vectors fu

ru
and fv

rv
, which have already been calculated, can be used in place of

∂S
∂u and ∂S

∂v to compute a normal vector fu

ru
× fv

rv
to the surface. We have found that this method of

computing a normal vector gives good results.

9 Computation Details

We now present some of the detail in the computations.
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9.1 Solution of the ray-LIE Intersection

With L(u, v) = P(u,v) + Y1u + Y2v and R(s) = E + sd, we have

P(u,v) + Y1u + Y2v = E + sd ⇔ uY1 + vY2 − sd = E −P(u,v)

⇔ uY1x + vY2x − sdx = Ex − Px

uY1y + vY2y − sdy = Ey − Py

uY1z + vY2z − sdz = Ez − Pz,

where the x, y, and z subscripts denote the x, y, and z vector components.
The parameter s can be eliminated to obtain

(
G1,1 G1,2

G2,1 G2,2

)(
u
v

)
=

(
B1

B2

)
,

where

G1,1 = dxY1y − dyY1x, G1,2 = dxY2y − dyY2x,

G2,1 = dxY1z − dzY1x, G2,2 = dxY2z − dzY2x,

B1 = dx(Ey − Py)− dy(Ex − Px) B2 = dx(Ez − Pz)− dz(Ex − Px),

And by Cramer’s rule we obtain

U =

∣∣∣∣
B1 G1,2

B2 G2,2

∣∣∣∣
∣∣∣∣
G1,1 G1,2

G2,1 G2,2

∣∣∣∣
, V =

∣∣∣∣
G1,1 B1

G2,1 B2

∣∣∣∣
∣∣∣∣
G1,1 G1,2

G2,1 G2,2

∣∣∣∣
.

When using interval arithmetic to do this calculation, the solution U ×V will bound the solution to the
ray-LIE intersection. So:

Proposition 2 The computed ray-LIE intersection solution is reliable in the sense that it is guaranteed
to contain all solutions to the ray-LIE intersection.

We note that E is a constant for the ray-tracing process and so may be assumed to be exact. The
components of d are calculated for a given ray and so are subject to rounding error. However, d is not
calculated by an iterative process, so that roundoff error does not build up. Any error should be minimal
and not likely to effect the final results. We therefore feel justified in ignoring it and in assuming that
the components of d are exact.

9.2 Computation of the LIE

In order to carry out the ray-LIE intersections involving the LIE, L(u, v) = P(u,v) + Y1u + Y2v, we
require P(u,v),Y1, and Y2. These forms need to be calculated for the general LIE with parameter
domain [a, b]× [c, d].

We have
P(u,v) = f0 + Q− mu

ru
fu − mv

rv
fv, Y1 =

1
ru

fu, Y2 =
1
rv

fv,
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where

f0 =




xo

yo

zo


 ,Q =




−
n∑

i=1

|xi|,
n∑

i=1

|xi|

−
n∑

i=1

|yi|,
n∑

i=1

|yi|

−
n∑

i=1

|zi|,
n∑

i=1

|zi|




, fu =




xu

yu

zu


 , fv =




xv

yv

zv


 ,

mu = mid[a, b], mv = mid[c, d], ru = rad[a, b], rv = rad[c, d],

and mu, mv, ru, rv, are calculated from the domain. In order to calculate the other forms, needed are
the central value x0 and the partial deviations xu, xv, x1, . . . , xn of the affine representation of x(u, v),
x̂(û, v̂) = x0 + xuεu + xvεv +

∑n
i=1 xiεi. It is similar for ŷ(û, v̂) and ẑ(û, v̂).

Letting x1(u, v) = x(u, v), x2(u, v) = y(u, v), x3(u, v) = z(u, v), we have for a Bezier surface patch,

xi(u, v) = [u3 u2 u 1]MPiM




v3

v2

v
1


 , with M =



−1 3 −3 1

3 −6 3 0
−3 3 0 0

1 0 0 0


 ,

and Pi is the 4× 4 matrix of the ith components of the control points. Writing Ai = MPiM,

xi(u, v) = (u3Ai11 + u2Ai21 + uAi31 + Ai41)v3

+ (u3Ai12 + u2Ai22 + uAi32 + Ai42)v2

+ (u3Ai13 + u2Ai23 + uAi33 + Ai43)v
+ (u3Ai14 + u2Ai24 + uAi34 + Ai44).

With the LIE domain [a, b] × [c, d] = Iu × Iv we must build the affine form of xi(u, v). Code for
doing this is described in de Figueiredo and Stolfi [2]. In our implementation we wrote the code based
on the discussion in [2]. An affine arithmetic package is also available from [7].

10 Theorem on Reliability

Theorem 1 (Reliability) If the ray through a pixel hits the surface, the pixel is colored.

Proof Let Iu × Iv be the parameter domain of the surface. Assume the ray hits the surface at (u∗, v∗).
By Proposition 1, (u∗, v∗) ∈ pruned domain5. Then,

1. (u∗, v∗) ∈ pruned domain ⇒ pruned domain 6= ∅.
2. If the pruned domain is small enough, we color the pixel if this is the first solution or the solution

closest to the ray origin. If it is not the solution closest to the origin, the pixel is colored due to the
closer solution. In any case, if the pruned domain is small enough, the pixel is colored.

3. If the pruned domain is not small enough, we divide the pruned domain (The division is done reliably
using PROFIL.) We then know that:
(a) (u∗, v∗) is in one of the divisions;

5 By “pruned domain,” we mean I
′
u × I

′
v ∩ Iu × Iv, where I

′
u × I

′
v is the solution to the ray-LIE intersection.

By Proposition 2, I
′
u × I

′
v is computed reliably, so we are guaranteed that (u∗, v∗) ∈ I

′
u × I

′
v. The intersection

I
′
u × I

′
v ∩ Iu × Iv is also computed reliably by the PROFIL interval software, so we are guaranteed (u∗, v∗) ∈

I
′
u × I

′
v ∩ Iu × Iv.
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(b) the pruned domain for that division is not empty;
(c) the corresponding LIE will be put on the list for further processing6.

11 Numerical Results and Comparisons

11.1 Toth’s algorithm

For purposes of comparison we also implemented Toth’s method [8], an early ray-tracing algorithm.
Toth begins with a parametric surface H(s, t) = (x(s, t), y(s, t), z(s, t)) and a parametric ray R(u) =

E+ud. Then the ray-surface intersection is the solution to the nonlinear system H(s, t)−R(u) = 0, which
can be written f(v) = 0, v = (s, t, u). Toth uses the Krawczyk method to bound solutions; Toth also
uses traditional modified Newton iteration heuristically in certain places in his algorithm. Traditional
Newton method iteration has the form vk+1 = vk − Y f(vk), where Y is the inverse Jacobian of f at
vk. Letting interval vector X be a subset of the domain of f , with y any real vector in X, and F ′(X)
an interval extension of the Jacobian of f , Toth considers the Krawczyk operator

K(X,y, Y ) = y − Y f(y) + {I − Y F ′(X)}(X− y)

K has the following properties:

– K ⊂ X implies that f(x) = 0 has a solution in X.
– All solutions to f(x) = 0 are in K.
– K ∩X = ∅ implies there is no solution to f(x) = 0 in X.
– If K ⊂ X and r = ||I − Y F ′(X)|| < 1, then the simple Newton sequence xn+1 = xn − Y f(xn) (Y

held fixed) will converge to a unique solution x∗ in X to f(x) = 0 from any starting point x0 in X.
(In this case X is called a safe-starting region.)

The interval Newton iterartion is

Xn+1 = K(Xn,mid(Xn), Yn) ∩Xn, (1)

where

Yn =
{

mid(F ′(Xn))−1 when rn ≤ rn−1,
Yn−1 otherwise,

with rn = ||I − YnF ′(Xn)||.
Following developments by Moore[4], [5], Toth[8] proves the following theorem on (1).

Theorem 2 Suppose that ||I − Y F ′(X)|| = r < 1. Set Y0 = Y and X0 = X in (1). Then either the
iterative sequence (1) will converge to a unique solution x∗ in X to f(x) = 0, or (1) will break down
due to empty intersection, in which case no solutions to f(x) = 0 are in X.

Toth uses these properties of K to construct a search algorithm for the solution to the ray-surface
intersection.

The initial surface domain is divided into quarters and a list of subregions is initialized to contain
these quarters. The list is maintained in order of the ray parameter (time) when surface extents of the
subregions are first intersected by the ray. Subregions with smaller extent hit times are put ahead of
those with larger extent hit times.

6 In this case, we return to Step 2, to either record a solution or subdivide further. Since we always divide
along the parameter interval of longest width, repeated calls to Steps 2 and 3 eventually lead to a nonempty
pruned domain which is small enough.
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Starting with the first subregion X0 on the list, K(X0, mid(X0), Y ) and r = ||I − Y F ′(X0)|| with
Y = mid(F ′(X0))−1 are calculated. X0 is excluded from the search if K(X0,mid(X0), Y )∩X0 = ∅ or if
the ray does not intersect an extent for the surface on X0. If X0 is safe-starting, simple Newton iteration
is performed to a solution. If X0 is not safe-starting but cannot be excluded and r = ||I−Y F ′(X0)|| < 1,
the interval Newton iteration is performed with each iterate being tested for safe-starting or exclusion.
If the safe-starting condition is met, simple Newton iteration is run to a solution. If r is not less than
one but X0 cannot be excluded K(X0, mid(X0), Y )∩X0 is subdivided along the parameter direction of
longest width. The two halves resulting from the division are put on the list in order of their extent hit
times. Once a subregion has been processed the next list element is chosen and the steps are repeated.
For i > 0, a subregion Xi is excluded from the search if a solution has already been found with a ray
parameter less than the time the surface extent over Xi is first hit by the ray. When a solution is found
it is recorded if it is the first solution or the solution closest to the ray origin of the solutions thus far
identified. In this way when multiple solutions are found, it is the one closest to the ray origin that is
returned at the end of the search.

Toth notes that incorrect results may occur due to floating point round-off if either the width of the
parameter interval or the widths of the interval extensions to the partial derivatives become too small.
Therefore, tolerances are placed on these widths and a subregion below them is considered too small
for further processing. If a region becomes too small one final Newton step is taken. If the final step is
within the subregion, this is considered a solution. If the final step is outside the region, the region is
excluded from further search.

Deciding on whether or not there is a solution based on the heuristic described in the last paragraph
does not guarantee a correct result. The analog to the two-dimensional case depicted in figure 1 would
fail to identify the solution x∗. Such a failure would seem more likely when a solution is near a subregion
boundary.

Fig. 1 Failure of the final Newton step heuristic.
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11.2 Implementation

Both Toth’s method and the LIE-based algorithm were implemented in C++ using Microsoft’s Visual
C++ environment. The interval library PROFIL (version 1) by Knüppel[3] was also used. The programs
were done in single precision. Several versions of Toth’s method were implemented. One version, which
we will call version A, subdivided the intersection of the Krawczyk operator and the parameter domain
K(X, m(X), Y ) ∩X in the subdivision step. Another version, which we will call version B, subdivided
the parameter domain X in the subdivision step. Version A is consistent with the method described by
Toth in his 1985 paper, while version B is a variant of that method.

Another way to design different versions of the Toth algorithm is based on the character of the Y
matrix of the Newton iteration. Recall that we are solving the ray-surface intersection H(s, t) − (E +
uD) = 0 which is the system


x(s, t)− Ex − uDx

y(s, t)− Ey − uDy

z(s, t)− Ez − uDz


 = 0

where Ex, Ey, Ez are the x, y, and z components of the starting point of the ray and Dx, Dy, Dz are
the x, y, and z components of the direction vector of the ray. The parameter u can be eliminated using
u = x(s,t)−Ex

Dx
to yield the equivalent system

g(s, t) =
(

Dx(y − Ey)−Dy(x− Ex)
Dx(z − Ez)−Dz(x− Ex)

)
= 0.

To solve the system g(v) = 0, v = (s, t) we perform the Newton iteration
vk+1 = vk − Y g(vk). There are different choices for the matrix Y . Y may be the inverse of the matrix
of midpoints of an interval extension of the Jacobian of g over the parameter domain. We will call this
version 1. Y may be the inverse of the Jacobian of g at the midpoint of the parameter domain Iu × Iv.
We will call this version 2. We implemented both version 1 and 2.

11.3 Robustness Comparisons

We tested the five programs (LIE, A1, A2, B1, B2) on six different surfaces (figure 3 through figure 8).
On the first five of these all the programs gave identical results, meaning that the renderings were
indistinguishable. The sixth surface was self-intersecting and we rendered two views, one oblique view
and one more edge-on view. We will refer to the more edge-on view as surface 7. The five programs gave
identical renderings of the oblique view (figure 6) but gave different results on surface 7 (figure 7 and
figure 8). On surface 7 all five programs failed to color a number of pixels in the lower left side of the
surface where the image is very thin. Rays are cast through the lower left corners of the pixels and we
speculate that the surface is so thin that rays from a succession of pixels miss it (figure 2). The fact
that all the programs show the same effect suggests that the difficulty results from the discrete nature
of the tracing process and not from a fault in the program methods.

Aside from this the LIE-based program traced the full surface 7 (figure 7). The Toth version B1
program traced the full surface except for two pixels on the right side. The Toth version B2 program
traced the full surface except for one pixel on the right side (figure 8). The Toth version A1 program
missed multiple pixels in a band along the right side and some additional pixels toward the middle of
the surface (figure 7). Toth version A2 missed fewer pixels than version A1, but still missed multiple
pixels in a band along the right side and a pixel near the middle of the surface (figure 8). The Toth
version A and version B programs thus differ in a way that significantly effects their performance.
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Considering version A, when y = midpoint of X, as is the case in our implementation, K(X,y, Y )
is symmetric about the Newton step. Therefore, K(X,y, Y ) tends to be symmetric about a solution as
the step nears a solution. Then the bisection of K(X,y, Y ) ∩X, as in version A, will tend to place the
solution near an edge of the resulting subdivisions. This makes it less likely the K ⊂ X in the following
iteration, so that a safe-starting region is less likely to be found. It also makes it more likely that a final
Newton step will be outside the parameter box even when there is a solution within the box.

Consistent with this analysis, in looking at the data for the pixels missed by version A1, we found a
substantial number of cases of the following form. Version B1 reached a safe-starting region and returned
a solution by the point Newton iteration. For the same ray version A1 did not reach a safe-starting region
but did do a final Newton step on a parameter box containing the version B1 solution near one of the
box edges. The final Newton step done by version A1 was just outside the parameter box, and so the
box was rejected. Since the version B1 program finds solutions from a non-interval Newton iteration,
the results are not guaranteed. Therefore, our results do not prove but they do strongly suggest that
many of the missed pixels result from failure of the final Newton step to identify solutions.

The version A2 data did not follow the same pattern as version A1. For many of the missed pixels
two final Newton steps were taken, both of which failed to find solutions. Unlike the version A1 case,
however, the parameter boxes over which these final steps were taken did not contain version B solutions.
So we do not have evidence here that the final Newton steps are missing solutions. Also, we observed
that in many cases the midpoint values returned by the PROFIL software for small diameter parameter
domains were outside the domains. So this is a possible reason why solutions were missed.

Fig. 2

11.4 Timing Comparisons

Table 1 lists the run times of the five programs on the various surfaces, all normalized to the run time
of the Toth version A2 program (the version most consistent with the method described by Toth).

Except for surface 5, where version B is slightly faster and surface 7, where version B is slightly
slower, the run times of the different versions of the Toth program are the same. The relative speeds
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of the Toth and LIE-based programs depend on the surface considered. Relative speeds range from the
case of surface 4, where the LIE program takes more than twice the time that the Toth programs take,
to the case of surface 7, where the LIE program takes 74 percent of the time that Toth version A takes
and 45 percent of the time that Toth version B takes. As seen from the totals, the LIE program takes on
average about 155 percent of the time that the Toth programs take. So the relative speeds are roughly
comparable.

Table 1 Run times.

LIE Toth A1 Toth A2 Toth B1 Toth B2
surface 1 1.49 1.00 1.00 1.00 1.00
surface 2 1.89 1.00 1.00 1.03 1.06
surface 3 1.30 1.00 1.00 0.98 0.98
surface 4 2.38 1.00 1.00 1.00 1.01
surface 5 2.05 0.99 1.00 0.82 0.82
surface 6 0.99 1.01 1.00 1.07 1.08
surface 7 0.74 1.00 1.00 1.65 1.67
Totals 10.84 7.00 7.00 7.54 7.61

12 Conclusions

We have implemented a new method for ray-tracing Bezier surfaces based on Linear Interval Estimations
(LIEs). The method is robust. We have proven that if a ray passing through a pixel hits the surface,
the pixel will be given surface color. Because of its dependence on a non-rigorous heuristic, a similar
theorem does not hold for Toth’s method. We have seen an example where this method does not color
pixels which should be colored. We have seen evidence to suggest that in some cases the missed pixels
are not colored due to the failure of the final Newton step heuristic to identify solutions. A version (B)
of the Toth method is closer to the LIE program in robustness, but still fails to match its reliability.
The use of LIE’s in ray-tracing may thus be advantageous when a high degree of reliability is required.

Fig. 3 On the left, Surface 1 by the LIE method. On the right, Surface 1 by Toth version A2.
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Fig. 4 On the left, Surface 2 by the LIE method. On the right, Surface 3 by the LIE method.

Fig. 5 On the left, Surface 4 by the LIE method. On the right, Surface 5 by the LIE method.
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Fig. 6 On the left, Surface 6 by the LIE method. On the right, Surface 6 by Toth version A1.

Fig. 7 On the left, Surface 7 by the LIE method. On the right, Surface 7 by Toth version A1.
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Fig. 8 On the left, Surface 7 by the Toth version A2. On the right, Surface 7 by Toth version B2.


