
On Proving Existence of Feasible Points in Equality
Constrained Optimization Problems

R. Baker Kearfott∗

University of Southwestern Louisiana

October 21, 1996

Abstract

Various algorithms can compute approximate feasible points or ap-
proximate solutions to equality and bound constrained optimization
problems. In exhaustive search algorithms for global optimizers and
other contexts, it is of interest to construct bounds around such ap-
proximate feasible points, then to verify (computationally but rigor-
ously) that an actual feasible point exists within these bounds. Hansen
and others have proposed techniques for proving the existence of fea-
sible points within given bounds, but practical implementations have
not, to our knowledge, previously been described. Various alternatives
are possible in such an implementation, and details must be carefully
considered. Also, in addition to Hansen’s technique for handling the
underdetermined case, it is important to handle the overdetermined
case, when the approximate feasible point corresponds to a point with
many active bound constraints. The basic ideas, along with experi-
mental results from an actual implementation, are summarized here.

Key words. constrained global optimization, verified computations,
interval computations, bound constraints.

AMS subject classifications. 65K05, 90C26
∗This work was supported in part by National Science Foundation grant CCR-9203730.

1



1 Introduction and Motivation

The context of our present study is the optimization problem

minimize φ(X)
subject to ci(X) = 0, i = 1, . . . , m

aij ≤ xij ≤ bij , j = 1, . . . , q,
(1)

where X = (x1, . . . , xn)T . A general constrained optimization problem,
including inequality constraints g(X) ≤ 0 can be put into this form by
introducing slack variables s + g(X) = 0 along with the bound constraint
0 ≤ s ≤ ∞. See [10] for a practical discussion of this.

The specific problem addressed here is:

Given an approximate feasible point X̌ ∈ Rn, con-
struct bounds

X =
{

(x1, . . . , xn)T ∈ Rn | x̌i − εi ≤ xi ≤ x̌i + εi

}

such that there exists at least one feasible point of
Problem (1) in X, i.e. a point X ∈ X with C(X) = 0,
such that X also satisfies the bound constraints of
Problem (1).

(2)

Problem (2) can be approached with interval Newton methods, which, at the
most fundamental level, are computational versions of Brouwer’s fixed point
theorem. An introduction to interval Newton methods in the context of this
paper is in [5]. Additional explanation in the present context will appear
in [12]. A related, relaxed problem, i.e. that in which X are constructed
or found such that every point X ∈ X has ‖C(X)‖ ≤ ε for some ε, has
also been considered [17, 20]. Generally, if an accurate approximation to
a solution (or feasible point) is known, interval Newton methods can prove
that an actual solution exists within specified bounds, at a small fraction
of the cost of the total cost of an exhaustive search algorithm that finds
feasible points or solutions. The technique is thus of general utility.

In exhaustive search algorithms for global optimization, an upper bound
φ to the global minimum of the objective function φ is invaluable in elim-
inating regions over which the range of φ lies above φ. (See [6] or [2] for
recent effective algorithms, as well as [17] or [5] for examples in uncon-
strained optimization.) A rigorous upper bound φ can be obtained with

2



interval arithmetic by evaluating φ over a small region X containing an
approximate minimizer. However, in equality-constrained problems such as
Problem 1, a rigorous upper bound is obtained with this process only if it
is certain that X contains a feasible point.

Hansen proposes a technique in [5, §12.3 ff.] for determining whether a
particular box (i.e. rectangular parallelepiped) X contains a feasible point.
Hansen’s technique involves selection of some of the variables to form a
square subsystem of C(X) = 0. Variants of this technique are one of the
alternatives summarized in this paper. (However, we recommend using it
to verify small boxes around an approximate feasible point that has been
found by a conventional floating-point method.) Additionally, a technique
involving preconditioning and direct analysis of the rectangular constraint
system C(X) = 0 is tried. A third alternative tried here is to use the
Fritz John system to simultaneously verify feasibility of the constraints and
existence of a critical point.

Optima in practical bound-constrained problems often occur on lower-
dimensional boundaries, with many active bound constraints. In search
algorithms for global constrained optima, local optimization software is first
used to obtain an approximation to such an optimum, from which an upper
bound φ is to be constructed as above. However, use of an interval Newton
method to prove that there exists a point at which the equality constraints
hold requires the dimension of the space in which the point occurs be greater
than or equal to the number of such constraints. In fact, verification that a
box X constructed about an approximate feasible point contains a feasible
point succeeds most often when the approximate feasible point is accurately
near a feasible point, and when the approximation is at the center of the box
(coordinate bounds) used for verification. For this reason, approximate fea-
sible points obtained from conventional floating point optimizers sometimes
should first be perturbed away from bound constraints, then adjusted. Two
schemes for this are summarized.

The next section gives notation, while §3 summarizes the algorithm
variants and alternatives for replacing the underdetermined system by a
square system. Techniques for perturbing approximate optima off bound
constraints are summarized in §4. The problems used in the experiments
are listed in §5. The actual experiments are reported in §6. Overall conclu-
sions can be found in §7. More complete details appear in [9].

3



2 Notation

Here, boldface will be used to denote intervals, lower case to denote scalar
quantities, and upper case to denote vectors and matrices. Underscores will
denote lower bounds of intervals and overscores will denote upper bounds of
intervals. For components of vectors, corresponding lower case letters will
be used. For example, we may have:

X = [x1,x2, . . . , xn]T ,

where xi = [xi, xi].
As above, C(X) = (c1(X), . . . cm(X))T = 0, C : Rn → Rm, will denote

the set of equality constraints, C(X) will denote the set of interval residuals
of the equality constraints over X, and ∇C will denote either a componen-
twise interval extension of the Jacobi matrix of the constraints C or a slope
matrix corresponding to the constraints [16, 12].

Interval arithmetic will not be reviewed here. The reader may consult
any of the numerous introductions, such as those in [1], [15], [16], [17], or
[12].

3 A Summary of the Techniques

The techniques for proving existence of a feasible point depend on an interval
Newton method. Interval Newton methods operate on nonlinear systems of
equations F (X) = 0, F : Rn → Rn. Most interval Newton methods can be
put into the general form

N(F ; X, X̌) = X̌ + V , (3)

where V is an interval vector that bounds the exact solution set to the
square interval linear system

A(X − X̌) = −F (X̌), (4)

where A is either an interval extension to the Jacobi matrix or a slope
matrix [5, 12, 16]. For example, V can be obtained with preconditioned
interval Gaussian elimination or with the preconditioned interval Gauss–
Seidel method. (See [1, 16], and see [5, 12] for details in the present context.)

For understanding in this paper, an interval Newton method may be
viewed abstractly as an operator on boxes X ⊂ Rn, such that N(F ;X, X̌) ⊆

4



c(X) = 0
HHHj

First coordinate is held
fixed at center of box.

Second coordinate varies.SSo

This point is proven

?

6

ss
Center of box

XXz

�����*
Z

Z}

to exist.

Figure 1: Proving that there exists a feasible point of an underdetermined
constraint system

X implies that there exists a solution of F (X) = 0 in N(F ; X, X̌) ⊆ X.
Thus, to prove that there exists a feasible point, i.e. a point X with C(X) =
0, in some box X, it is necessary to construct a square system F (X) = 0
upon which to apply the interval Newton method.

However, systems of equality constraints C(X) = 0 C : Rn → Rm are
typically underdetermined, with m < n. In [5, §12.3 ff.], Hansen suggests
holding (n−m) of the coordinates fixed. The basic idea is to choose those
coordinates to which the system is least sensitive to be held fixed. For
example, if n = 2 and there is just one constraint (i.e. m = 1), then C(X) =
0 is a curve in R2, and an interval Newton method can prove the existence
of a feasible point along a line parallel to one of the coordinate directions;
see Figure 1. Heuristics for choosing which coordinates to hold fixed can
depend on the interval constraint matrix ∇C(X). Hansen’s heuristic for
the choice of coordinates to be held fixed depends on Gaussian elimination
with complete pivoting:

Method 1 (Hansen’s technique for choosing the fixed coordinates)

1. Compute the midpoint matrix A ∈ Rm×n of ∇C(X).

2. Perform Gaussian elimination with complete pivoting on the rectangular ma-
trix A.

3. Choose the original indices of the columns of A that have been permuted into
the last n − m columns during the elimination process to be the indices of
those variables to be held fixed (i.e. to be replaced by points) in the interval
Newton method.

5



There are a number of possible alternative schemes. One is to try to
choose the coordinate directions to be held fixed to be nearly orthogonal to
the null space of the Jacobi matrix of C at a point:

Method 2 (Alternate method of choosing the fixed coordinates)

1. Compute an approximate basis V (1), V (2), V (i) = (v(i)
1 , . . . v(i)

n )T , V (n−m),
for the null space to ∇C(X̌), where X̌ is a floating point approximation to a
feasible point.

2. Order the n coordinate directions j, j = 1, . . . , n in order of increasing
∑n−m

i=1 |v(i)
j |.

3. Choose the last (n−m) coordinate directions from Step 2 (in a sense, those
coordinate directions most nearly tangent to the null space of the Jacobi ma-
trix of the constraints) to be held fixed in the interval Newton method.

It is also possible to use preconditioning to implicitly choose the square
subspace in which to apply the interval Newton method. In particular, if
the m by n interval linear system

∇C(X)(X − X̌) = −C(X̌)

is preconditioned by a point m by m matrix Y , the resulting system

Y ∇C(X)(X − X̌) = −Y C(X̌), (5)

is a square m×m interval linear system that corresponds to Equation (4).
In fact, techniques from [7, 10, 12] can be used to produce a larger precondi-
tioner Y = (Y1, . . . , Yn)T , where Yi is the i-th row of Y , from which m rows
as in Equation 5 can sometimes be selected. The preconditioner rows as in
[7, 10, 12] are such that the width of the i-th coordinate of each coordinate
image x̃i, where

X̃ = (x̃1, . . . , x̃n) = N(Y C;X, X̌),

is minimal over all possible preconditioner rows Yi, when the interval Gauss–
Seidel method is used to bound the solution set. (These preconditioners are
called optimal LP preconditioners, since they can be computed approxi-
mately by approximately solving linear programming (LP) problems with
floating point arithmetic.) If x̃i ⊆ xi for m coordinates {i1, . . . , im}, then,
for each choice of the xj ∈ xj , j 6∈ {i1, . . . , im}, there is a unique solution to
C(X) = 0 within X. (For details, see [12].) This leads to the following:

6



Method 3 (Using preconditioners as in [7, 10, 12] to prove existence of a feasible
point in X)

1. Compute the preconditioner row Yi and the interval Gauss–Seidel image x̃i,
as described above, one row at a time, for i = 1, . . . , n.

2. If there is a set
{

i1, . . . , im
}

such that x̃ik ⊆ xik for k = 1, dots, m, then there
exists a feasible point of C(X) = 0 in X, for each selection of coordinate
values of the coordinates other than xi1 , . . . , xim .

A possible practical advantage of methods 1 and 2 over Method 3 is
that some of the coordinates are set to points, which could make the widths
smaller in the interval Newton image, thus making it more likely to prove
the existence of feasible points. On the other hand, the heuristic choices in
methods 1 and 2 could could give inappropriate coordinates for proving the
existence of a feasible point.

A final aspect of the process is construction of the box X within which
a feasible point is to be proven to exist. An initial box can be constructed,
followed by ε-inflation as explained in [14, 18, 19]. In ε-inflation a small box
X is initially constructed, centered at an approximate feasible point X̌, and
an interval Newton method attempts to prove existence of a feasible point
within X. If existence cannot be proven, one or more coordinate directions
of X are made wider, then the interval Newton method is repeated. Even-
tual success of this process depends on how close X̌ actually is to a feasible
point. Also, the size of the initial box X should be related to the accuracy
to which X̌ has been computed. For details, see [9, 12].

4 On Bound Constraints

In bound-constrained problems, it is often the rule, rather than the excep-
tion, that bound constraints are active at the optimizers. This is also true of
inequality-constrained problems, which for simplicity and other reasons, we
convert to equality- and bound-constrained problems; cf. [10]. An extreme
case of many active bound constraints is linear programming, in which a
maximal number of bound constraints must be active.

Consequentially, if the box X is to be constructed about the approx-
imate feasible point X̌ and lying within the region defined by the bound
constraints, then X̌ must be near the boundary of X. When that happens,
the feasible manifold (such as the curve c(X) = 0 in Figure 1) can lie near a
corner of X, and the techniques summarized in §3 may fail to prove that a

7



feasible point exists in X. (The image of the interval Newton method tends
to be centered at a solution of F (X) = 0, and if the solution is near the
boundary of X, the image N(F ; X, X̌) may overlap with points outside X.)
If there are sufficient degrees of freedom left when the variables correspond-
ing to bound-constraints are held fixed, then the interval Newton method
can be applied in a subspace. Otherwise, (if X̌ is within a certain tolerance
of too many bound constraints) X̌ can be perturbed into the interior of the
bounds, then the resulting point can somehow be projected back onto the
manifold C(X) = 0 (e.g. by using local optimization software in a hyper-
plane parallel to the bound constraints). This is done in the experiments
below. For additional explanation of the procedure, see [9, 12].

Instead of trying to identify active bound constraints and adjust the
number of degrees of freedom, it is possible to include the bound constraints
in the Fritz John conditions [5, 10, 12], i.e. as part of a generalized Lagrange
function, and to apply an interval Newton method to the gradient of the
generalized Lagrange function. However, an interval Jacobi matrix or an in-
terval slope matrix for the system of equations corresponding to the gradient
of the Fritz John conditions often contains singular matrices when there are
many active bound constraints. Thus, the practicality of this alternative is
not certain.

5 The Test Set

Most of the problems in the test set are taken from [4]. We selected these to
be non-trivial problems with a variety of constraint types, as well as differing
numbers of variables and constraints. We also tried the problems from
[20]. Although the latter are relatively simple, [20] contains one of the few
published experimental results for general interval constrained optimization
algorithms. Also, inclusion of these problems allows contrasting the relative
ease of verifying , as done in this paper, with global search algorithms such
as that of [20].

Each problem is identified with a mnemonic, given below.
Basic attributes of the test problems appear in Table 1. In each prob-

lem, each non-trivial inequality constraint in the original formulation was
replaced by an equality constraint and a bound constraint on a slack variable.
The numbers of variables in the table reflect these added slack variables; the
bound constraints reflect original bound constraints and lower bounds on the
added slack variables. The column labelled “# active” gives the number of

8



Table 1: Summary attributes of the test problems

Problem # vars. # equality # bound # active pert? type of
name constr. constr. constraints

fpnlp3 6 3 8 3 no linear
fpqp3 23 9 32 14 yes linear
fplnp6 4 2 6 2 no degree 4
fppb1 9 6 13 7 yes bilinear
fphe1 16 13 28 10 yes bilinear
gould 4 2 4 2 no quadratic

bracken 3 2 1 1 no quadratic
wolfe3 3 2 2 0 no quadratic

active bound constraints at the solution near which a feasible point is to
be proven to exist. The column labelled “pert?” indicates whether pertur-
bation (as mentioned in §4) is required to obtain a square system for the
interval Newton method. (Such perturbation is required if the number of
equality constraints exceeds the number of variables minus the number of
active bound constraints.)

Each problem is identified below, along with the coordinates of the solu-
tion near which a feasible point is to be proven to exist. Additional details
can be found in [9].

fpnlp3 is the third nonlinear programming test problem, [4, p. 28]. The
approximate solution of interest is

(
4
3
, 4, 0, 0,

8
3
, 0).

fpqp3 is the third quadratic programming test problem, [4, p. 8]. The
approximate solution of interest is

(1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 0, 0, 0, 5, 5, 0, 6, 6).

fpnlp6 is the sixth nonlinear programming test problem, [4, p. 30]. The
approximate solution of interest is

(2.3295, 3.1783, 0, 0).

9



fppb1 is the first pooling-blending test problem, [4, p. 59]. The approxi-
mate solution of interest is

(0, 200, 0, 100, 0, 100, 0, 100, 1, 0, 0).

fphe1 is the first heat exchanger network test problem, [4, pp. 63–66]. The
approximate solution of interest is

(0, 10, 10, 10, 10, 0, 210, 150, 310, 210, 10, 0, 190, 140, 40, 50).

gould is the first test problem in [20]. The approximate solution of interest
is

(14.095, .842960788, 0, 0).

bracken is the second test problem in [20]. The approximate solution of
interest is

(0.822875653899075, 0.911437827385507, 0).

wolfe3 is the third test problem in [20]. The approximate solution of inter-
est is

(1.2247448866122757, 1.2247448567842063, 1.7320508069462872).

Although this is not an extensive set, these problems seem representative,
particularly from the point of view of varying numbers of active bound
constraints and parameter space dimensions. Later, it would be of interest
to try the techniques on problems with highly nonlinear, transcendental
constraints. Appearance of transcendental functions per se should not affect
verification, but complicated expressions conceivably could.

6 Experimental Results

6.1 Implementation and Environment

The methods in §3 were programmed in the Fortran 90 environment de-
veloped for that purpose and described in [11]. Similarly, the functions
described in §5 were programmed using the same Fortran 90 system, and
an internal symbolic representation of the objective function, constraints
and gradient of the objective function was generated prior to execution of

10



the numerical tests. In the actual tests, generic routines then interpreted
this single internal representation to obtain both floating point and interval
values and derivative matrices.

The Lancelot package routine “DAUGLG”, described in [3], was used
to obtain the approximate feasible points X̌. The objective functions were
included when this routine was called, since a primary use of verified feasible
points in global optimization algorithms is to obtain good upper bounds on
the global minimum. For convenience, a generic interface to DAUGLG was
used.

The NAG Fortran 90 compiler, version 2 was used on a Sparc 20. Exe-
cution times were measured using the routine “DSECND”.

A good initial guess was handed to DAUGLG, which then corrected it.
Afterwards, the active bound constraints were determined. If the number
of inactive bound constraints was then less than the number of equality
constraints, then the approximate solution was perturbed, as indicated in
§4. After the perturbed feasible point was produced, each of Method 2,
Method 3 and and Method 1 was tried. Success of verification, along with
CPU times and other performance information, was recorded.

Additional implementation details appear in [9].

6.2 Output and conclusions

Table 2 lists the success of each of the three methods (column “verified”), as
well as the number of times the box was expanded in the ε-inflation proce-
dure (column “ninfl”) before either it was proven that the box contained a
feasible point, or until there was failure, with “1” indicating no expansions.
The columns of Table 2 labelled “null space” correspond to Method 2, the
columns labelled “LP” correspond to Method 3, and the columns labelled
“elimination” correspond to Method 1.

Failure to prove existence of a feasible point was always due either to
failure to compute a preconditioner for the interval Newton method or due
to X becoming larger than a preset size. Since Method 1 always succeeded
without ε-inflation (and since no method succeeded after one or more expan-
sions), it is clear that failure was due to intrinsic properties of the method,
and not to an inaccurate approximate solution before or after the perturba-
tion process or a poor choice of heuristics in the ε-inflation process.

A second conclusion from Table 2 is that choosing the coordinates to
be held fixed by Gaussian elimination (advocated by Hansen) is the most
reliable method.

11



Table 2: Verification success of the three schemes

null space LP elimination
problem verified ninfl verified ninfl verified ninfl
fpnlp3 yes 1 yes 1 yes 1
fpqp3 – 1 – 4 yes 1
fpnlp6 yes 1 yes 1 yes 1
fppb1 yes 1 – 10 yes 1
fphe1 – 4 yes 1 yes 1
gould yes 1 yes 1 yes 1
bracken yes 1 yes 1 yes 1
wolfe3 yes 1 – 7 yes 1

In Table 3, numbers of interval evaluations of the constraints and con-
straint gradients are given for each of the three methods and each of the
problems. This can be used for comparison with other results and tasks,
such as the global search algorithm in [20].

In Table 4, CPU times in seconds for the three verification algorithms
are listed.

Tables 2, 3 and 4 indicate that the Hansen variant is both more reliable
and less costly, although most of the difference in cost is attributable to the
fact that the Hansen variant is more reliable, and failure to prove feasibility
cost more (because of repeated but ineffective ε-inflation steps). The smaller
times in Table 4 are inaccurate, since 0.01 sec. is the smallest time unit that
can be measured with “DSECND.”

Execution times to perturb the approximate feasible point away from
bound constraints are given in [9]. An astounding result is that it took far
more effort to perturb the approximate feasible point than to verify that a
feasible point existed, once the approximate feasible point was perturbed.
Most of the CPU time in such perturbation steps was spent in the con-
strained optimizer DAUGLG. See [9] for details. Also, see [8, 12] for a
discussion of efficiency in the Fortran 90 system [11].

The alternative to selecting square subsystems and perturbing approxi-
mate feasible points, using the Fritz John system, was unsuccessful in pre-
liminary experiments, and is not reported in these tables.

12



Table 3: Interval constraint and constraint gradient evaluations

null space LP elimination
problem C ∇C C ∇C C ∇C
fpnlp3 9 9 6 9 9 9
fpqp3 27 396 72 792 27 396
fpnlp6 6 4 4 4 6 4
fppb1 18 84 120 420 18 84
fphe1 156 832 26 208 39 416
gould 6 4 4 4 6 4
bracken 6 4 4 4 6 4
wolfe3 6 12 28 42 6 12
Totals 234 1345 264 1483 117 929

Table 4: CPU times for the verification steps

problem null space LP elimination
fpnlp3 0.02 0.01 0.01
fpqp3 0.05 0.43 0.05
fpnlp6 0.01 0.01 0.01
fppb1 0.03 0.26 0.03
fphe1 0.33 0.20 0.11
gould 0.01 0.01 0.00
bracken 0.01 0.01 0.01
wolfe3 0.02 0.07 0.01
Totals: 0.48 1.00 0.23

13



7 Summary

Several techniques for proving feasibility of a point in a neighborhood of an
approximate solution of an optimization problem posed in terms of equality
constraints and bound constraints have been outlined. These techniques
have been tested with a small but significant set of test problems. The
techniques appear to be reliable and inexpensive, relative to the local floating
point optimizers used in conjunction with them. The technique should prove
valuable in global search algorithms and other applications.

Although verifying existence of feasible points has been discussed in the
literature, to our knowledge, there has been little previous thorough devel-
opment and empirical evaluation of techniques. A notable exception is [13].
There, as large a box as possible was constructed within which inequalities
of the form g(x) < 0 can be rigorously verified; the algorithm was applied
to a significant engineering design problem (of composite laminates).

Other considerations, such as handling linearly dependent constraints,
appear in [9, 12].

8 Acknowledgement

I wish to acknowledge Shiying Ning for programming and checking the more
complicated test problems used here. I also wish to apologize to the referees
and the associate editor for the rather unpolished first draft of the paper,
and I wish to thank them for their work and patience.

References

[1] G. Alefeld and J. Herzberger. Introduction to Interval Computations.
Academic Press, New York, 1983.

[2] O. Caprani, B. Godthaab, and K. Madsen. Use of a real-valued local
minimum in parallel interval global optimization. Interval Computa-
tions, 1993(2):71–82, 1993.

[3] A. R. Conn, N. Gould, and Ph.L. Toint. LANCELOT: A Fortran Pack-
age for Large-Scale Nonlinear Optimization. Series in Computational
Mathematics, vol. 17. Springer-Verlag, New York, 1992.

14



[4] C. A. Floudas and P. M. Pardalos. A Collection of Test Problems for
Constrained Global Optimization Algorithms. Lecture Notes in Com-
puter Science no. 455. Springer-Verlag, New York, 1990.

[5] E. R. Hansen. Global Optimization Using Interval Analysis. Marcel
Dekker, Inc., New York, 1992.

[6] C. Jansson and O. Knüppel. A global minimization method: The multi-
dimensional case. Technical Report 92.1, Informathinstechnik, Technis-
che Uni. Hamburg–Harburg, 1992.

[7] R. B. Kearfott. Preconditioners for the interval Gauss–Seidel method.
SIAM J. Numer. Anal., 27(3):804–822, June 1990.

[8] R. B. Kearfott. Empirical evaluation of innovations in interval branch
and bound algorithms for nonlinear algebraic systems, 1994. Accepted
for publication in SIAM J. Sci. Comput.

[9] R. B. Kearfott. On verifying feasibility in equality constrained optimiza-
tion problems. Technical report, University of Southwestern Louisiana,
1994.

[10] R. B. Kearfott. A review of techniques in the verified solution of con-
strained global optimization problems, 1994. Preprint, Department
of Mathematics, Univ. of Southwestern Louisiana, U.S.L. Box 4-1010,
Lafayette, LA 70504.

[11] R. B. Kearfott. A Fortran 90 environment for research and prototyping
of enclosure algorithms for nonlinear equations and global optimization.
ACM Trans. Math. Software, 21(1):63–78, March 1995.

[12] R. B. Kearfott. Rigorous Global Search Methods for Continuous Prob-
lems. Kluwer, Dordrecht, Netherlands, 1996.

[13] B. P. Kristinsdottir, Z. B. Zabinsky, T. Csendes, and M. E. Tut-
tle. Methodologies for tolerance intervals. Interval Computations,
1993(3):133–147, 1993.

[14] G. Mayer. Epsilon–inflation in verification algorithms, 1993. Preprint,
Fachbereich Mathematik, Universität Rostock, Postfach 6980, D-18051
Rostock, Germany.

15



[15] R. E. Moore. Methods and Applications of Interval Analysis. SIAM,
Philadelphia, 1979.

[16] A. Neumaier. Interval Methods for Systems of Equations. Cambridge
University Press, Cambridge, England, 1990.

[17] H. Ratschek and J. Rokne. New Computer Methods for Global Opti-
mization. Wiley, New York, 1988.

[18] S. M. Rump. Kleine Fehlerschranken bei Matrixproblemen. PhD thesis,
Universität Karlsruhe, 1980.

[19] S. M. Rump. Verification methods for dense and sparse systems of
equations. In J. Herzberger, editor, Topics in Validated Computations,
pages 63–135, Amsterdam, 1994. Elsevier Science Publishers.

[20] M. A. Wolfe. An interval algorithm for constrained global optimization.
J. Comput. Appl. Math., 50:605–612, 1994.

16


