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Abstract. Traditional computational fixed point theorems, such as the Kan-
torovich theorem (made rigorous with directed roundings), Krawczyk’s method,
or interval Newton methods use a computer’s floating-point hardware compu-
tations to mathematically prove existence and uniqueness of a solution to a
nonlinear system of equations within a given region of n-space. Such compu-
tations require the Jacobi matrix of the system to be nonsingular in a neigh-
borhood of a solution. However, in previous work we showed how we could
mathematically verify existence of singular solutions in a small region of com-
plex n-space containing an approximate real solution. We verified existence
of such singular solutions by verifying that the topological degree of a small
region is non-zero; a non-zero topological degree implies existence of a solution
in the interior of the region. Here, we show that, when the actual topological
degree in complex space is odd and the rank defect of the Jacobi matrix is one,
the topological degree of a small region containing the singular solution can be
verified to be plus or minus one in real space. The algorithm for verification
in real space is significantly simpler and more efficient. We demonstrate this
efficiency with numerical experiments.

1. Introduction

Our fundamental problem is

(1.1)
Given F : x → Rn and x ∈ IRn, rigorously verify:

• there exists a unique x∗ ∈ x such that F (x∗) = 0, where
• x =

{

(x1, x2, . . . , xn)T ∈ Rn
∣

∣ xi ≤ xi ≤ xi, 1 ≤ i ≤ n
}

,

where the xi and xi represent constant bounds on the problem variables xi. When
the Jacobi matrix F ′(x∗) well-conditioned and not too quickly varying, interval
computations have no trouble proving that there is a unique solution within small
boxes with x∗ reasonably near the center; see [5, 10, 14]. When F ′(x∗) is ill-
conditioned or singular, in general, no computational techniques can verify the
existence of a solution within a given region x of Rn. However, in the singular case,
computational but rigorous verification that a given number of true solutions exist
within a region in complex space containing x is possible. In [13], we developed and
experimentally validated algorithms for the case when the rank defect of the Jacobi
matrix is one and the topological index is 2, while, in [11], we both generalized
the theory and techniques from [13] to arbitrary topological index and presented a
heuristic to efficiently determine the topological index at an approximate singular
solution, prior to verification. (A non-zero topological index implies existence of a
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solution.) In [12], we outlined a possible generalization to higher rank defect, and
observed that this generalization would lead to more complicated algorithms and a
computational effort that grew exponentially with the size of the rank defect.

Here, we focus again on the rank-one defect case. Although we have presented
algorithms for this case that succeed in general with an amount of effort that is
approximately proportional to n3, there is extra inefficiency in working in Cn rather
than in Rn. Furthermore, the answer obtained, namely, “there exist solutions within
a small box in Cn containing the approximate solution x̌ ∈ Rn,” says nothing about
actual solutions in Rn. However, in general, it is necessary to work in Cn, since only
in that case does existence of a solution to F (x) = 0 imply a non-zero topological
index.

In fact, we show below that, if the rank defect of the Jacobi matrix is one and
if the topological index of a point x∗ in Cn is odd, the topological index of x∗ in
Rn must be ±1. Furthermore, we present an algorithm for verifying the degree in
real space. This algorithm is orders of magnitude faster than the verification algo-
rithm in complex space, as we illustrate with experiments with a variable dimension
problem.

Although we do not wish to repeat the development in [13] and [11], we introduce
in §1.1 and §1.2 that notation and underlying theory necessary to comprehend the
results in this paper. We precisely state and prove a theorem on the real topological
index in §3, while the actual verification algorithm appears in §4. We present our
experimental results in 5, and we summarize in §6.

1.1. Notation. We assume familiarity with the fundamentals of interval arith-
metic; see [1, 5, 10, 14, 15] for introductory material.

Throughout, lower case denotes scalars and vectors, while upper case denotes
matrices. Boldface denotes intervals, interval vectors (also called “boxes”) and
interval matrices. For instance, x = (x1, . . . , xn) denotes an interval vector, A =
(ai,j) denotes a point matrix, and A = (ai,j) denotes an interval matrix. The
midpoint of an interval or interval vector x will be denoted by m(x). Real n-space
will be denoted by Rn, while complex n-space will be denoted by Cn.

Suppose x = (x1, . . . , xn) is an n-dimensional real box, where xk = [xk, xk].
The non-oriented boundary of x, denoted by ∂x, consists of 2n (n−1)-dimensional
real boxes

xk ≡ (x1, . . . , xk−1, xk, xk+1, . . . , xn) and xk ≡ (x1, . . . , xk−1, xk, xk+1, . . . , xn),

where k = 1, . . . , n. If x is positively oriented, then the derived orientation of xk is
(−1)k and the derived orientation of xk is (−1)k+1; see [13]. Also let

F¬k(x) ≡
(

f1(x), . . . , fk−1(x), fk+1(x), . . . , fn(x)
)

for 1 ≤ k ≤ n.
Throughout, ∂F

∂x1...∂xn
(x̌) denotes the Jacobi matrix of F , and

∣

∣

∣

∂F
∂x1...∂xn

(x̌)
∣

∣

∣ de-
notes its determinant.

1.2. Formulas from Degree Theory. In [13], we reviewed the topological degree
in the context of this paper. Also see [2, 4, 7, 8, 16, 17]. We repeat here and in
§1.3 only those properties necessary for a minimal intuition and for those properties
used in the proof of our main theorem.
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Theorem 1.1 ([16, p. 150], etc.). Suppose that the Jacobi matrix F ′(x) is nonsin-
gular at each zero of F , and F 6= 0 on the boundary of D. Then the topological
degree d(F,D, 0) is equal to the number of zeros of F in D at which the determinant
of the Jacobian matrix F ′(x) is positive minus the number of zeros of F in D at
which the determinant of the Jacobian matrix F ′(x) is negative.
Theorem 1.2 (Kronecker existence theorem, [16, p. 161]). Suppose F : x → Rn is
continuous on the closure x ⊂ Rn of an open domain, and suppose d(F, x, 0) 6= 0.
Then F (x) = 0 has at least one solution in the interior of x.

1.3. A Basic Degree Computation Formula. If we select s ∈ {−1, 1}, then it
can be shown ([2], etc.) that d(F, x, 0) is equal to the number of zeros of F¬k on ∂x
with positive orientation at which sgn(fk) = s, minus the number of zeros of F¬k

on ∂x with negative orientation at which sgn(fk) = s. The orientation of each zero
can be computed by computing the sign of the determinant of the Jacobi matrix of
F¬k and by taking into account the orientation of the face of x on which the zero
lies.

Next, we present a degree computation formula common to both this work and
the work in [13] and [11]; see Theorem 2.5 of [13]. We can obtain the formula
in this theorem by noticing formulas (4.12) and (4.14) in [17] and by taking the
orientations of the faces of x into account. We will use this formula to derive the
computational procedures in §4.
Theorem 1.3. Suppose F 6= 0 on ∂x, and suppose there is a p, 1 ≤ p ≤ n, such
that:

(1) F¬p ≡ (f1, . . . , fp−1, fp+1, . . . , fn) 6= 0 on ∂xk or ∂xk, k = 1, . . . , n; and
(2) the Jacobi matrices of F¬p are non-singular at all solutions of F¬p = 0 on

∂x.
Then

d(F, x, 0) = (−1)p−1s

{

n
∑

k=1

(−1)k
∑

x∈xk
F¬p(x)=0

sgn(fp(x))=s

sgn
∣

∣

∣

∣

∂F¬p

∂x1x2 . . . xk−1xk+1 . . . xn
(x)

∣

∣

∣

∣

+
n

∑

k=1

(−1)k+1
∑

x∈xk
F¬p(x)=0

sgn(fp(x))=s

sgn
∣

∣

∣

∣

∂F¬p

∂x1x2 . . . xk−1xk+1 . . . xn
(x)

∣

∣

∣

∣

}

,

where s = +1 or −1.

2. Assumptions and Choice of Box

Here, we present the basic assumptions, and also show how to choose the coor-
dinate bounds xi = [xi, xi] to satisfy the assumptions and enable a more efficient
algorithm. When the rank of F ′(x∗) is n − p for some p > 0, an appropriate pre-
conditioner can be used to reduce F ′(x) to approximately the pattern shown in
Figure 1; for details, see [10] and [13]. In this paper, we assume that the system
has already been preconditioned, so that it is, to within second-order terms with
respect to w(x), of the form in Figure 1. As in [13] and [11], we also assume in this
paper that p = 1.
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Figure 1. A preconditioned singular system of rank n− p, where
“∗” represents a non-zero element.

2.1. The Basic Assumptions. We assume

(1) x = (x1, . . . , xn) = ([x1, x1], . . . , [xn, xn]) is a small box constructed to be
centered at an approximate solution x̌, i.e. m(x) = (x̌1, . . . , x̌n).

(2) x̌ is near a point x∗ with F (x∗) = 0, such that ‖x̌− x∗‖ is much smaller
than the width of the box x, and width of the box x is small enough so
that mean value interval extensions lead, after preconditioning, to a system
like Figure 1, with small intervals replacing the zeros.

(3) F has been preconditioned as in Figure 1, and F ′(x∗) has null space of
dimension 1.

Denote

αk ≡ ∂fk

∂xn
(x̌), 1 ≤ k ≤ n− 1,

αn ≡ −1,

∆1 ≡
∣

∣

∣

∣

∂F
∂x1 . . . ∂xn

(x̌)
∣

∣

∣

∣

∆d ≡
n

∑

k1=1

· · ·
n

∑

kd=1

∂dfn

∂xk1 . . . ∂xkd

(x̌)αk1 . . . αkd , 2 ≤ d.

The following representation of f(x) near x̌ is appropriate under these assumptions.

fk(x) = (xk − x̌k) + αk(xn − x̌n) +O
(

‖x− x̌‖2
)

(2.1)

for 1 ≤ k ≤ n− 1.

fn(x) =
1
2!

n
∑

k1=1

n
∑

k2=1

∂2fn

∂xk1∂xk2

(x̌)(xk1 − x̌k1)(xk2 − x̌k2) + . . .(2.2)

+
1
d!

n
∑

k1=1

· · ·
n

∑

kd=1

∂dfn

∂xk1 . . . ∂xkd

(x̌)(xk1 − x̌k1) . . . (xkd − x̌kd)

+O
(

‖x− x̌‖d+1
)

,
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or

fk(x) ≈ (xk − x̌k) + αk(xn − x̌n) for 1 ≤ k ≤ n− 1.(2.3)

fn(x) ≈ 1
2!

n
∑

k1=1

n
∑

k2=1

∂2fn

∂xk1∂xk2

(x̌)(xk1 − x̌k1)(xk2 − x̌k2) + . . .(2.4)

+
1
d!

n
∑

k1=1

· · ·
n

∑

kd=1

∂dfn

∂xk1 . . . ∂xkd

(x̌)(xk1 − x̌k1) . . . (xkd − x̌kd).

2.2. Choosing the Coordinate Bounds. We use a similar scheme to that of §5
of [13] and [11], except we work only with real coordinates: to compute the degree
d(F, x, 0), we consider F¬n on the boundary of x. This boundary consists of the
2n faces x1, x1, x2, x2, . . . , xn, xn. We set xn in such a way that

(2.5) w(xn) ≤ 1
2

min
1≤k≤n−1

{

w(xk)
|αk|

}

Constructing the box widths this way makes it is unlikely that fk(x) = 0 on either
xk or xk for any k with k = 1, . . . , n−1. This, in turn, allows us to replace searches
on these 2n − 2 of the 2n faces of ∂x by simple interval evaluations, reducing the
total computational cost dramatically. See [13] and §4 below for details.

3. Our Main Theorem

The following underlies our algorithm for computation of the topological index
of F (x) in real space.

Theorem 3.1. Suppose

(1) all the assumptions in §2.1 are true;
(2) (2.3) and (2.4) are exact; and
(3) ∆1 = · · · = ∆d−1 = 0, ∆d 6= 0, where 2 ≤ d.

Then d(F, x, 0) = −sgn(∆d) when d is an odd number and d(F, x, 0) = 0 when d is
an even number.

Proof. We will use Theorem 1.3 to compute the degree. Consider F¬n ≡ (f1, . . . , fn−1)
on the boundary of x.

When xn is constructed to satisfy (2.5), it is easy to see that

fk(x) = (xk − x̌k) + αk(xn − x̌n) 6= 0

on xk and xk, k = 1, . . . , n − 1. Thus, F¬n has no zeros on xk and xk, k =
1, . . . , n−1. Thus, to use Theorem 1.3, we need only consider the two faces xn and
xn.

Obviously, F¬n has a unique zero point x̃ = (x̃1, . . . , x̃n) on xn with x̃k − x̌k =
−αk(xn − x̌n), k = 1, . . . , n. Note αn = −1 and x̃n = x. The value of fn at this
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zero point is

fn(x̃) =
1
2!

n
∑

k1=1

n
∑

k2=1

∂2fn

∂xk1∂xk2

(x̌)(x̃k1 − x̌k1)(x̃k2 − x̌k2) + · · ·+

1
d!

n
∑

k1=1

· · ·
n

∑

kd=1

∂dfn

∂xk1 . . . ∂xkd

(x̌)(x̃k1 − x̌k1) . . . (x̃kd − x̌kd)

=
1
2!

n
∑

k1=1

n
∑

k2=1

∂2fn

∂xk1∂xk2

(x̌)(−1)2αk1αk2(xn − x̌n)2 + · · ·+

1
d!

n
∑

k1=1

· · ·
n

∑

kd=1

∂dfn

∂xk1 . . . ∂xkd

(x̌)(−1)dαk1 . . . αkd(xn − x̌n)d

=
(−1)2

2!
(xn − x̌n)2

n
∑

k1=1

n
∑

k2=1

∂2fn

∂xk1∂xk2

(x̌)αk1αk2 + . . .

+
(−1)d

d!
(xn − x̌n)d

n
∑

k1=1

· · ·
n

∑

kd=1

∂dfn

∂xk1 . . . ∂xkd

(x̌)αk1 . . . αkd

=
(−1)2∆2

2!
(xn − x̌n)2 + · · ·+ (−1)d−1∆d−1

(d− 1)!
(xn − x̌n)d−1

+
(−1)d∆d

d!
(xn − x̌n)d

=
(−1)d∆d

d!
(xn − x̌n)d =

(−1)d∆d

d!
(−1)d(x̌n − xn)d.

=
∆d

d!
(x̌n − xn)d.

The determinant of the Jacobi matrix at this zero point is

∣

∣

∣

∣

∂F¬n

∂x1 . . . ∂xn−1
(x̃)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 1.

Similarly, F¬n has a unique zero point x̃ = (x̃1, . . . , x̃n) on xn with x̃k − x̌k =
−αk(xn − x̌n), k = 1, . . . , n. With a similar computation to above, the value of fn
at this zero point is

fn(x̃) =
∆d

d!
(x̌n − xn)d.

The determinant of the Jacobi matrix at this zero point is also

∣

∣

∣

∂F¬n
∂x1...∂xn−1

(x̃)
∣

∣

∣ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 1.

Next, we apply Theorem 1.3 with s = +1: When d is odd, if ∆d > 0, then
fn(x̃) > 0 at the zero point x̃ of F¬n on xn and thus d(F, x, 0) = (−1)n−1 ×
(−1)n × 1 = −1. If ∆d < 0, then fn(x̃) > 0 at the zero point x̃ of F¬n on xn and
thus d(F, x, 0) = (−1)n−1 × (−1)n+1 × 1 = +1. Thus, in any case, when d is odd,
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we have d(F, x, 0) = −sgn(∆d). When d is even, fn(x̃) is either positive at the two
zero points x̃’s of F¬n on xn and xn or negative at the two zero points x̃’s of F¬n
on xn and xn. In the first case, it’s obvious that d(F, x, 0) = 0. In the second case,
d(F, x, 0) = (−1)n−1[(−1)n × 1 + (−1)n+1 × 1] = 0. Thus, in any case, when d is
even, we have d(F, x, 0) = 0.

�

4. algorithm

In actual problems, the equalities (2.3) and (2.4) in §2.1 are only approximately
true. However, the analysis in Theorem 3.1 is still valid if the approximations are
accurate. In that case, proof of Theorem 3.1 leads to a practical computational
technique. First, it is easy to apply simple interval evaluations of

fk(x) = (xk − x̌k) + αk(xn − x̌n)

to verify fk(x) 6= 0 on xk and xk, k = 1, . . . , n − 1, since we have arranged xn

according to (2.5) to achieve this. Second, it is not difficult to apply an interval
Newton method to verify the unique zero point of F¬n on xn and on xn, since
F¬n is approximately linear: On xn, xn = x is known precisely, and formally

solving fk(x) = 0 for xk gives sharper bounds x̃k with w(x̃k) = O
(

‖x− x̌‖2
)

,

1 ≤ k ≤ n − 1, and thus gives a small subspace x0
n over which we can set up an

interval Newton method for F¬n to verify existence and uniqueness of the zero.
Once we have verified existence of the solution, an interval evaluation gives us
sgn(fn) at the zero point. We then calculate and verify the sign of the determinant
of the Jacobi matrix of F¬n at the zero point1. We process xn similarly, then we
use the formula in Theorem 1.3 to compute the degree.

ALGORITHM 1
Initialization

Input the approximate solution x̌ and a tolerance εxn that determines the
size of the box constructed about x̌ in which existence of a solution is to
be verified.

Box-setting Phase
(1) Compute the preconditioner of the original system, using Gaussian elimi-

nation with full pivoting. (In the remainder of this algorithm, the notation
fk will refer to the k-th component of the preconditioned system.)

(2) xn ← [x̌n − εxn , x̌n + εxn ].
(3) For 1 ≤ k ≤ n− 1:

(a) rk ← max{εxn , |αk|w(xn)}.
(b) xk ← [x̌− rk, x̌ + rk].

Elimination Phase
Do for 1 ≤ k ≤ n− 1:

Do for xk and xk
(i) Compute the mean-value extension of fk over that face.
(ii) If 0 ∈ fk, then stop and signal failure.

1At present, we only verify the sign of the determinant of the preconditioned Jacobi matrix,
and do not take account of the sign of the determinant of the preconditioner matrix. Thus, we
only obtain a verified value of the absolute value of the degree. This, however, is sufficient to
verify existence of a solution.
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Search Phase

(1) For xn (or xn.)
(a) Use mean-value extensions for fk(x) = 0 to solve for xk to get sharper

bounds x̃k with width O
(

‖x− x̌‖2
)

, 1 ≤ k ≤ n − 1, and thus to get

a small subface x0
n (or x0

n) of xn (or xn).
(b) Set up an interval Newton method for F¬n to verify existence and

uniqueness of a zero over x0
n (or x0

n.)
(c) If the zero can not be verified, then stop and signal failure.
(d) Compute the mean-value extension of fn over x0

n (or x0
n).

(e) If 0 ∈ fn, then stop and signal failure.

(f) Compute
∣

∣

∣

∂F¬n
∂x1...xn−1

(x0
n)

∣

∣

∣ (or
∣

∣

∣

∂F¬n
∂x1...xn−1

(x0
n)

∣

∣

∣).

(g) If 0 ∈
∣

∣

∣

∂F¬n
∂x1...xn−1

(x0
n)

∣

∣

∣ (or 0 ∈
∣

∣

∣

∂F¬n
∂x1...xn−1

(x0
n)

∣

∣

∣), then stop and signal
failure.

(h) Use the formula in Theorem 3.1 with s = +1 to compute the degree
contribution of xn (or xn.)

(2) Add the degree contributions of xn and xn to get the degree.

END OF ALGORITHM 1

The computational complexity of this algorithm is O
(

n3
)

. (See the computa-
tional complexity analysis in [13] for details.)

From Theorem 3.1, Algorithm 1 can be used to verify a non-zero topological
degree (and hence, by the Kronecker existence theorem, existence of a solution),
provided d is odd. However, we have demonstrated that no general computational
method can verify existence in real space when d is even, although, in that case, we
can verify existence when we embed the approximate solution in a small surrounding
region of complex space; see [13] and [11]. In particular, we can use the general
algorithm, [11, Algorithm 1], for any d. However, for odd d, Algorithm 1 above
is much more efficient, and also verifies a stronger assertion (existence of a real
solution, versus existence of a complex solution). If d is initially unknown, we can
use the heuristic in [11, §5] to guess d. The value of d, and hence, existence of a
solution along with rigorous bounds on its coordinates, can then be verified with
Algorithm 1 above when d is odd and with [11, Algorithm 1] when d is even.

5. Experimental Results

We programmed Algorithm 1 in Fortran 90 in the same interval arithmetic envi-
ronment and on the same machine as the experiments in [13] and [11]. Namely, we
used the Fortran 90 system described in [9] and [10] with subsequent improvements
within the GlobSol project [3], and we used the Sun Fortran 95 compiler version
6.0 with optimization level 0 on a Sparc Ultra-1 model 140. We tested Algorithm 1
above with Example 2 from [11], that is, with

Example 5.1 (Example 2 from [11], motivated from considerations in [6]). Set
f(x) = h(x, t) = (1− t)(Ax−x3)− tx, where A ∈ Rn×n is the matrix corresponding
to central difference discretization of the boundary value problem −u′′ = 0, u(0) =
u(1) = 0 and x3 = (x3

1, . . . , x
3
n)T , and t is chosen equal to t1 = λ1/(1 + λ1), where

λ1 is the largest eigenvalue of A.
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As in our tests of the algorithms in [11], we tried Algorithm 1 above with the
example, with n = 5, 10, 20, 40, 80, and 160. We also tried Algorithm 1 above with
n = 320 and n = 640, dimensions that were impractical within our experimental
settingfor the algorithms in complex space from [11]. In all cases, we used εxn =
10−2. (Considerably larger or smaller values of εxn seemed to lead to less desirable
results.) Algorithm 1 above succeeded in verifying existence of a solution in all
cases. We compare execution times of Algorithm 1 with that of the corresponding
algorithm in complex space (from experiments in [11]) in Table 1.

Table 1. Numerical Results

n CPU Time Time Ratio CPU Time Time Ratio
(Complex) (Complex) (Real) (Real)

5 39.27 0.06
10 10.31 0.26 0.15 2.50
20 74.32 7.21 0.60 4.00
40 481.23 6.48 3.61 6.02
80 3805.06 7.91 25.35 7.02

160 33944.20 8.92 192.20 7.58
320 — 1569.95 8.17
640 — 12956.11 8.25

The following are seen from Table 1.
• Computations in the real space are orders-of-magnitude more efficient than

computations in complex space.
• The real and complex algorithms exhibit approximately the same depen-

dence on the number of variables n: the amount of work increases slightly
faster than n3.

Analysis in [13] and [11] exhibits that the total work, for equivalent systems, in-
creases as O

(

n3
)

, everything else about the system being the same. However,
both the real and complex algorithms use (possibly) multiple sweeps of the interval
Gauss–Seidel method; more sweeps may be necessary to assure reduction of each
coordinate width for higher condition numbers. Since the condition numbers of the
Jacobi matrices increases for Example 5.1 as n increases, this could account for the
growth in effort that is slightly greater than O

(

n3
)

.
Besides being carried out in a space with approximately double the number of

variables, verification of the degree in complex space (with the algorithms in [13]
and [11]) requires an expensive one-dimensional search. In contrast, the verification
in Rn requires no such search.

6. Summary and Future Work

We have presented an algorithm for verifying that the topological index at a
singular solution x∗ ∈ x, F (x∗) = 0 of a map F : x ⊂ Rn → Rn is non-zero, in
those cases in which the degree of the first non-zero tensor in the Taylor expansion
of the singular part of F at x∗ is odd, and the dimension of the null space of
the Jacobi matrix of F at x∗ is one. This algorithm is much more efficient than
previously proposed algorithms for verifying the index in Cn, and demonstrably
has a running time approximately proportional to n3.
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The algorithm can be used to provide rigorous bounds on an actual singular
solution. It can be incorporated as a post-processing step in traditional floating-
point algorithms for solving nonlinear systems, or can be incorporated in global
branch-and-bound algorithms.

The main computations in the algorithm are linear-algebra based. These compu-
tations may be made more efficient by taking account of structure, such as banded-
ness or sparsity, in the Jacobi matrix. This would reduce the computational effort
below O

(

n3
)

.
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