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Abstract

A rigorous and efficient algorithm is presented for computing a
sequence of points on all the branches of surface patch intersection
curves within a given box. In the algorithm, an interval step control
continuation method makes certain that the predictor algorithm will
not jump from one branch to the another. These reliability prop-
erties are independent of any choice of tuning parameters. Both a
3-dimensional box complement method and a containment checking
method are able to guarantee that all branches are located. Initial
experimental results show that, even with this reliability, the amount
of computation is orders of magnitude less than a uniform tesselation
of the three-dimensional viewing box.

Keywords: computational geometry, marching method, continuation me-
thod, surface patch intersections, interval computations.
1 Introduction and Notation

The goal of this paper is to present general algorithms for computing all
surface / surface intersection curves that are mathematically rigorous in the
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sense that they never overlook any distinct intersection curves in the viewing
region. We achieve this with interval computations.

We assume familiarity with interval computations, though we explain one
or two crucial properties here. General introductions to the subject appear
n [11], [14], and elsewhere. A fairly complete introduction in the context
of computational geometry appears in [12]. Other articles involving interval
computations in this context include [5], [15] and [16].

The crucial underlying property of interval computations is that, with
directed roundings, the arithmetic is defined on intervals that rigorously
contain the true results. This allows both bounding of computational er-
rors and rigorous computation of bounds on ranges of functions over regions
of significant size. Such range bounds can be used for proving feasibility
or infeasibility of inequality constraints, proving non-existence of a system
of nonlinear equations, etc. Geometrically, we work with interval vectors x
that are rectangular parallelepipeds, or boxes. We can prove existence and
uniqueness of a solution of a nonlinear system of equations in a box x with
an interval Newton method: Denote the image of x under an interval Newton
method for the system of equations F' = 0 by N(F,x). Then N(F,x) Cx im-

plies F' = 0 has a unique solution within x, where X is the topological interior
of the box x; conversely, if N(F,x)Nx = {}, then there are no roots of F'in x.
For theory on interval Newton methods, consult [14]. The particular interval
Newton method used here is a variant of the interval Gauss—Seidel method,
with a special preconditioner. This method was introduced in [8] and was
analyzed in the context of marching methods for curves in [9]. An alternate
approach to using interval methods to delimit curves and other manifolds is
the adaptive tesselation / interval Newton procedure given in [13].

Throughout this paper, we use boldface lowercase letters (such as x) for
interval vectors, uppercase letters (such as X)) for point vectors, and lowercase
letters and lowercase letters with subscripts (such as ;) for scalar variables.
We will use notation such as H(x) to denote an interval extension of H(x)
over r € X.

The problem we address can be posed as:

Compute sequences of points on surface patch intersection curves

defined by
{f(%y,Z) =0
g(z,y,2) = 0



with (z,y,z) € Xo, where f and g are two nonlinear functions
and Xq is a given box.

Computing the intersection curve of two surface patches (hereinafter referred
to as an SSI curve for surface-surface intersection) is a fundamental prob-
lem in computer aided geometric design and graphics. It arises in a broad
spectum of tasks, ranging from constructive solid geometry to contouring
of scattered data. In general, the intersection curve of two surface patches
cannot be expressed exactly in terms of one parameter using an implicit equa-
tion; see [6]. Therefore, SSI curves can only be approximated. There are two
dominant approaches to the problem of SSI curves: subdivision and march-
ing. Subdivision-based algorithms characteristically tessellate the surfaces
into piecewise linear approximations, and intersect the facets. Marching,
continuation, or curve following algorithms begin by finding one point on
the intersection curve, and then proceed to march around the curve. For a
general introduction to continuation methods, see [1]. Selected references for
alternate methods are [2], or [4], [10].

A major limitation of previous marching methods is that there is no
assurance that all branches of the intersection curve have been detected. This
paper presents an alternate marching algorithm that uses interval step control
in conjunction with either a complementation method or with a containment
checking method, along with box bisection, to locate all branches. In effect,
this approach is a rigorous hybrid between marching and tesselation.

Overall, our algorithms are similar to the algorithm in [2] in the sense
that we first find points on the intersection curves, then proceed to trace the
corresponding curves. However, our algorithms, though adaptively subdi-
viding the region, work with boxes (rectangular regions), and rigorously but
exhaustively search the entire region, independent of the choice of tuning
parameters.

In broad overview, our algorithms proceed as follows. Given two nonlinear
surface patches and a box, we use box bisection and interval Gauss—Seidel
methods to locate a point on one branch of the intersection curve. We then
compute a sequence of points on this branch with an interval step control
continuation method. The continution method generates a sequence of boxes
through which only the current branch of the curve passes. It stops when a
loop is detected, the branch is followed out of xg, or a bifurcation point is
detected.



Our two algorithms differe in the way that additional curves are found. In
our containment checking algorithm, we bisect the original box xq until either
the resulting subbox is contained in some box from the sequence of boxes
generated from previous continuation, or this box is within roundoff error of
a point on some branch. In the first case, the box can be rejected, and another
box from the subdivision is fetched for further processing. In the second case,
since the boxes from continuation cover the branches already followed, the
point-sized box must be a point on another branch. The algorithm stops
when all subboxes are rejected.

In our complement algorithm, the complements in the box x¢ to the
sequence of boxes are computed. This set of complements is the union of
a sequence of subboxes of x3. The algorithm checks each subbox in this
complement to see if it contains points on a solution branch. If a new branch
is detected, it must be different from the previously computed branch, since
the subbox is in the complement of the box cover of the previously computed
branch.

Our experimental results show that both the complement method and
containment checking method are efficient in certain contexts.

Once box coverings of the curves are obtained via our algorithm, fitting
procedures can be used, as desired, to obtain economical representations.

2 The Algorithms

2.1 Locating A Starting Point

The following procedure is used in both overall algorithms to find an initial
starting point on some branch. It uses box bisection and interval Gauss—
Seidel iteration. Unlike the classical Newton’s method, these techniques can
guarantee that the located point is within the considered box. Figure 1
illustrates the procedure.

Algorithm 1 (Finding the starting point)

Step 1 Input the initial box Xq, the functions f and g, a resolution ¢, and
mazimum stack length [yax.

Step 2 [nitialize the stack S by placing xq onto it.



Step 3 Pop a box'y from S (see Figure 1), and
Step 4 Do a sweep of interval Gauss—Seidel iteration on the box y.

If y is determined to have no solutions, then
a) Reject y.
b) If S is empty, then stop. Otherwise, cycle back to Step 3.

else

a) Bisect y into two boxes y; andy;.
b) If the diameter of either yy orys is smaller than e, then
¢) return its midpoint,
i) return the message “starting point is found by rounding.”
else
i) pul y1 and yy onlo S.

i) If the length of S is greater than lyax, then return the
message “there are too many boxes on the stack.”

endif
endif

2.2 Interval Step Control Continuation

A continuation method utilizing interval step control appears in [9]. It gen-
erates a sequence of boxes through which only one branch of the intersection
curves passes. Continuation stops when a bifurcation point is detected or
when the point on the branch is outside the initial box xq. In contrast to
continuation with an approximate step control, this continuation method is
deterministic in the sense that

1. it computationally but rigorously verifies that the corrector iteration
will converge to a point on the same branch of the intersection curve
as the previous point, i.e., the predictor / corrector iteration will never
jump across branches, and

2. each predictor step is as large as possible, subject to verification that
the curve is unique with the given interval extension.



The following alogrithm is a brief outline; for details see [9].
Algorithm 2 (Sketch of the continuation method)
step 1 Input an initial point X on some branch of the intersection curve.
step 2 Compute the parameter coordinate and decide the orientation.

If the condition number of the Jacobi matriz at X s too large, then

i) return the message “bifurcation point” detected.
it) Construct a small box around X, then put this box into a box

list L.
endif

step 3 Construct an appropriate box x such that X is on one of the faces of
x which is perpendicalar to the parameter direction.

step 4 Do a sweep of interval Gauss—Seidel iteration on the box x.

If there is unique curve passing through x, then

a) Place x into L.

b) Using the classical Newton’s method, compute a new point Xy
approximately on the curve and on the face of x which is per-
pendicular to the parameter coordinate and opposite the face

with X.
¢) If X1 € x¢ then
a) Replace X by X;
() cycle back to step 2.
else
return.

endif.
endif
Figure 2 illustrates interval step control continuation. Starting at X, the

procedure generates three points along with three boxes. The first two boxes
correspond to the same parameter coordinate x;, and they are tangent on a



face perpendicular to x;. The parameter coordinate for the third box is x5,
and the second and third boxes have a non-empty intersection.

In step 2 i) of Algorithm 2, we mean numerical or imperfect bifurcation
point. For example, the curve defined by

2’ — (t —0.5)" = p

has two branches in the box [—1,1] x [—1, 1]; see Figure 3. As p tends to 0,
the point (0,0.5) is thought of as a numerical bifurcation point. But it is not
a bifurcation point in the strict sense, no matter how small p is.

Since uniqueness of the curve branch is guaranteed by the Guass—Seidel
check, we have the following theorem.

Theorem 1 ([9]) There is only one branch of the curve passing through any
box in the list L generated by interval step control continuation, and L is a
cover of the branch followed.

2.3 The Containment Checking Algorithm

We present the containment checking algorithm here. This algorithm com-
putes sequences of points on all branches of the intersection curves arising
from CAD problems. The containment checking algorithm rejects boxes
contained in any box in the list £ generated from interval step control con-
tinuation, since such boxes either do not contain any point of the curve, or
else the points in those boxes are on branches already followed. See Figure

4.

Algorithm 3 (Containment Checking Algorithm)
step 1 Input the initial box xq and functions f and g.
step 2 [Initialize the stack S by placing xq onto it.
step 3 Pop a boxy from S.

If the box list L generated from continuation is non-empty, then

If y is contained in some box in L, then

i) rejecty.



1) If S is empty, then return.
else
i) bisect y into two subbozes y1 and y;.
1) Put 'y, and ys onto S.
i11) Cycle back to the beginning of step 3.
endif
endif

step 4 Use Algorithm 1 (the starting point location algorithm) to find an
inttial point X €'y. Join S with the stack generated during location of
X.

step 5 Use Algorithm 2 (the interval step control algorithm) to follow the
curve in two opposite directions starting from X.

step 6 Cycle back to step 3.

2.4 Complement Algorithm

Two algorithms are presented in this section. The first is finds the comple-
ment of a box y in a box x, as in Figure 5. The second is used to compute
sequences of points on each branch of the intersection curve arising from
CAD problems, as in Figure 6. This complement method is used to locate
all branches of the intersection curves.

There are three cases when finding the complement of y in x.

1. y is properly contained in x. There are four boxes in the complement.
Those are ¢;,2 = 1,2, 3, 4.

2. yNx # ¢, but y ¢ x. There are two boxes in the complement. Those
are ¢;, t = 1,2.

3. yNx = (. There is only one box ¢; = x.

Algorithm 4 (Box complementation algorithm)

step 1 Input the boxes x and y.



step 2 Sel: yi « X, y, — X.
step 3 For:=1,3 do

a) Compute the one dimensional intersection z of x; and y;.
b) If z is properly contained in x, then
i) let y1; and ya be the one dimensional complements of z in
X;.
it) Pul y; and yy onto the complement list L..
it1) Replace x; by z.
else

If the complement of z in X is empty, then
Cycle to next 1.

else
a) Let yq1; be the one dimensional complement of z in x;.
B) Put y, onto L..
v) Replace x; by z.

endif

endif

end do

Algorithm 4 is related to the bisection algorithm (Algorithm 3.1) of [7].
In fact, a similar technique can be used to find the complement of an n-
dimensional box in another n-dimensional box.

Algorithm 5 (Complement Algorithm)
step 1 Input a box xq and functions f and g.
step 2 [Initialize S by placing the box x¢ onto il.
step 3 Do while S # ()

a) Pop a boxy from S.



b) Use Algorithm 1 (starting point location algorithm) to locate an ini-
tial point X €y on the curve.

¢) If X was successfully found in the previous step, then create a box
cover of the path passing through X .

i) Use Algorithm 2 (the interval step control algorithm) to follow
the curve in two opposite directions starting from X.

it) Replace L by the new box list generated by interval step control
continuation.

d) If a new box list L was generated from conlinualion in the previous
step, then

i) for each box z in the new list L, find the complement of z
in each box x € §. This procedure generates a new stack of
bozxes.

it) Replace S by this new stack.
endif

end do

3 Modified interval step control continua-
tion

Performance of the containment checking algorithm and the complement al-
gorithm depends on how well the box list generated by interval step control
continuation covers the followed branch. But Figure 2 illustrates how the
union of the sequence of boxes can fail to contain the curve in its interior.
Since the parameter coordinate changes from z; to x5 at the point Xs, the
cover at the point X3 is bad in the sense that the point X3, while approx-
imately on the curve, is also on the boundary of the union of boxes. This
may result in small boxes near the path that cannot be rejected, as in Figure
7. To avoid this, we present a modified version of the continuation method
for the containment checking algorithm. In a step corresponding a change of
parameter, one more box is constructed with the same parameter to get a
better cover of the followed branch. See Figure 8.
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The complement algorithm could also benefit from this modified con-
tinuation method, since interval Newton methods, in general, cannot prove
non-existence or uniqueness when roots lie near boundaries.

Algorithm 6 (Modified interval step control continuation)
step 1 Input an initial point X on some branch of the intersection curve.
step 2 Compute the parameter coordinate and decide the orientation.

a) If the condition number of the Jacobi matriz at X is too large, then

i) return the message “bifurcation point” detected.
it) Construct a small box around X, then place this box into a list

L.
endif

b) If the current parameter is different from the previous parameter,
then
i) use the previous parameter.
it) Construct an appropriate box x such that X is on one of the
faces of x which is perpendicalar to the parameter direction.

it1) Do a sweep of interval Gauss—Seidel iteration on the box x.
If this computation determines that a unique curve passes
through x, then place x into L.

endif

step 3 Construct an appropriate box x such that X is on one of the faces of
x which is perpendicular to the parameter direction.

step 4 Do a sweep of interval Gauss—Seidel iteration on the box x. If this

computation determines that there is a unique curve passing through X,
then

a) Place x into L.

b) Using the classical Newton’s method, compule a new point X; ap-
proxiamtely on the curve and on the face of x which is perpendic-
ular to the parameter coordinate and opposite X7.
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¢) If X1 € xo, where Xq is the entire box, then cycle back to step 2.
else return.

endif
endif

4 Numerical Experiments

We implemented both the containment checking algorithm and complement

algorithm in the language FORTRAN-SC (ACITH-XSC) on an IBM3090.

We used Algorithm 1 for the box complement algorithm and Algorithm 6 for

the containment checking algorithm, although additional experiments may

show that the box complement algorithm also benefits from Algorithm 6.
We tried the algorithm on two simple examples.

4.1 Bilinear Surfaces

In [17], an intersection curve of two bilinear surfaces is given. In parametric
form, the surfaces are

P(s,t) = Poo(1 —s)(1 — 1) + Pios(1 —t) + Por(1 — s)t + Piyst
where Py = (0,0,0), Pio = (0,1,4), Po1 = (3,3,0), and P;; = (4,0,4) and
Q(u,v) = Qoo(1 — u)(1 —v) + Qrou(l —v) + Qo (1 — w)v + Quiuv
where Qoo = (0,0,0), Q10 = (0,4,4), Qo1 = (4,2,0), and Q11 = (4,0,4). In

implicit form, they are

22—4xz—l—12;r:—12y = 0
3xz —4xr + 8y — 8z = 0.

By inspection, point (0,0,0) must be on the intersection curve. We fill follow
curves within the box [-2,2] x [—2,2] x [-2,2]. In tables 1 and 2, we use
the following abbreviations.

CCA : the containment checking algorithm;

BCA : the complement algorithm.
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4.2 Spherical and Cylindrical Surfaces

In [4], the intersection curve of a spherical surface and a cylinderical surface
is given. In implicit form, they are

$2+y2+22—4 0
(x—1)2+22—1 = 0.

By inspection (2,0,0) is on the intersection curve. When curves within the
box [—2,2] x [-2,2] x [—2,2] are followed, we obtain Table 1.

4.3 Comparisions of the Two Algorithms

Basically, the ideas for both the containment checking algorithm and com-
plement algorithm are the same. They both try to use the fact that there
is unique curve passing through the boxes generated by interval step control
continuation, and try to reject boxes contained in the union of the boxes
generated by interval step control continuation. In the containment checking
algorithm, starting with the initial box, a stack of boxes is generated. A
box is rejected if it is contained in some box obtained by continuation. A
limitation of this approach is that any box only partially contained in some
box obtained by continuation can not be rejected. This can be avoided by
the complement algorithm, since, in that case, only the boxes within the
complement of the cover of the boxes obtained by continuation are consid-
ered. But the complement algorithm also has a limitation: when the number
of boxes generated by interval step control continuation is large, finding the
complement is time consuming. A preliminary conclusion evident from the
experiments reported here is:

When the number of the boxes generated by interval step
control continuation is less than 100, the complement algorithm
works better: see tables 1 and 2. Otherwise, the containment
checking algorithm is more efficient.

To pick an efficient algorithm, our suggestion is:

1. If the initial box size is small compared to the curvatures of
the surfaces, choose the box complement algorithm. Other-
wise, the containment checking algorithm is a better choice.
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2. First partition the initial box into several subboxes, and use
the complement algorithm on each of them.

In our experiments with simple algebraic curves, the average step size in the
interval step control continuation is 0.01 to 0.05. In such cases, to make the
number of boxes produced by continuation less than 100, the box size (i.e.
the length of each edge of the boxes) should be less than about 1 to 5.

5 Conclusions and Future Work

We have presented two algorithms for surface / surface intersections based on
interval step control continuation. Both algorithms can locate all branches
of the intersection curves of two surfaces within a given box. The efficiencies
of these algorithms depend on the initial box size and the implementation.
Our numerical experiments hint that each is efficient when the appropriate
one is chosen for a particular problem.

Our initial experiments, reported above, involved two simple systems of
equations given in implicit form. However, the techniques are equally appli-
cable to surfaces given in parametric form, and indeed, to surfaces defined
in a piecewise fashion, in which the pieces are given in parametric form. For
example, to find the intersection

P(s,t) = Q(u,v) =0,

we simply apply the techniques to the system of three equations in the four
unknowns s, ¢, u , and v given by

Pi(s,t) = Qi(u,v)

Py(s,t) = Q2(u,v)

Ps(s,t) = Qs(u,v).
The continuation method in [9] is general, and our adaptive subdivision al-
gorithms and complementation algorithm explained above generalize in a

straightforward way. We will perform a definitive set of such tests upon
completion of the appropriate software environment.
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T2
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Figure 1: In this 2-dimensional picture, the filled box is accepted as contain-
ing a starting point. The other boxes, such as box y, are either on the stack
S or have been rejected.

algorithm type CCA | BCA
# of branches 1 1
# of bifurcation point 0

# of bozes rejected by containment checking | 19,482
# of bozes rejected by Gauss—Seidel method | 26,023 | 1,470

total # of boxes rejected 45,505 | 1,470

total # of boxes generated by continuation 64 64

CPU Time in seconds 184 | 20.5
mazimum stack length 34

Table 1: experimental results for the intersection curves of two bilinear sur-
faces.
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Figure 2: Interval step control continuation.
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Figure 3: The hyperbolic curve.
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T2

f(z,y) =

the filled box in S is rejected

boxes in £ X0 /
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the dashed boxes in § are not rejected
&

Figure 4: Tllustration of a sequence of boxes £. A box on stack § may be
rejected by checking if it is contained in a box in L.

algorithm type CCA BCA
# of branches 2
# of bifurcation point 1 1

# of boxes rejected by containment checking | 49,192
# of bozes rejected by Gauss—Seidel method | 70,074 | 675,816

total # of bozxes rejected 119,266 | 675,816

total # of boxes generated by continuation 1,216 1,216

CPU Time in seconds 429 | 11325
maztmum stack length 35

Table 2: experiment for intersection curves of a sphere and a cylinder sur-
faces.
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Figure 5: This figure illustrates how to represent the complement of the box
y in the box x by minimum number of the boxes {c;}.
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Figure 6: The filled boxes are boxes in £, while all other boxes are in L..
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Figure 7: A difficulty when Algorithm 1 is used. The box y may not be
rejected because roundout error may make it indistinguishable from X,.
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Figure 8: Modified interval step control applied to the containment checking
algorithm.
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