
Chapter 1
Automatic Differentiation of Conditional Branches in an

Operator Overloading Context∗

R. Baker Kearfott

February 23, 1996

Abstract
In the past, it has been problematical to include IF-THEN-ELSE branches in

automatic differentiation processes driven by operator overloading and code list
generation, when the branch condition contains variables. However, this problem can be
circumvented with a special “branch function” χ. Definition of this function, formulas
for its use, and implications of its use will be discussed.

A second issue is: what can be done when derivatives are discontinuous? In fact,
simple and meaningful Newton iterations can be set up when even the function itself
is discontinuous. Simplified figures and examples are given, as well as references to in-
depth explanations. An example of the convergence behavior is given with an interval
Newton method to find critical points for the problem “min |x|.”

1 Introduction and Context
Consider:

φ(x) = max(2− x2, x2).(1)

Operator overloading may be used to generate a code list , i.e. an internal representation of
the function [9]. This internal representation can then be used to obtain function values
and derivatives. For example, Example (1) would be programmed in the Fortran 90 system
described in [3] and [6, §2.2.2] as:

PROGRAM EXAMPLE
USE OVERLOAD
IMPLICIT NONE

TYPE(CDLVAR), DIMENSION(1):: X
TYPE(CDLLHS), DIMENSION(1):: PHI

OUTPUT_FILE_NAME=’EX6_P1.CDL’
CALL INITIALIZE_CODELIST(X)

PHI(1) = MAX(2-X(1)**2,X(1)**2)

CALL FINISH_CODELIST
END PROGRAM EXAMPLE

In this program, the independent variable X and dependent variable PHI are declared to be
a special data type. The arithmetic operations and function evaluations take on a special

∗This work was supported in part by National Science Foundation grant CCR-9203730.

1

2 Kearfott

meaning: Instead of doing arithmetic operations, the computer writes a numerical code
that identifies the operation and numbers that identify the operands to a line of a file (in
this case, the file EX6 P1.CDL). The result of executing the program is the code list, or
ordered list of operations to evaluate φ. With the NAG Fortran compiler, version 2.1, and
the system of [3], the program produces a code list that signifies the following:

x1 = x
1. x2 ← x2

1
2. x3 ← −x2 + 2
3. x4 ← x2

1
4. x5 ← maxx3, x4

φ = x5

This list corresponds to the order in which the compiler sets up the operations, including
any optimization.

Alternate automatic differentiation procedures are:
1. overloading the operations so that both the function and derivative are computed

numerically as the program is executed;

2. designing special-purpose compilers.
Production of code lists makes it somewhat easier, relative to direct computation as

the function executes, to implement a large number of different computations, such as
derivatives of various orders with different data types, and allows post-processing of the
code list for additional optimization. Production of code lists through operator overloading
allows use of existing compiler technology, including optimization, thus avoiding some
duplication of effort necessary if a special purpose-compiler were designed.

Although some programs may produce sizeable code lists, the operator overloading/code
list technique can handle looping instructions and subroutine calls without complications.
However, conditional transfer of control, such as in IF-THEN-ELSE constructs, poses more
of a problem, since the operations that are executed then depend on the numerical value
of the independent variables. Consider:

f(x) =

{

−2x if x2 − 1 < 0
2x if otherwise.

(2)

We would like the Fortran 90 code corresponding to the line “PHI(1) = . . .” above to
be:

IF (X**2-1D0 < 0) THEN
F = -2D0*X

ELSE
F = 2D0*X

END IF

However, there is no way for both branches to be executed (and thus be represented in a
code list) by a simple execution of the program. A simple solution is reviewed in §2.

When max, min, and | ◦ | appear in objective functions, such as in Example (1),
derivatives can be discontinuous. In functions such as Example (2), the function itself
is discontinuous at a branch point. There is a question of what values should be assigned
to derivatives at a branch point. There is a simple and logical solution to this problem if
interval arithmetic is used. In fact, a simple Newton iteration can even be applied to f of
Example (2). This is reviewed in §3.

Conditional Branches in Operator Overloading 3

The remainder of this paper presents various examples, computations, simplified figures,
and perspective. A complete set of formulas, as well as experiments with nonlinear
equations and optimization problems in various dimensions, appears in [4]. A convergence
analysis of interval Newton methods with discontinuous derivatives appears in [5]. A unified
explanation, including a discussion of automatic differentiation and the Fortran 90 system
we use, will appear in [6].

2 The Branching Function
Define

χ(xs, xq, xr) =

{

xq if xs < 0,
xr otherwise.

The function f of Example (2) would then be programmed as
F = CHI(X**2-1,-2D0*X,2D0*X)

The program containing this statement would then produce a code list that contains both
branches. In fact, the system of [3], compiled with the NAG Fortran 90 compiler version
2.1, produces a code list that signifies:

x1 = x
1. x2 ← x2

1
2. x3 ← x2 − 1
3. x4 ← 2x1
4. x5 ← −x4
5. x6 ← 2x1
6. x7 ← χ(x3, x5, x6)

f = x7

The function χ can be differentiated and evaluated using the formulas of [4] or [6, Chapter
6]. Hence, functions f whose evaluation contains branches can be differentiated in an
operator overloading context; see [3] or [6, §1.4], for example.

3 On Non-Smooth and Discontinuous Derivatives
The functions | ◦ |, max, and min are important in optimization. The derivatives of these
functions can be expressed in terms of χ. For example:

∂ max{u, v}
∂x

= χ
(

v − u,
∂u
∂x

,
∂v
∂x

)

.(3)

(Complete sets of formulas can be found in [4] or [6].)

3.1 Non-Smooth Functions
Equation (3) and analogous formulas for | ◦ | and min can be used for correct evaluation
of derivatives when v − u is non-zero (or when v − u does not contain zero, in the case of
interval data). However, there has been a standing question of what to do at the branch
point itself (i.e. where v − u = 0). This question can be resolved practically and simply
with interval arithmetic. Denoting intervals by boldface, interval evaluation of χ is:

χ(xs,xq, xr) =

xq if xs < 0;
xr if xs > 0;

xq∪xr otherwise.
(4)

4 Kearfott

6

-

(1, 1)
s

φ

�
���

J
JĴ

Fig. 1. Graph of φ(x) = max(2− x2, x2)

This interval value contains the set of all values χ(xs, xq, xr) as xs ranges in xs, xq ranges
in xq, and xr ranges in xr.

Even when most of the computations are done in real arithmetic, the interval formula
can still provide derivatives at branch points. For example, if φ is as in Example (1), then

∂φ
∂x

= χ
(

x2 − (2− x2),−2x, 2x
)

,

and ∂φ/∂x|x=1 may be set to the interval value

χ
(

[1, 1],−2[1, 1], 2[1, 1]
)

= [−2, 2].

A very useful aspect of these computations is that critical points of optimization
problems with objective functions φ may still be sought by seeking ∇φ = 0. However,
in this case, the critical point may happen to be a point where the derivative is undefined.
In the above, example, 0 ∈ [−2, 2], so the “derivative” contains zero, thus indicating that
x = 1 represents a critical point. This is illustrated in the graph of φ in Figure 1. (Note
that, in this case, the interval extension corresponds to the notion of subgradient.)

Formula (4) also provides a solution to the ”if problem” mentioned by Beck and Fischer
[2]. In particular, if the standard formula

∂χ(w, u, v)
∂x

= χ
(

w,
∂u
∂x

,
∂v
∂x

)

is used to differentiate a branch, then evaluation with Formula (4) results in an answer that
always contains the correct derivative, even for functions that are not derivative-consistent
in the sense in [2]. In fact, this technique can even be used in floating-point computations,
with intervals entering only where necessary.

Observe that both branches are stored symbolically in this scheme. This requires more
storage for the code list (also known as the “tape” or “directed acyclic graph”), but provides
additional flexibility. In many instances, the additional storage is not prohibitive. Also,
both values of the branches are used only in special instances. It may be efficient to actually
evaluate both branches, setting undefined expressions to the real line or the empty set, as
appropriate. This is definitely true in certain interval computations.

Alternatives to storing both branches are “retaping” (a technique used by Griewank
et al in ADOLC), or using a precompiler, rather than operator overloading. There are
advantages and disadvantages to both these approaches.

Conditional Branches in Operator Overloading 5

-

6

x

base point x̌

�
�

�
�

�
�
�

�
�

�
�

((((slope range�
��=

SSo

f ′(x)
6

g′(x)
HHj

x x

Fig. 2. The slope of χ((g − f)(x), f ′(x), g′(x))

3.2 Derivatives of Discontinuous Functions
If φ(x) = max(2 − x2, x2) is as in Example (1), then ∇φ is discontinuous at x = 1, but,
as seen above, a meaningful interpretation can be given to ∇φ at the discontinuity. But
what about second derivatives of φ, needed, for example, if we were to locate critical points
of φ with Newton’s method? In fact, an interval Newton method can be used precisely in
this context, if interval slopes, rather than actual derivatives, are used. An interval slope
S(f, x, x̌) of a function f from a base point x̌ to an interval x is a set that contains the
set of all slopes of lines from the point (x̌, f(x̌)) to points (x, f(x)), for x ∈ x. Slopes were
introduced and analyzed in [1, 7], among others. The book [8] contains a good theoretical
presentation. The book [6] contains an introduction, discussion, examples, and methods of
computation for univariate and multivariate slopes, as well as additional references.

For example, the derivative of max{f(x), g(x)} is χ
(

(g− f)(x), f ′(x), g′(x)
)

; the slopes
of this derivative are illustrated in Figure 2.

A formula for computing interval slopes of such a discontinuous function, when
0 ∈ xs∪x̌s (as in Figure 2), is:

S(χ(xs(x), xq(x), xr(x)), x, x̌) =

S(xr(x), x, x̌)∪
{

xr(x)−xq(x)
[xs(x̌),xs(x̌)−xs(x)]S(xs(x), x, x̌)

}

if xs(x̌) > 0

S(xq(x), x, x̌)∪
{

xr(x)−xq(x)
[−xs(x̌),xs(x)−xs(x̌)]S(xs(x), x, x̌)

}

if xs(x̌) < 0

{[

1
xs(x̌)−xs(x) ,∞

)

∪
[

1
xs(x)−xs(x̌) ,∞

)}

(xr(x)− xq(x))·
S(xs(x), x, x̌)

∪S(xq(x), x, x̌)∪S(xr(x), x, x̌) if 0 ∈ xs(x̌).

(5)

(Here, “x∪y” represents the convex hull of the intervals x and y.) This formula appeared,
slightly generalized and stated for partial derivatives, in [4, 5], and can be found, with an
explanation and complete context, in [6]. The formula in [5] contains different denominators,
rather than [xs(x̌), xs(x̌)− xs(x)], etc.; that leads to somewhat narrower widths, but is
incorrect for various cases.

6 Kearfott

Table 1
Interval Newton iterates for f(x) = χ(x2 − 1,−2x, 2x)

interval rel. width
1 [1.000, 5.000] 0.80
2 [1.000.2.700] 0.63
3 [1.000, 1.668] 0.40
4 [1.000, 1.230] 0.19
5 [1.000, 1.068] 0.64E-01
6 [1.000, 1.019] 0.18E-01
7 [1.000, 1.005] 0.46E-02
8 [1.000, 1.002] 0.12E-02
9 [1.000, 1.001] 0.29E-04

We apply Formula (5) and other formulas for the code list, as explained in [6], to
∇φ = χ(x2−1,−2x, 2x). Starting with base point x̌ = 3 and x = [1, 5], an interval Newton
method gives:

x̃ = x̌− f(x̌)
S(f , x, x̌)

= 3− 6
[2, 20]

= [0, 2.7],

and x ← x ∩ x̃ = [1, 2.7], a significant reduction in width. A continuation of the interval
Newton method gives the results in Table 1. In this table, the actual interval results were
rounded outward to four digits; the column labelled “rel. width” gives the width of the
interval, divided by the magnitude (maximum absolute value) of the interval, and rounded
to two significant figures.

A second example of use of Formula (5) in an interval Newton method reveals
underlying convergence properties in the simplest possible setting. Take φ(x) = |x|, so
that ∇φ(x) = χ(x,−1, 1), a step function with step of height 2 at x = 0. Take x̌ to be the
midpoint: x̌ = (x + x)/2, where x = [x, x]. Assume that 0 ∈ x. If x̌ > 0, then Formula (5)
gives:

S(χ(x,−1, 1), x, x̌) = 0∪

2
[

x+x
2 , x+x

2 −x
]

=
[

0, 4
x+x

]

(6)

Similarly, if x̌ < 0, then

S(χ(x,−1, 1), x, x̌) =
[

0,
4

−(x + x)

]

.

For x̌ > 0, the interval Newton method thus becomes:

Conditional Branches in Operator Overloading 7

Table 2
Interval Newton iterates for f(x) = χ(x,−1, 1)

interval midpoint width new width
old width

1 [−1.0000, 8.0000] 3.50 9.00 —
2 [−1.0000, 1.7500] 3.75E-01 2.75 0.31
3 [−1.0000, 0.1875] −4.06E-01 1.19 0.43
4 [−0.2031, 0.1875] −7.81E-03 3.91E-01 0.33
5 [−0.3906E-02, 0.1875E+00] 9.18E-02 1.91E-01 0.49
6 [−0.3906E-02, 0.4590E-01] 2.10E-02 4.98E-02 0.26
7 [−0.3906E-02, 0.1050E-01] 3.30E-03 1.44E-02 0.29
8 [−0.3906E-02, 0.1648E-02] −1.13E-03 5.55E-03 0.39
9 [−0.5645E-03, 0.1648E-02] 5.42E-04 2.51E-03 0.45

10 [−0.5645E-03, 0.2709E-03] −1.47E-04 8.35E-04 0.33

x̃ ← x+x
2 − 1

[

0, 4
x+x

]

= x+x
2 −

[

x+x
4 ,∞

]

=
[

−∞, x+x
4

]

,
x ← x̃ ∩ x

=
[

x, x+x
4

]

(7)

Similarly, for x̌ < 0, the interval Newton method becomes:

x̃ ←
[

x+x
4 ,∞

]

,
x ← x̃ ∩ x

=
[

x+x
4 , x

]

(8)

From Equation (7) and Equation (8), we see that at least half of the interval x is rejected
on each iteration of the interval Newton method. Thus, the convergence is linear, with
width-reduction factor less than or equal to 0.5. Furthermore, the process tends to center
the critical point in x. Starting with x = [−1, 8] (so x̌ = 3.5) results in Table 2.

Acknowledgements I wish to thank Bill Walster for suggesting that it would be possible
to proceed with Newton iteration when the function is discontinuous, and for encouraging
me to do so.

References
[1] G. Alefeld, Bounding the slope of polynomial operators and some applications, Computing, 26

(1980), pp. 227–237.
[2] T. Beck and H. Fischer, The IF-problem in automatic differentiation, Journal of Comput. Appl.

Math., 50 (1995), pp. 119–131.
[3] R. B. Kearfott, A Fortran 90 environment for research and prototyping of enclosure algorithms

for nonlinear equations and global optimization, ACM Trans. Math. Software, 21 (1995), pp. 63–
78.

[4] , Interval extensions of non-smooth functions for global optimization and nonlinear
systems solvers, 1995. Accepted for publication in Computing.

8 Kearfott

[5] , Treating non-smooth functions as smooth functions in global optimization and nonlinear
systems solvers, in Scientific Computing and Validated Numerics, G. Alefeld and A. Frommer,
eds., Mathematical Research, Berlin, 1995, Akademie Verlag.

[6] , Rigorous Global Search: Continuous Problems, Kluwer, Dordrecht, Netherlands, 1996.
[7] R. Krawczyk and A. Neumaier, Interval slopes for rational functions and associated centered

forms, SIAM J. Numer. Anal., 22 (1985), pp. 604–616.
[8] A. Neumaier, Interval Methods for Systems of Equations, Cambridge University Press,

Cambridge, England, 1990.
[9] L. B. Rall, Automatic Differentiation: Techniques and Applications, Lecture Notes in Computer

Science no. 120, Springer, Berlin, New York, etc., 1981.

